

Minyoung Choe

Sunwoo Kim

Jaemin Yoo

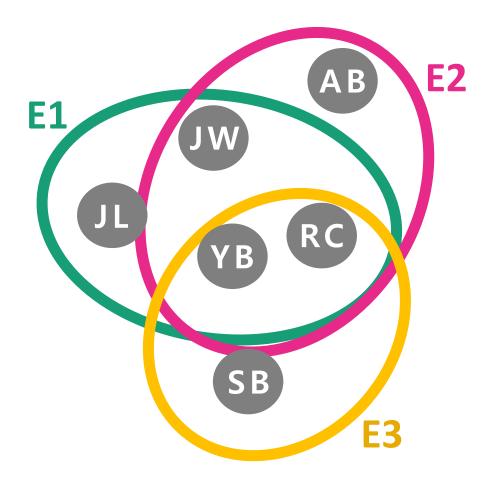
Kijung Shin

Group Interactions are EVERYWHERE

		How do I set up my local machine with SSO?
Classification of Edge-dependent Labels of Nodes in Hypergraphs		Asked by
Minyoung Chee KAIST aniyoung chee@kaista.ckSunwoo Kin KAIST Seed, Korea niyoung chee@kaista.ckJacmin Yoo Caregie Melon University aniyoung chee@kaista.ckKinyoung Chee KAIST Seed, Korea kwoo77@kaista.ckJacmin Yoo Caregie Melon University aniyoung chee@kaista.ckKinyoung Chee KAIST seed woo77@kaista.ckJacmin Yoo Caregie Melon University aniyoung chee@kaista.ckKinyoung Chee KAIST korea the of nodes and hyperdeges to of ander and hyperdeges to of nodes.Due to bin on more naturally (if an offed and hyperdeges to of nodes and hyperdeges <br< th=""><th></th><th>63 Answered by</th></br<>		63 Answered by
Co-Authorship	Q&A Platform	2 Answered by
Multi-player Game	EmailImage: Constraint of the second s	Joan@enron.com harry.arora@enron.com, robert.badeer@enron.com arnold@enron.com About today's meeting

Group Interactions → **Hypergraph**

<u>Authors(Nodes)</u>

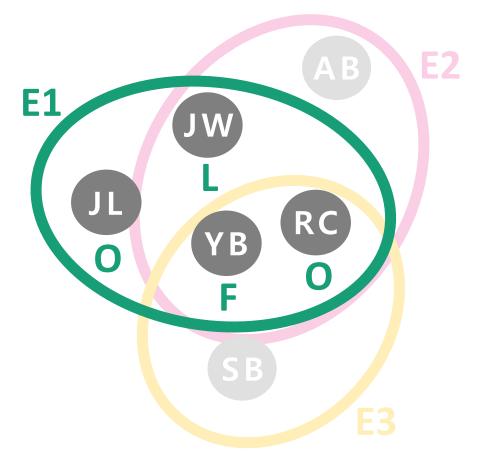

Y Bengio	(YB)	J Weston	(JW)
J Louradour	(JL)	A Bordes	(AB)
R Collobert	(RC)	S Bengio	(SB)

Publications (Hyperedges)

E1: Curriculum learning Y Bengio, J Louradour, R Collobert, J Weston - ICML'09

E2: Learning structured embeddings of knowledge bases A Bordes, J Weston, R Collobert, Y Bengio - AAAI'11

E3: A parallel mixture of SVMs for very large scale R Collobert, S Bengio, Y Bengio – NIPS'01

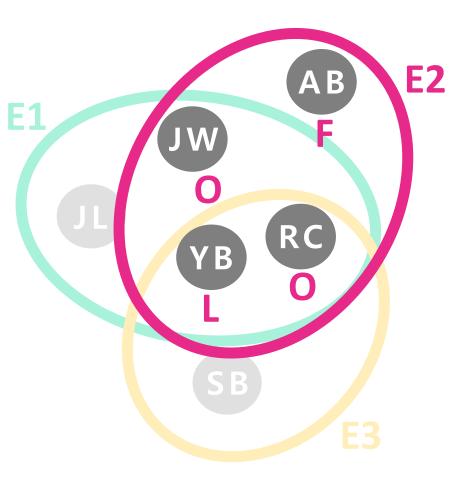


Node Labels are Edge-Dependent

Publications (Hyperedges)

E1: Curriculum learning								
Y Bengio	Y Bengio, J Louradour, R Collobert, J Weston - ICML'09							
First	Others	Last						
(F)	(O)	(L)						

The importance or role of a node can vary depending on hyperedges!

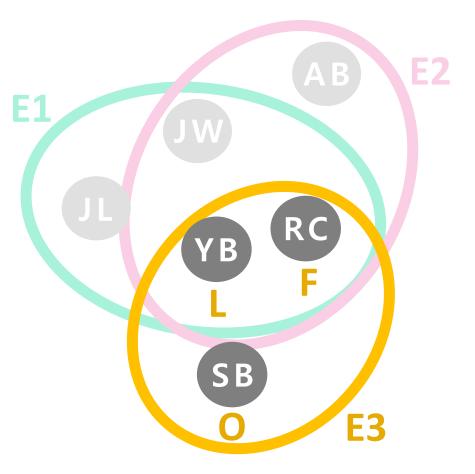

Node Labels are Edge-Dependent

Publications (Hyperedges)

E2: Learning structured embeddings of knowledge bases A Bordes, J Weston, R Collobert, Y Bengio - AAAI'11 First Others Last

(F) (O) (L)

The importance or role of a node can vary depending on hyperedges!


Node Labels are Edge-Dependent

Publications (Hyperedges)

E3: A parallel mixture of SVMs for very large scale R Collobert, S Bengio, Y Bengio – NIPS'01

> First Others Last (F) (O) (L)

The importance or role of a node can vary depending on hyperedges!

