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Graphs are everywhere!
• Graphs represent relationships such as

▪ Friends in social networks

▪ Purchase history

▪Hyperlinks between web pages

Social network Purchase history Web graph



Graphs become large!
• Graphs grow rapidly at an unprecedented pace

25 million (2013)

Users

0.6 billion (2013)

Web pages
157.4 million (2022) 1.9 billion (2022)



Graphs become large!
• Graphs grow rapidly at an unprecedented pace
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How do we efficiently utilize such large graphs?



Graph compression
• Useful for efficient utilization of large graphs

• To find a compact representation that exactly or 
approximately describes an input graph

Input graph
Compact 

representation

Graph
compression



Graph summarization: overview
• Promising graph compression technique

• Summary graph is in the form of a graph
▪ Can process graph queries directly without restoration

▪ Can apply other graph compression techniques

Input graph Summary graph

Graph
summarization

Compressed graph

Further
compression



Graph summarization: overview
• We can categorize graph summarization methods depending 

on loss of information during summarization

Graph
summarization
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Graph summarization: overview
• We can categorize graph summarization methods depending on 

loss of information during summarization

• We focus on lossy graph summarization

Graph
summarization
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Input graph
Graph summarization 
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Graph summarization models
• We also can categorize graph summarization methods depending 

on summarization models

• One of the two representative models allows edge weights in 
summary graphs; the other does not

Input graph

Restoration

Restored graph
Lossy graph

summarization
algorithm

Graph summarization 
model

UnweightedWeighted



Weighted graph summarization model
• Supernode: a node in a summary graph 

• Superedge: an edge in a summary graph

Lossy graph
summarization

Input graph Summary graph

Supernode Superedge



Weighted graph summarization model
• Summary graphs with edge weights contain information 

about the number of edges on each superedge

Lossy graph
summarization

Input graph Summary graph

With weights
14

Supernode Superedge



Unweighted graph summarization model
• Summary graphs without edge weights do not retain 

information about the number of edges on each superedge

Lossy graph
summarization

Input graph Summary graph

Without weights

With weights
14



Which one is better between two models?
• There was no systematic comparison between two extensively-

studied graph summarization models 

Unweighted graph 
summarization model

Weighted graph 
summarization model

14



Which one is better between two models?
• There was no systematic comparison between two extensively-

studied graph summarization models 
• We conduct a systematic comparison in five aspects

▪ For example, reconstruction and compression ratios

• To this end, we extend three algorithms to both models

Which one is better?
Unweighted graph 

summarization model
Weighted graph 

summarization model

14



Road map
• Introduction

• Notations & Problem formulation <<

• Considered algorithms

• Experiments & Theoretical analysis

• Conclusion



Notations: input graph
• Input graph 𝐺 = (𝑉, 𝐸)

▪ Set of subnodes 𝑉 = {1,2, … , |𝑉|}
▪ Set of subedges 𝐸 ⊆ 𝑉

2
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Input graph 𝐺 = (𝑉, 𝐸)



Notations: input graph
• Input graph 𝐺 = (𝑉, 𝐸)

▪ Set of subnodes 𝑉 = {1,2, … , |𝑉|}
▪ Set of subedges 𝐸 ⊆ 𝑉
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• Adjacency matrix 𝑨 ∈ ℝ 𝑉 × 𝑉 of 𝐺
▪𝐴ij = 1 if i, j ∈ 𝐸 and 𝐴ij = 0 otherwise

a b c d e

a 0 1 0 1 0

b 1 0 1 0 0

c 0 1 0 1 0

d 1 0 1 0 1

e 0 0 0 1 0

a b

c d
e

Input graph 𝐺 = (𝑉, 𝐸)
←Adjacency matrix 𝑨



Notations: summary graph
• Summary graph 𝐺′ = 𝑆, 𝑃 of 𝐺 = (𝑉, 𝐸)

▪ Set of supernodes 𝑆 is a partition of 𝑉

▪ Set of superedges 𝑃 ⊆ 𝑆
2

Input graph 𝐺 Summary graph 𝐺′

Summarizationa b

c d
e

a b

c d
e

A B
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(Un)weighted summary graph
• Summary graph 𝐺′ is either weighted or unweighted