Roadmap

- 1. Introduction
- **2.** Problem Formulation <<
- 3. WHATsNET: Proposed Approach
- 4. Evaluation
- 5. Conclusions

Problem Formulation

Edge-Dependent Node Classification

- **Given** A hypergraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$: a node set \mathcal{V} and a hyperedge set \mathcal{E}
 - A set of edge-dependent node labels in $\mathcal{E}' \subset \mathcal{E}$:

 $y_{v,e}, \forall v \in e, \forall e \in \mathcal{E}'$

• (Optionally) a node feature matrix X

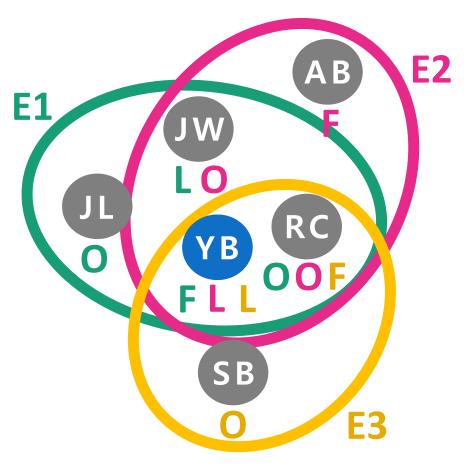
Aim to accurately predict the unknown edge-dependent node labels in $\mathcal{E} \setminus \mathcal{E}'$:

 $y_{v,e}, \forall v \in e, \forall e \in \mathcal{E} \setminus \mathcal{E}'$

Edge-Dependent Node Classification

<u>Co-Authorship</u>

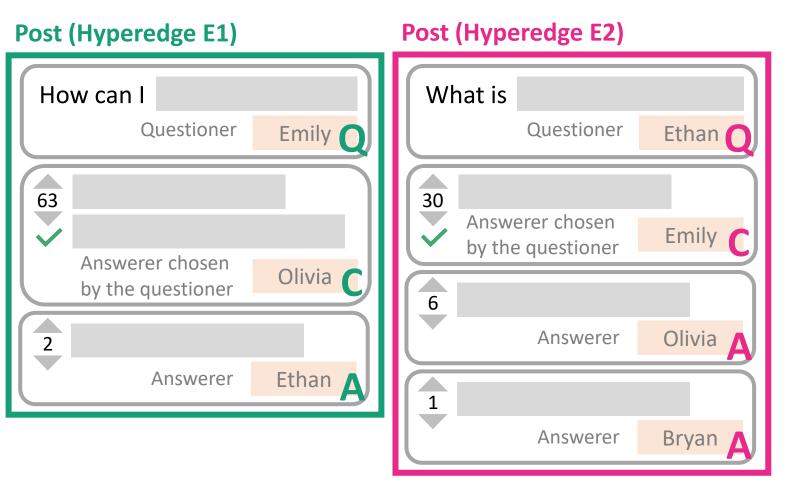
Publication (Hyperedge E1)

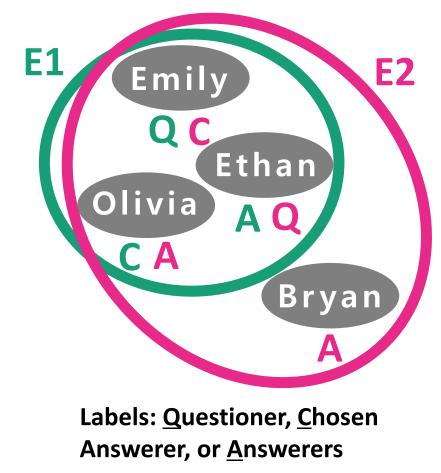

E1: Curriculum learning Y Bengio, J Louradour, R Collobert, J Weston - ICML'09

Publication (Hyperedge E2)

E2: Learning structured embeddings of knowledge bases A Bordes, J Weston, R Collobert, Y Bengio - AAAI'11

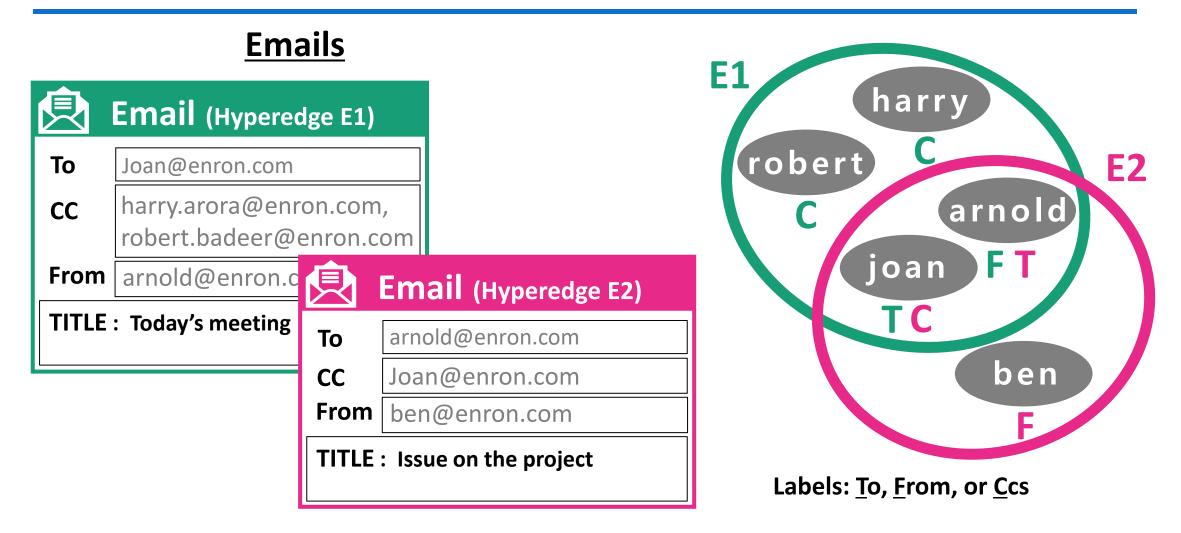
Publication (Hyperedge E3)


E3: A parallel mixture of SVMs for very large scale R Collobert, S Bengio, Y Bengio – NIPS'01



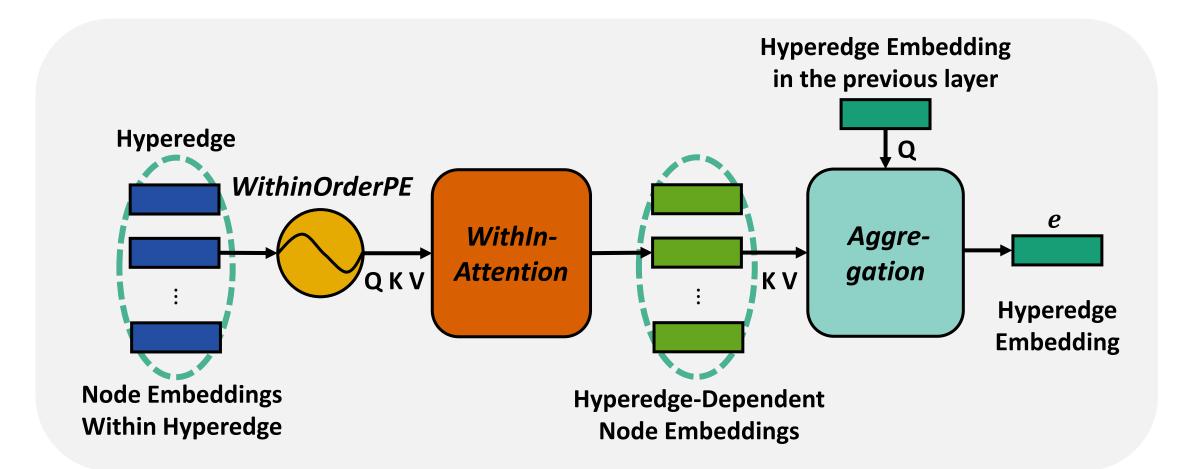
Labels: <u>First</u>, <u>Last</u>, or <u>O</u>thers