Superedge weight function
• Summary graph 𝐺′ is either weighted or unweighted
• Weighted summary graph additionally has a superedge weight 

function 𝝎
▪𝜔 takes each superedge and returns the its weights

➢(e.g.,) 𝜔𝐴𝐵 = 4, 𝜔𝐵𝐶 = 1

Weighted summary graph

14a b

c d
e
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(Un)weighted reconstructed graph
• Reconstructed graph 𝐺 is obtained from a summary graph 𝐺′

• 𝑨 denotes an adjacency matrix of a reconstructed graph 𝐺

Summary graph 𝐺′

Reconstruct a b

c d
e

a b

c d
e

A B
C

a b c d e

a

b

c

d

e

←Reconstructed           
adjacency 
matrix 𝑨

Reconstructed 

graph 𝐺



Reconstructed adjacency matrix
• With unweighted summary graphs, entries of መ𝐴 are defined as

Reconstructed 

graph 𝐺

Unweighted
summary graph 𝐺′

Reconstruct a b

c d
e

a b

c d
e

A B
C

a b c d e

a 0 1 0 1 0

b 1 0 1 0 1

c 0 1 0 1 0

d 1 0 1 0 1

e 0 1 0 1 0

←Reconstructed           
adjacency 
matrix 𝑨

መ𝐴𝑖𝑗 = ቊ
1,
0,

if 𝑖 ≠ 𝑗 and 𝑆𝑖 , 𝑆𝑗 ∈ 𝑃
otherwise Supernode

containing node 𝑖



Reconstructed adjacency matrix
• With unweighted summary graphs, entries of መ𝐴 are defined as

Reconstructed 

graph 𝐺
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Reconstructed adjacency matrix
• With weighted summary graphs, entries of መ𝐴 are defined as

Reconstructed 

graph 𝐺

Weighted
summary graph 𝐺′

Reconstruct a b

c d
e

a b

c d
e

A B
C

a b c d e

a 0 1 0 1 0

b 1 0 1 0 0.5

c 0 1 0 1 0

d 1 0 1 0 0.5

e 0 0.5 0 0.5 0

←Reconstructed           
adjacency 
matrix 𝑨

መ𝐴𝑖𝑗 = ൞

𝜔𝑆𝑖𝑆𝑗

𝜋𝑆𝑖𝑆𝑗
,

0,

if 𝑖 ≠ 𝑗 and 𝑆𝑖 , 𝑆𝑗 ∈ 𝑃

otherwise
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Reconstructed adjacency matrix
• With weighted summary graphs, entries of መ𝐴 are defined as
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Optimization problem formulation
• Given: input graph 𝐺 and a size budget 𝑘

• Find: summary graph 𝐺′
▪𝐺′: (Un)weighted summary graph

• To minimize: the 𝐿𝑝 reconstruction error 𝐴 − መ𝐴
𝑝

• Subject to: the size of summary graph 𝐺′, 𝑆𝑖𝑧𝑒(𝐺′) ≤ 𝑘
▪ (e.g.,) # of supernodes in 𝐺′, # of bits to encode 𝐺′



Size of summary graph in bits
• The size of an unweighted summary graph in bits is defined as

𝑆𝑖𝑧𝑒𝑏𝑖𝑡𝑠 𝐺′ = 2 𝑃 𝑙𝑜𝑔2 𝑆 + 𝑉 𝑙𝑜𝑔2 |𝑆|



Size of summary graph in bits
• The size of an unweighted summary graph in bits is defined as

• 𝟐 𝑷 𝒍𝒐𝒈𝟐 |𝑺| corresponds to |𝑷| superedges in bits

𝑆𝑖𝑧𝑒𝑏𝑖𝑡𝑠 𝐺′ = 𝟐 𝑷 𝒍𝒐𝒈𝟐 𝑺 + 𝑉 𝑙𝑜𝑔2 |𝑆|



Size of summary graph in bits
• The size of an unweighted summary graph in bits is defined as