Edge-Dependent Node Classification

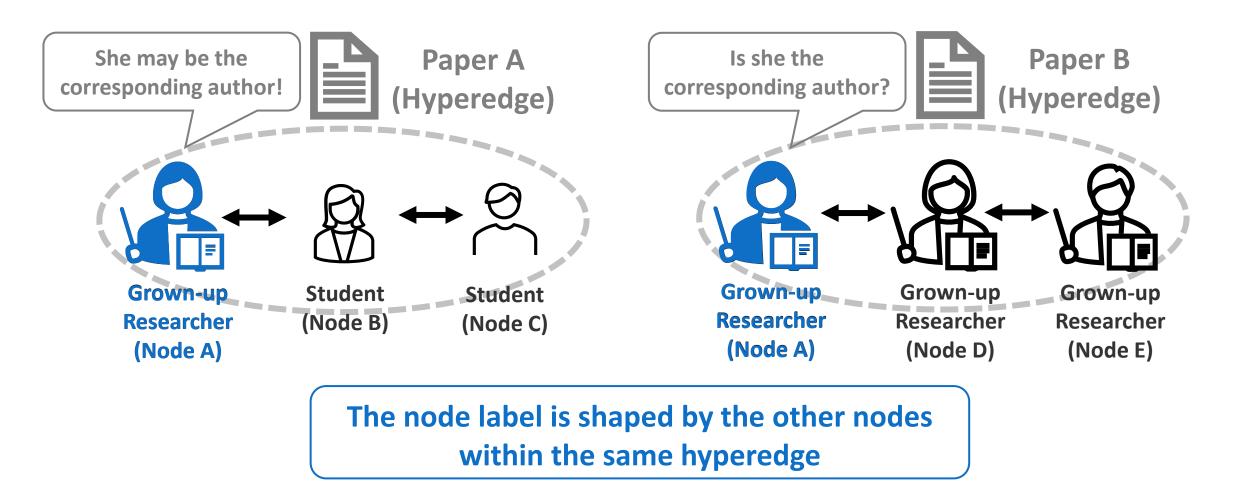

Online Q&A Platforms

KDD 2023

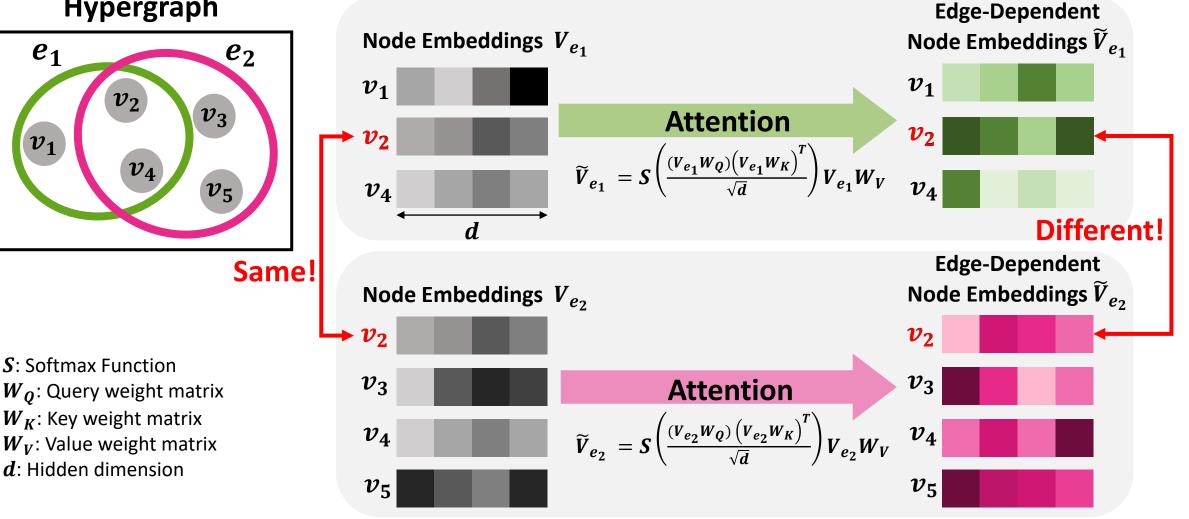
Edge-Dependent Node Classification



Roadmap

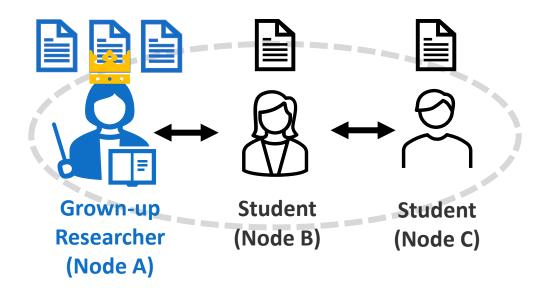

- 1. Introduction
- 2. Problem Formulation
- 3. WHATsNET: Proposed Approach <<
- 4. Evaluation
- 5. Conclusions

Proposed Model: WHATsNET



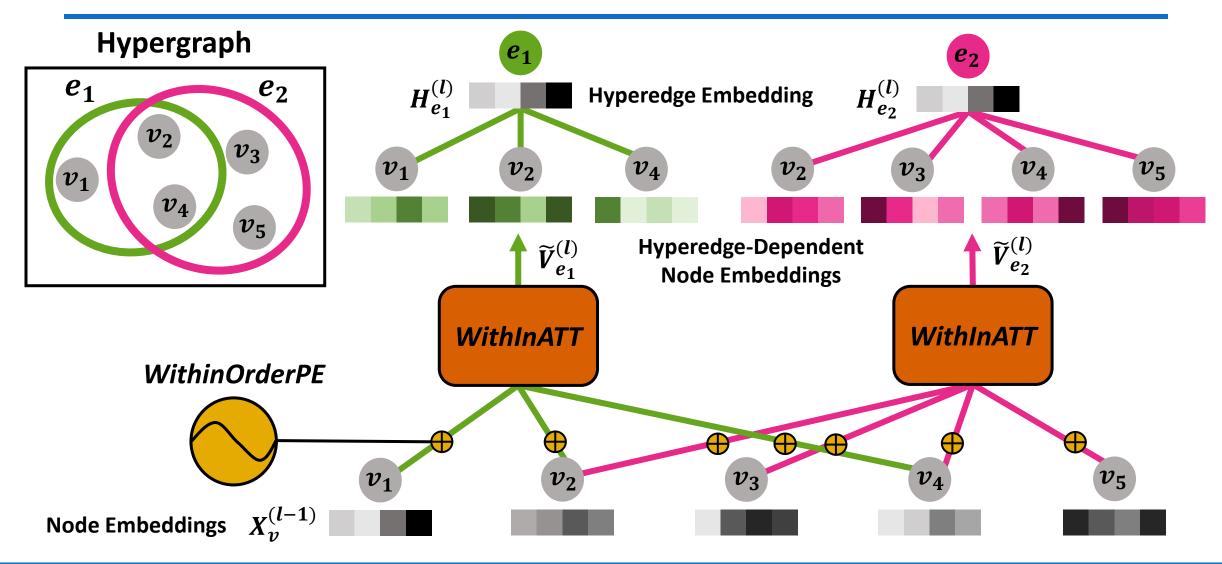
WithInATT: Attention to Other Nodes within Hyperedges