• 2 𝑃 log2 |𝑆| corresponds to |𝑃| superedges in bits

• 𝑽 𝒍𝒐𝒈𝟐 |𝑺| corresponds to supernodes membership of |𝑽|
subnodes in bits

𝑆𝑖𝑧𝑒𝑏𝑖𝑡𝑠 𝐺′ = 𝟐 𝑷 𝒍𝒐𝒈𝟐 𝑺 + 𝑉 𝑙𝑜𝑔2 |𝑆|



Size of summary graph in bits
• The size of a weighted summary graph in bits is defined as

• 2 𝑃 log2 |𝑆| corresponds to |𝑃| superedges in bits

• 𝑉 log2 |𝑆| corresponds to supernodes membership of |𝑉|
subnodes in bits

• For a weighted summary graph, 𝑷 𝒍𝒐𝒈𝟐𝝎𝒎𝒂𝒙 corresponds 
to 𝑷 superedge weights in bits

𝑆𝑖𝑧𝑒𝑏𝑖𝑡𝑠 𝐺′ = 2 𝑃 𝑙𝑜𝑔2 𝑆 + 𝑉 𝑙𝑜𝑔2 |𝑆| + 𝑷 𝒍𝒐𝒈𝟐𝝎𝒎𝒂𝒙
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Optimization algorithms
• We introduce three optimization algorithms (W) for finding a 

weighted summary graph
▪ k-Grass (W) [1], SSumM (W) [2], MoSSo-Lossy (W) [3]



Extending optimization algorithms
• We introduce three optimization algorithms (W) for finding a 

weighted summary graph
▪ k-Grass (W) [1], SSumM (W) [2], MoSSo-Lossy (W) [3]

• We extend each algorithm to provide an unweighted summary 
graph (U) by modifying their objective function

Algorithm

k-Grass (W)

SSumM (W)

MoSSo-Lossy (W)

Algorithm

k-Grass (U)

SSumM (U)

MoSSo-Lossy (U)
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Inputs & output
• Given an input graph 𝐺, k-Grass produces a summary graph 

whose size is smaller than the size budget 

Input: (1) input graph 𝑮, and (2) size budget 𝒌
Output: summary graph 𝑮′
1. initialize 𝐺′
2. while 𝑆𝑖𝑧𝑒(𝐺′) > 𝑘 do
3. merge a supernode pair {𝐴, 𝐵} whose merger increases 𝐿𝑜𝑠𝑠() least
4. return 𝐺′



Initialization
• It first initializes the set of supernodes so that each subnode

forms a singleton supernode

Input: (1) input graph 𝐺, and (2) size budget 𝑘
Output: summary graph 𝐺′
1. initialize 𝑮′
2. while 𝑆𝑖𝑧𝑒(𝐺′) > 𝑘 do
3. merge a supernode pair {𝐴, 𝐵} whose merger increases 𝐿𝑜𝑠𝑠() least
4. return 𝐺′



Merging 
• After that, it greedily merges a supernode pair whose merger 

increases the objective function 𝑳𝒐𝒔𝒔() least

Input: (1) input graph 𝐺, and (2) size budget 𝑘
Output: summary graph 𝐺′
1. initialize 𝐺′
2. while 𝑆𝑖𝑧𝑒(𝐺′) > 𝑘 do
3. merge a supernode pair {𝐴, 𝐵} whose merger increases 𝑳𝒐𝒔𝒔() least
4. return 𝐺′



Loss function of k-Grass
• Loss function of k-Grass (U, W) is the 𝐿𝑝 reconstruction error

where መ𝐴 is an adjacency matrix of a reconstructed graph

• Note that the adjacency matrix is reconstructed from an 
unweighted summary graph (U) or from a weighted summary 
graph (U)