WithInATT: Attention to Other Nodes within Hyperedges

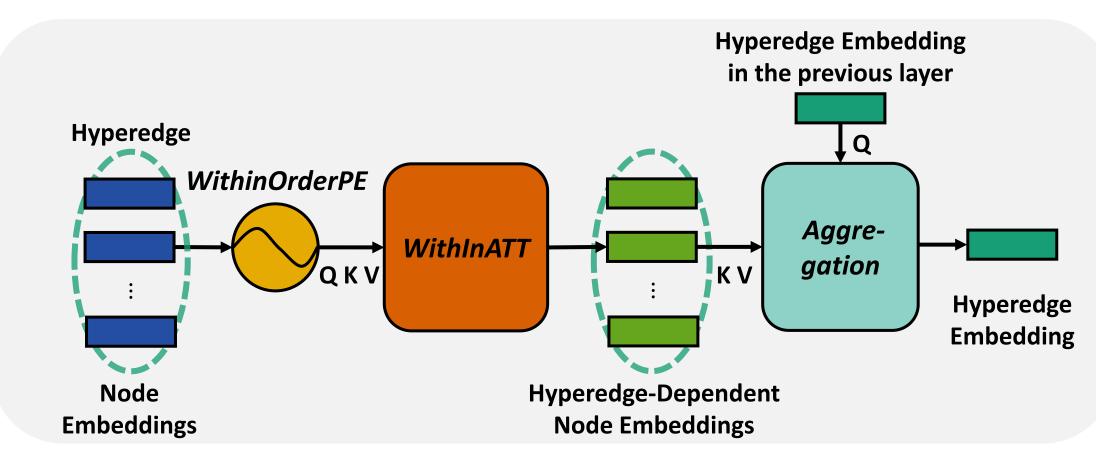

Hypergraph

KDD 2023

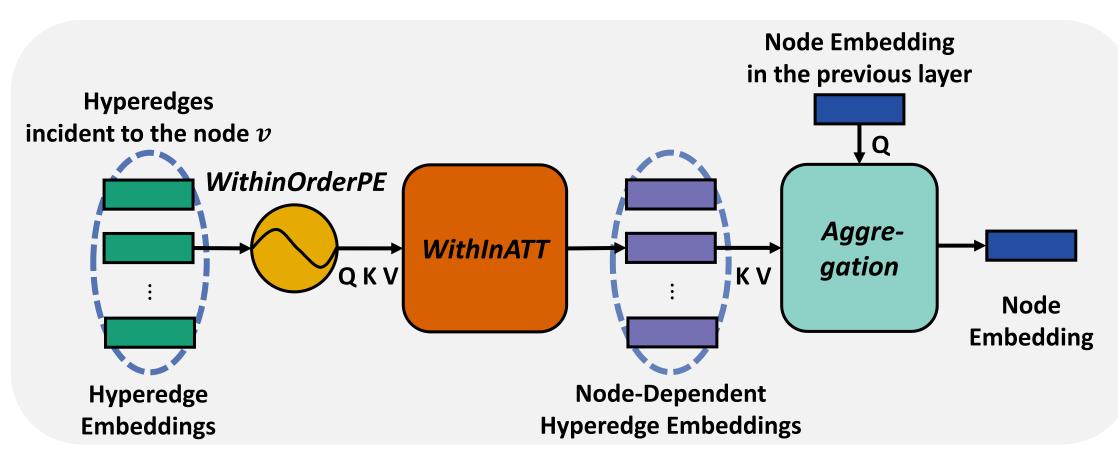
WithinOrderPE: Using Centrality for Positional Encoding


Papers = Degree Centrality

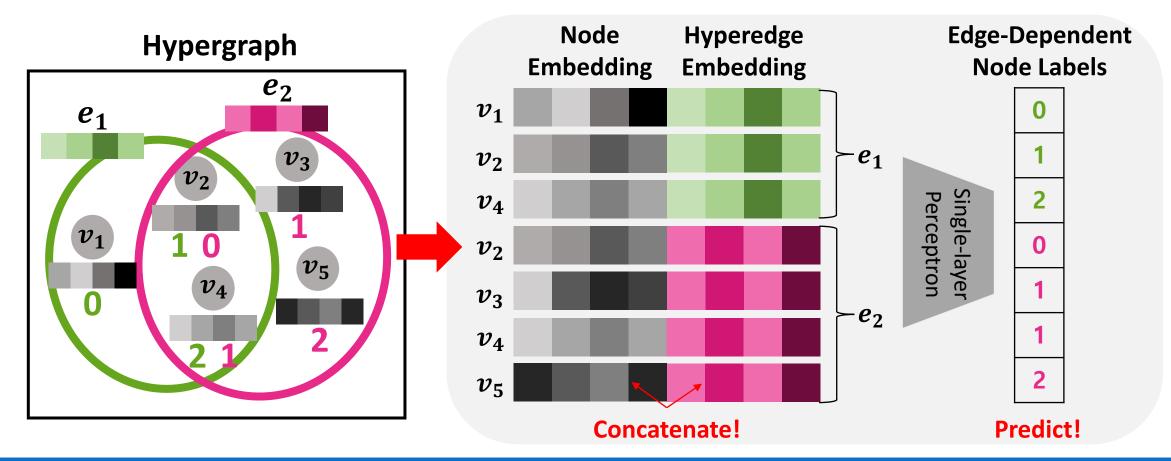
The author with the highest centrality is more likely to be the corresponding author!


WithinOrderPE: Using Centrality for Positional Encoding

	Centrality Measure 1	Centrality Measure 2	Centrality Measure 3	<i>e</i> ₁ <i>v</i> ₂ <i>v</i> ₁ <i>v</i> ₃	Within- OrderPE 1	Within- OrderPE 2	Within- OrderPE 3
Node v_1	3	0.7 3 th smallest	0.15	Node v_1	2/3	$3/(3 = e_1)$	1/3
Node v_2	1	0.3 1 st smallest in	0.15 e ₁	Node v_2	2/3	1/3 2/3	1/31/3
Node v_3	3	0.5 2ndsmallest	0.15	<i>e</i> ₂			Differei
Node v_4	2	0.5 same in e_2	0.2	<i>v</i> ₃ <i>v</i> ₄	Within- OrderPE 1	Within- OrderPE 2	Within- OrderPE 3
:	:	:	:	Nov	$2/(2 = e_2)$	1/2	1/2
				Node v_4	1/2	1/2	2/2


First Update Step) Node→Hyperedge:

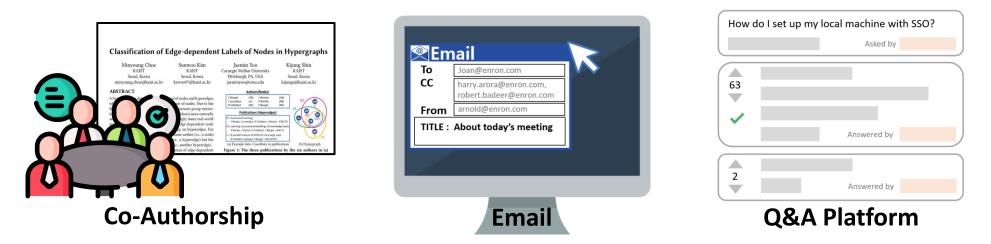
Update each hyperedge embedding using node embeddings within it



Second Update Step) Hyperedge→Node:

Update each node embedding using hyperedge embeddings including it

Classifier) Edge-dependent node labels are predicted using the concatenation of node and hyperedge embeddings from the last layer of WHATsNET


Roadmap

- 1. Introduction
- 2. Problem Formulation
- 3. WHATsNET: Proposed Approach
- 4. Evaluation <<
- 5. Conclusions

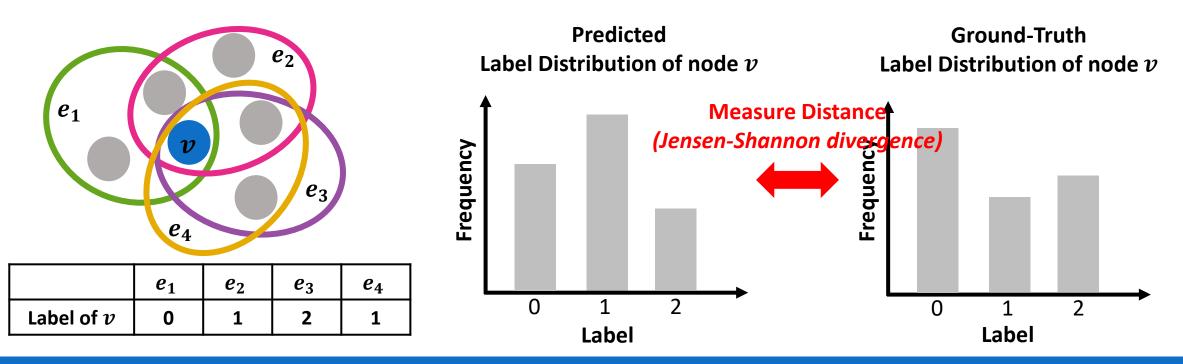
Experiment Setting

- Six real-world datasets from three domains
 - Co-Authorship, Email, and Online Q&A Platform
- Eight baseline approaches of hypergraph neural networks
 - HNHN, HGNN, HCHA, HAT, UniGCNII, HNN, HST, and AST
- Three applications where edge-dependent node labels are useful
 - Ranking Aggregation, Clustering, and Product Return Prediction

Q1. Edge-Dependent Node Classification

Q1. Does *WHATsNet* accurately predict the edge-dependent labels of nodes?

A1. WHATsNET consistently outperforms 10 competitors in classifying


edge-dependent labels of nodes across all 6 datasets!

Dataset	Metric	BaselineU	BaselineP	HNHN	HGNN	HCHA	HAT	UniGCNII	HNN	HST	AST	WHATsNet
Coauth- DBLP	MicroF1 MacroF1	0.333 ± 0.001 0.330 ± 0.001	0.346 ± 0.001 0.332 ± 0.001	0.486 ± 0.004 0.478 ± 0.008	0.540 ± 0.004 0.519 ± 0.002	0.451 ± 0.007 0.334 ± 0.048	0.503 ± 0.004 0.483 ± 0.006	$\begin{array}{c} 0.497 \pm 0.003 \\ 0.476 \pm 0.002 \end{array}$	0.488 ± 0.006 0.482 ± 0.006	0.564 ± 0.004 0.549 ± 0.003	0.495 ± 0.038 0.487 ± 0.040	$\begin{array}{c} {\bf 0.605} \pm 0.002 \\ {\bf 0.595} \pm 0.002 \end{array}$
Coauth- AMiner	MicroF1 MacroF1	$\begin{array}{c} 0.334 \pm 0.000 \\ 0.332 \pm 0.000 \end{array}$	$\begin{array}{c} 0.339 \pm 0.000 \\ 0.333 \pm 0.000 \end{array}$	$\begin{array}{c} 0.520 \pm 0.002 \\ 0.514 \pm 0.002 \end{array}$	$\begin{array}{c} 0.566 \pm 0.002 \\ 0.551 \pm 0.004 \end{array}$	0.468 ± 0.020 0.447 ± 0.040	0.543 ± 0.002 0.533 ± 0.003	0.520 ± 0.001 0.507 ± 0.001	0.543 ± 0.002 0.533 ± 0.002	$\begin{array}{c} 0.596 \pm 0.007 \\ 0.583 \pm 0.008 \end{array}$	0.577 ± 0.005 0.570 ± 0.002	$0.630 \pm 0.005 \\ 0.623 \pm 0.007$
Email- Enron	MicroF1 MacroF1	0.334 ± 0.001 0.300 ± 0.001	0.439 ± 0.001 0.333 ± 0.001	$\begin{array}{c} 0.738 \pm 0.028 \\ 0.637 \pm 0.023 \end{array}$	0.725 ± 0.004 0.674 ± 0.003	$\begin{array}{c} 0.666 \pm 0.010 \\ 0.464 \pm 0.002 \end{array}$	0.817 ± 0.001 0.753 ± 0.004	0.734 ± 0.010 0.656 ± 0.010	0.763 ± 0.003 0.679 ± 0.007	0.779 ± 0.067 0.681 ± 0.123	0.796 ± 0.014 0.719 ± 0.020	$0.826 \pm 0.001 \\ 0.760 \pm 0.004$
Email- Eu	MicroF1 MacroF1	0.500 ± 0.001 0.493 ± 0.001	0.525 ± 0.001 0.499 ± 0.001	0.643 ± 0.004 0.552 ± 0.014	0.633 ± 0.001 0.533 ± 0.008	0.620 ± 0.000 0.497 ± 0.001	0.669 ± 0.001 0.638 ± 0.002	0.630 ± 0.005 0.565 ± 0.013	OutOfMemory OutOfMemory	$\begin{array}{c} \textbf{0.671} \pm 0.001 \\ 0.640 \pm 0.002 \end{array}$	0.666 ± 0.005 0.624 ± 0.021	$\begin{array}{c} {\bf 0.671} \pm 0.000 \\ {\bf 0.646} \pm 0.003 \end{array}$
Stack- Biology	MicroF1 MacroF1	$\begin{array}{c} 0.335 \pm 0.000 \\ 0.326 \pm 0.000 \end{array}$	0.368 ± 0.001 0.334 ± 0.003	$\begin{array}{c} 0.640 \pm 0.005 \\ 0.592 \pm 0.006 \end{array}$	0.689 ± 0.002 0.624 ± 0.007	0.589 ± 0.007 0.465 ± 0.060	0.661 ± 0.005 0.606 ± 0.005	0.610 ± 0.004 0.433 ± 0.007	0.618 ± 0.015 0.568 ± 0.013	0.694 ± 0.002 0.631 ± 0.006	0.571 ± 0.054 0.446 ± 0.081	$0.742 \pm 0.003 \\ 0.686 \pm 0.004$
Stack- Physics	MicroF1 MacroF1	0.333 ± 0.001 0.322 ± 0.001	$\begin{array}{c} 0.370 \pm 0.000 \\ 0.332 \pm 0.000 \end{array}$	$\begin{array}{c} 0.506 \pm 0.053 \\ 0.422 \pm 0.043 \end{array}$	0.686 ± 0.004 0.630 ± 0.002	0.622 ± 0.003 0.481 ± 0.007	0.708 ± 0.005 0.643 ± 0.009	$\begin{array}{c} 0.671 \pm 0.022 \\ 0.492 \pm 0.016 \end{array}$	0.683 ± 0.005 0.617 ± 0.005	$\begin{array}{c} 0.755 \pm 0.010 \\ 0.666 \pm 0.013 \end{array}$	0.728 ± 0.039 0.646 ± 0.046	$0.770 \pm 0.003 \\ 0.707 \pm 0.004$