𝐴 − 𝑨
𝑝



Termination
• If the size of summary graph 𝑺𝒊𝒛𝒆(𝑮′) is smaller than the 

budget, it returns a summary graph

Input: (1) input graph 𝐺, and (2) size budget 𝑘
Output: summary graph 𝐺′
1. initialize 𝐺′
2. while 𝑺𝒊𝒛𝒆(𝑮′) > 𝒌 do
3. merge a supernode pair {𝐴, 𝐵} whose merger increases 𝐿𝑜𝑠𝑠() least
4. return 𝐺′
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Experiments: settings 
• Datasets

▪ 8 Real-world graphs (0.2M - 0.2B edges)

• Considered graph summarization algorithms
▪ {k-Grass, SSumM, MoSSo-Lossy} X {Weighted (W), Unweighted (U)}

Social Collaboration Co-purchase Hyperlinks EmailInternet



Experiments: metrics 
• Compression ratio

where 𝐺 = (𝑉, 𝐸) is the input graph and 𝐺′ is a summary graph

𝑆𝑖𝑧𝑒𝑏𝑖𝑡𝑠(𝐺′)

2 𝐸 log2 |𝑉|



Experiments: metrics 
• Compression ratio

where 𝐺 = (𝑉, 𝐸) is the input graph and 𝐺′ is a summary graph

• Quality: 𝑳𝟏/𝑳𝟐 reconstruction error

𝑆𝑖𝑧𝑒𝑏𝑖𝑡𝑠(𝐺′)

2 𝐸 log2 |𝑉|

𝐴 − 𝐴′
𝑝={1,2}



Experiments: metrics 
• Compression ratio

where 𝐺 = (𝑉, 𝐸) is the input graph and 𝐺′ is a summary graph

• Quality: 𝐿1/𝐿2 reconstruction error

• Node importance: PageRank (PR) [4]
▪ damping factor = 0.85
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𝐴 − 𝐴′
𝑝={1,2}



Experiments: metrics 
• Compression ratio

where 𝐺 = (𝑉, 𝐸) is the input graph and 𝐺′ is a summary graph

• Quality: 𝐿1/𝐿2 reconstruction error

• Node importance: PageRank (PR) [4]
▪ damping factor = 0.85

• Node proximity: Random Walk with Restart (RWR) [5]
▪ damping factor = 0.95 with 100 randomly-sampled seeds

𝑆𝑖𝑧𝑒𝑏𝑖𝑡𝑠(𝐺′)

2 𝐸 log2 |𝑉|

𝐴 − 𝐴′
𝑝={1,2}



Experiments: quality of summary graphs
• Unweighted summary graphs described the input graph up 

to 8.2X more accurately than weighted ones
➢ 𝐿1 reconstruction error

➢ 𝐿2 reconstruction error

SSumM (W)
SSumM (U)

MoSSo-Lossy (W)
MoSSo-Lossy (U)



Experiments: maintain node importance
• Unweighted summary graphs maintained the node 

importance up to 7.8X more accurate than weighted ones

SSumM (W)

SSumM (U)

MoSSo-Lossy (W)
MoSSo-Lossy (U)



Experiments: preserve node proximity
• The answers from unweighted summary graphs are up to 

5.9X more accurate than from weighted summary graphs

SSumM (W)

SSumM (U)

MoSSo-Lossy (W)
MoSSo-Lossy (U)



Why can edge weights be harmful?
• Consider a graph 𝐺 and its weighted summary 𝑆, 𝑃, 𝜔

• Assume 𝜔 is not fixed but variable

• Theorem 1. When the 𝑳𝟏 reconstruction error is minimized, 
the weight of each superedge 𝐴, 𝐵 ∈ 𝑃 is set so that the 
weights of all reconstructed subedges are either 1 or 0, as if 
an unweighted summary graph is used

• That is, edge weights do not contribute to accuracy while 
requiring additional space
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Conclusion
• We conducted a systematic comparison between two graph 

summarization models with and without superedge weights

• We empirically revealed a surprising finding that removing 

superedge weights leads to significant improvements 

• We developed a theoretical analysis to shed light on this 

counterintuitive observations (Theorem 1)

Github link: https://github.com/ShinhwanKang/PAKDD22-ComparativeStudy

https://github.com/ShinhwanKang/PAKDD22-ComparativeStudy
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