Results of Edge-Dependent Node Classification

Q2. Node Label Distribution Preservation

- **Q2.** Does *WHATsNet* classify the same node differently depending on hyperedges?
- To assess this, we examine Node-Level Label Distribution
- = How many times each node has each label

Q2. Node Label Distribution Preservation

Q2. Does *WHATsNet* classify the same node differently depending on hyperedges?

A2. WHATsNet preserves well the ground-truth node-level label distributions

because it shows the smallest distance between ground-truth and predicted node l abel distribution

Dataset	BaselineU	BaselineP	HNHN	HGNN	HCHA	HAT	UniGCNII	HNN	HST	AST	WHATsNet
Coauth-DBLP	0.532 ± 0.002	0.518 ± 0.002	0.450 ± 0.002	0.394 ± 0.005	0.450 ± 0.002	0.429 ± 0.004	0.449 ± 0.006	0.450 ± 0.003	0.388 ± 0.006	0.453 ± 0.038	0.350 ± 0.002
Coauth-AMiner	0.529 ± 0.000	0.523 ± 0.000	0.440 ± 0.003	0.372 ± 0.002	0.462 ± 0.002	0.414 ± 0.003	0.424 ± 0.002	0.411 ± 0.003	0.356 ± 0.005	0.382 ± 0.009	0.328 ± 0.004
Email-Enron	0.486 ± 0.002	0.395 ± 0.001	0.162 ± 0.003	0.212 ± 0.007	0.291 ± 0.007	0.157 ± 0.004	0.187 ± 0.002	0.205 ± 0.002	0.302 ± 0.233	0.178 ± 0.019	0.136 ± 0.001
Email-Eu	0.199 ± 0.006	0.164 ± 0.004	0.232 ± 0.009	0.291 ± 0.001	0.268 ± 0.002	0.154 ± 0.004	0.300 ± 0.004	OutOfMemory	0.158 ± 0.005	0.168 ± 0.015	0.151 ± 0.009
Stack-Biology	0.536 ± 0.001	0.467 ± 0.003	0.266 ± 0.007	0.202 ± 0.003	0.237 ± 0.016	0.235 ± 0.006	0.263 ± 0.004	0.311 ± 0.026	0.200 ± 0.002	0.259 ± 0.022	0.152 ± 0.002
Stack-Physics	0.532 ± 0.001	0.482 ± 0.001	0.286 ± 0.036	0.219 ± 0.008	0.289 ± 0.004	0.227 ± 0.006	0.285 ± 0.050	0.292 ± 0.005	0.162 ± 0.008	0.185 ± 0.021	0.141 ± 0.003

Jensen-Shannon divergence (JSD) between Ground-trugh and Predicted Node Label Distributions

Q3. Ablation Study of WHATsNet

Q3. Does each component make a meaningful contribution to the performance?

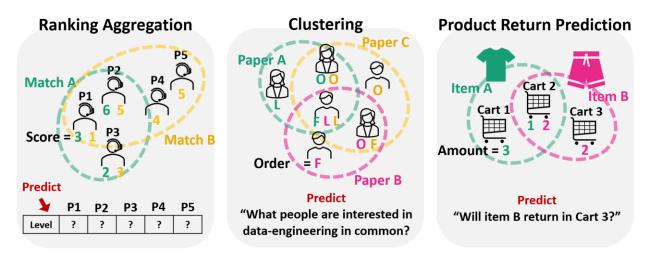
A3-(a). Importance of WithinATT

WHATsNet consistently outperforms the variant without WithinATT.

A3-(b). Improvement by WithinOrderPE

WHATsNet also performs better than the variant without WithinOrderPE

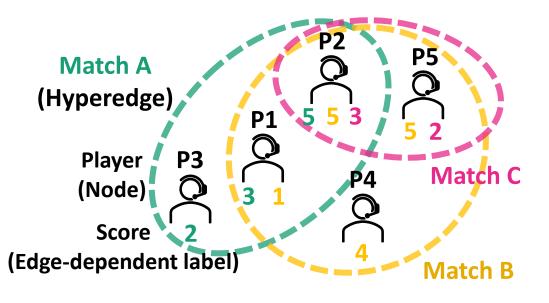
		1		
Dataset	Metric	w/o WithinATT	w/o WithinOrderPE	WHATSNET
Coauth-	MicroF1	0.581 ± 0.004	0.591 ± 0.003	$\textbf{0.605} \pm 0.002$
DBLP	MacroF1	0.577 ± 0.003	0.584 ± 0.003	$\textbf{0.595} \pm 0.002$
Coauth-	MicroF1	$0.604 \pm 0.010 (6) \\ 0.592 \pm 0.013 (6) $	a) $0.583 \pm 0.095_{0.536 \pm 0.174}$ (b)	0.630 ± 0.005
AMiner	MacroF1	0.592 ± 0.013	0.536 ± 0.174	0.623 ± 0.007
Email-	MicroF1	0.812 ± 0.008	0.825 ± 0.001	$\textbf{0.826} \pm 0.001$
Enron	MacroF1	0.747 ± 0.014	0.762 ± 0.004	0.760 ± 0.004
Email-	MicroF1	0.651 ± 0.019	0.670 ± 0.000	0.671 ± 0.000
Eu	MacroF1	0.630 ± 0.018	0.638 ± 0.002	$\textbf{0.646} \pm 0.003$
Stack-	MicroF1	0.723 ± 0.002	0.732 ± 0.002	$\textbf{0.742} \pm 0.003$
Biology	MacroF1	0.656 ± 0.005	0.672 ± 0.004	$\textbf{0.686} \pm 0.004$
Stack-	MicroF1	0.752 ± 0.005	0.765 ± 0.002	0.770 ± 0.003
Physics	MacroF1	0.675 ± 0.010	0.688 ± 0.008	$\textbf{0.707} \pm 0.004$
AVG.	MicroF1	2.83	2.17	1.00
Ranking	MacroF1	2.83	2.00	1.17

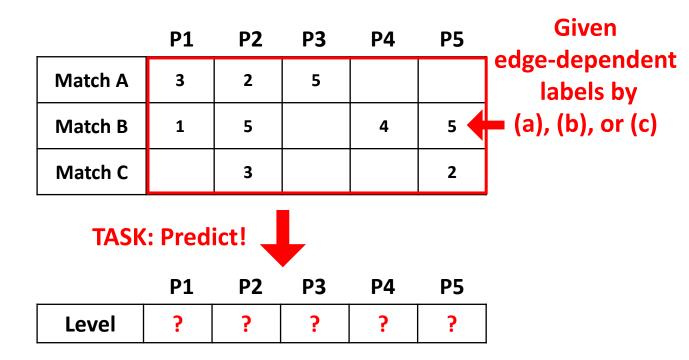

Q4. How can we apply *WHATsNet* to real-world downstream tasks?

Does WHATsNet show usefulness in these tasks?

A4. In *three* downstream tasks, we compare the performance of the tasks using

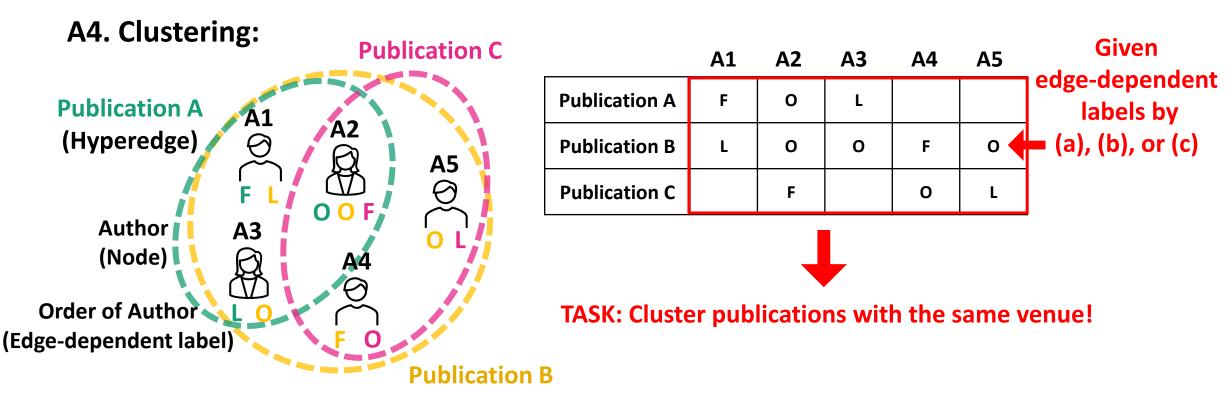
(a) ground-truth edge-dependent node labels, (b) labels predicted by WHATs-


NET, (c) No labels

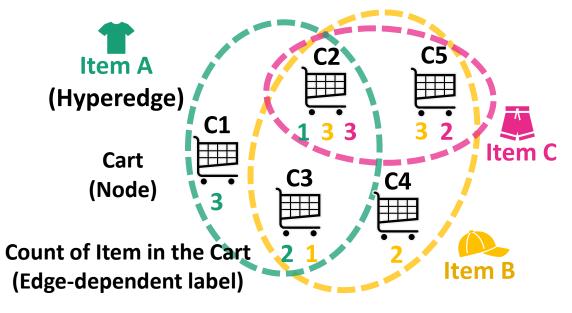


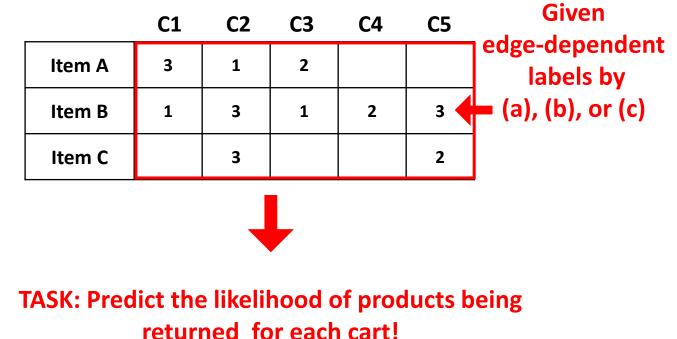
Q4. How can we apply *WHATsNet* to real-world downstream tasks?

Does WHATsNet show usefulness in these tasks?


A4. Ranking Aggregation Task:

Q4. How can we apply *WHATsNet* to real-world downstream tasks?


Does WHATsNet show usefulness in these tasks?



Q4. How can we apply *WHATsNet* to real-world downstream tasks?

Does WHATsNet show usefulness in these tasks?

Q4. How can we apply WHATsNet to real-world downstream tasks?

Does WHATsNet show usefulness in these tasks?

A4. Utilization of edge-dependent node labels predicted by WHATsNet

consistently leads to performance improvements compared to the results obtained *without* labels.

(a) Ranking Aggregation ((Accuracy)
---------------------------	------------

Method	Halo	H-Index
RW [13] w/ Ground Truth	<u>0.711</u>	0.675
RW [13] w/ WHATsNet	0.714	0.693
RW [13] w/ HST	0.707	<u>0.695</u>
RW [13] w/ AST	0.706	0.696
RW [13] w/o Labels	0.532	0.654

(b) Clustering (NMI: The higher, the better)

Method	DBLP	AMiner
RDC-Spec [23] w/ GroundTruth	0.221	0.359
RDC-Spec [23] w/ WHATsNET	<u>0.184</u>	<u>0.352</u>
RDC-Spec [23] w/ HST	0.166	0.339
RDC-Spec [23] w/ AST	0.168	0.332
RDC-Spec [23] w/o Labels	0.163	0.338

(c) Product Return Prediction (F1)

Method	Synthetic E-tail
HyperGO [38] w/ GroundTruth	0.738
HyperGO [38] w/ WHATsNET	0.723
HyperGO [38] w/ HST	<u>0.724</u>
HyperGO [38] w/ AST	0.721
HyperGO [38] w/o Labels	0.718

Roadmap

- 1. Introduction
- 2. Problem Formulation
- 3. WHATsNET: Proposed Approach
- 4. Evaluation
- 5. Conclusions <<

Conclusion

• Our contributions are summarized as follows:

✓ **New Problem:** Formulate the edge-dependent node classification problem

- ✓ **Effective Model:** Propose WHATsNET with WithInATT and WithinOrderPE
- Extensive Experiment: Show the superiority of WHATsNET over 10 competitors

Minyoung Choe: <u>minyoung.choe@kaist.ac.kr</u> Sunwoo Kim: <u>kswoo97@kaist.ac.kr</u> Jaemin Yoo: <u>jaeminyoo@cmu.edu</u> Kijung Shin: <u>kijungs@kaist.ac.kr</u>

Minyoung Choe

Sunwoo Kim

Jaemin Yoo

Kijung Shin

Appendix

Dataset	Num. of Nodes	Num. of Hyperedges	Max. of Node Deg.	Max. of Hyperedge Size	Sum of Hyperedge Size	Num. of Class 0	Num. of Class 1	Num. of Class 2	Corr. w/ Centrality	Avg. Entropy
Coauth-DBLP	108,484	91,266	236	36	321,011	91,266	138,479	91,266	0.19	0.13
Coauth-AMiner	1,712,433	2,037,605	752	115	5,129,998	2,037,605	1,652,332	1,503,061	0.24	0.13
Email-Enron	21,251	101,124	18,168	948	1,186,521	635,268	450,129	101,124	0.10	0.28
Email-Eu	986	209,508	8,659	59	541,842	209,508	332,334	-	0.24	0.48
Stack-Biology	15,490	26,823	1,318	12	56,257	26,290	18,444	11,523	0.29	0.10
Stack-Physics	80,936	200,811	6,332	48	479,809	194,575	201,121	84,113	0.30	0.12

Table 2: Summary of real-world hypergraphs with edge-dependent labels.

Appendix

Table 8: Comparison of positional encoding schemes. The symbol I_w denotes inducing points.

Dataset		Positional Encodings									WithinOrderPE	
		w/o PE	GraphIT/DK	GraphIT/PRWK	Shaw/DK	Shaw/PRWK	LSPE	WholeOrderPE		w/o I _w	w/I_w	
Stack	MicroF1	0.732 ± 0.002	0.719 ± 0.006	0.710 ± 0.004	0.731 ± 0.003	0.456 ± 0.014	0.727 ± 0.003	0.732 ± 0.003	0.2	7 37 ± 0.006	0.737 ± 0.003	
Biology	MacroF1	0.672 ± 0.004	0.645 ± 0.012	0.638 ± 0.012	0.667 ± 0.005	0.338 ± 0.038	0.658 ± 0.010	0.669 ± 0.011	0.6	580 ± 0.005	0.679 ± 0.007	

Table 9: Comparison of node-centrality measures that can be used for WITHINORDERPE.

Dataset	Degree	Coreness	Eigenvector	PageRank	H-Coreness	H-Eigenvector	Vector Centrality	WHATsNet	WHATsNet-all
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				0.738 ± 0.005 0.683 ± 0.008	0.738 ± 0.004 0.681 ± 0.006	0.745 ± 0.002 0.687 ± 0.003	0.742 ± 0.003 0.686 ± 0.004	$0.745 \pm 0.002 \\ 0.690 \pm 0.005$

Table 10: Effect of the number of inducing points and comparison of architectures for hyperedge-to-node message passing.

Dataset		Num	ber of Inducing	Points		MSG. Passing from Hyperedge to Node					
		2	4	8	HNHN	HAT	WHATsNet + HNHN	WHATsNet + HAT	WHATsNet		
Stack	MicroF1	0.740 ± 0.002	0.742 ± 0.003	0.742 ± 0.003	0.640 ± 0.005	0.661 ± 0.005	0.645 ± 0.023	0.670 ± 0.015	0.742 ± 0.003		
Biology	MacroF1	0.682 ± 0.006	0.686 ± 0.004	$\textbf{0.688} \pm 0.002$	0.592 ± 0.006	0.606 ± 0.005	0.583 ± 0.029	0.618 ± 0.010	0.686 ± 0.004		

KDD 2023

Appendix

Dataset	Metric	Best Competitor	WHATsNet-IM	WHATsNet
Coauth- DBLP	MicroF1 MacroF1	0.564 ± 0.004 0.549 ± 0.003	$\begin{array}{c} 0.602 \pm 0.002 \\ 0.592 \pm 0.002 \end{array}$	$0.605 \pm 0.002 \\ 0.595 \pm 0.002$
Coauth-	MicroF1	0.596 ± 0.007	$\begin{array}{c} {\bf 0.637} \pm 0.003 \\ {\bf 0.631} \pm 0.003 \end{array}$	0.630 ± 0.005
AMiner	MacroF1	0.583 ± 0.008		0.623 ± 0.007
Email-	MicroF1	0.779 ± 0.067	$0.858 \pm 0.001 \\ 0.796 \pm 0.004$	0.826 ± 0.001
Enron	MacroF1	0.681 ± 0.123		0.760 ± 0.004
Email- Eu	MicroF1 MacroF1	$\begin{array}{c} 0.671 \pm 0.001 \\ 0.640 \pm 0.002 \end{array}$	$\begin{array}{c} {\bf 0.687} \pm 0.004 \\ {\bf 0.660} \pm 0.009 \end{array}$	0.671 ± 0.000 0.646 ± 0.003
Stack-	MicroF1	0.694 ± 0.002	0.736 ± 0.003	$0.742 \pm 0.003 \\ 0.686 \pm 0.004$
Biology	MacroF1	0.631 ± 0.006	0.679 ± 0.007	
Stack-	MicroF1	0.755 ± 0.010	0.769 ± 0.001	$0.770 \pm 0.003 \\ 0.707 \pm 0.004$
Physics	MacroF1	0.666 ± 0.013	0.692 ± 0.011	

Table 11: Effect of inputs to the final classifier