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Graphs are everywhere!

* Graphs represent relationships such as

" Friends in social networks , n @;’ @R

" Purchase history
" Hyperlinks between web pages
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Graphs become large!

* Graphs grow rapidly at an unprecedented pace
25 million (2013) 0.6 b|II|on (2013)
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1.9 billion (2022)

157.4 million (2022)
Users Web pages
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Graphs become large!

* Graphs grow rapidly at an unprecedented pace

25 million (2013) 0.6 bllllon (2013)

@ 1.9 billion (2022)

157.4 million (2022)
Users Web pages

How do we efficiently utilize such large graphs?
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Graph compression

» Useful for efficient utilization of large graphs

* To find a compact representation that exactly or
approximately describes an input graph

Graph
compression

Compact
representation

Input graph




Graph summarization: overview

* Promising graph compression technique

 Summary graph is in the form of a graph
= Can process graph queries directly without restoration

= Can apply other graph compression techniques

Graph Further
summarization compression

X

Input graph Summary graph Compressed graph




Graph summarization: overview

* We can categorize graph summarization methods depending
on loss of information during summarization

Lossless Lossy Weighted Unweighted

Graph Graph summarization
Input graph e odel estored ara

summarization
8 : Restoration

algorithm




Graph summarization: overview

* We can categorize graph summarization methods depending on
loss of information during summarization

* We focus on lossy graph summarization

Lossless Lossy Weighted Unweighted

/ o .
Graph Graph summarization

Input graph — model Restored graph

summarization
8 : Restoration

algorithm
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Graph summarization models

* We also can categorize graph summarization methods depending
on summarization models

* One of the two representative models allows edge weights in
summary graphs; the other does not

Weighted  Unweighted

Graph sumimarEat
Lossy graph raph summarization

Input graph — - model Restored graph

summarization
8 : Restoration

algorithm




Welghted graph summarization model

* Supernode: a node in a summary graph
* Superedge: an edge in a summary graph

Input graph Summary graph

Lossy graph E

summarization
Supernode Superedge




Welghted graph summarization model

 Summary graphs with edge weights contain information
about the number of edges on each superedge

With weights
- 8 -C

Input graph Summary graph
Lossy graph

summarization

Supernode Superedge




Unweighted graph summarization model

e Summary graphs without edge weights do not retain
information about the number of edges on each superedge

With weights
Input graph Summary graph

Lossy graph
&)summarization 8 8@

Without weights




WhICh one is better between two models?

* There was no systematic comparison between two extensively-
studied graph summarization models

te/© oC

Weighted graph Unweighted graph
summarization model summarization model

—




PAKDD

2 ) 22 THE 26TH PACIFIC-ASIA CONFERENCE ON
Qi‘ KNOWLEDGE DISCOVERY AN MININ

Which one is better between two models?

* There was no systematic comparison between two extensively-
studied graph summarization models
* We conduct a systematic comparison in five aspects
" For example, reconstruction and compression ratios
* To this end, we extend three algorithms to both models

¢

Which one is better?
Weighted graph Unweighted graph
summarization model summarization model
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Road map

* Introduction

* Notations & Problem formulation <<
* Considered algorithms

* Experiments & Theoretical analysis

* Conclusion




Notatlons input graph

* Input graph G = (V,E)
» Set of subnodes V = {1,2, ..., |V}
" Set of subedges E S (‘2/)

Input graph ¢ = (V, E)




Notatlons input graph

* Input graph G = (V,E)

= Set of subnodes IV = {1,2, ...

= Set of subedges £ © (‘2/)

» Adjacency matrix A € RIVIXIVl of G

.Aij =1if {l,]} € E and Al]

V13

Input graph ¢ = (V, E)

= 0 otherwise
albjlc|d]e
210111091119 —Adjacency matrix A
b|1]/o|1]|0]0
cloj1]of1]o0
d|1(ol1]|0]1
elolo|o|1]0




Notations: summary graph

* Summary graph G' = (S,P) of G = (V,E)
" Set of supernodes S is a partition of V
= Set of superedges P < (“29)

Input graph G Summary graph G’

A B
Summarization [@\ [©® C
O O
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(Un)welghted summary graph

e Summary graph G’ is either weighted or unweighted




Superedge weight function

e Summary graph G’ is either weighted or unweighted
* Weighted summary graph additionally has a superedge weight

function w

" o takes each superedge and returns the its weights
>(e'gv) Wpap — 4/ wBC =1

Input graph G = Weighted summary graph




(Un)welghted reconstructed graph

» Reconstructed graph G is obtained from a summary graph G’

- A denotes an adjacency matrix of a reconstructed graph G

Summary graph G’

B
O

O O

Reconstructed
graph G

Reconstruct

o | L

)

«—Reconstructed
adjacency
matrix A



Reconstructed adjacency matrix

« With unweighted summary graphs, entries of A are defined as

Supernode

Unweighted

i—

lj

Reconstructed

summary graph G’

10
o \o©

Reconstruct

1, ifi #j and
0, otherwise

graph G

containing node i

a |b|c|d| e |«Reconstructed
a |0|1]0|1]0 adjacency
b l1lol1lol1 matrix A
C 0 1 0) 1 0
1/0[1]0]1
10|10




Reconstructed adjacency matrix

« With unweighted summary graphs, entries of A are defined as

Supernode

Aij = 0, otherwise
Unweighted Reconstructed
summary graph G’ graph G
Reconstruct

{1, ifi #jand

containing node i

«—Reconstructed

adjacency

o | L

matrix A

O|lr|lO|lrr|O|®

R | O|lRr | O|kRr|T

O |l = |O|rRr|[O|O

R O, |O | kP | <

O || O|kFrLr |[O|(m
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Reconstructed adjacency matrix

« With weighted summary graphs, entries of A are defined as

Wg.q. ... ]
= a ; if i # J and {Si'Sj} € P 4. # of possible
Aij = 7-[Sl-Sj - subedges between
0 otherwise supernodes A and B
)
Weighted Reconstructed a |b|c|d | e |«<Reconstructed
summary graph G’ graph G a |0]t1|oj1]0 | adjacency
b|1|0]|1]|0]05 matrix A
Reconstruct 0.5
clo|l1]lol1]o0
10| 1|0 |05
0 [05] 0O
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Reconstructed adjacency matrix

« With weighted summary graphs, entries of A are defined as

4. # of possible
subedges between
supernodes A and B

. a)SiSj, if i ijand {Sl,S]} € P
Ajj = |Ts;s |
0, otherwise

Weighted Reconstructed G I I IS
ol1]|0|1]0

10|10 |05

ol1]|0|1]0

10|10 |05

0 |05] 0

«—Reconstructed
adjacency
matrix A




Optlmization problem formulation

* Given: input graph G and a size budget k

* Find: summary graph G’
= ¢': (Un)weighted summary graph

e To minimize: the Lp reconstruction error “A — AH

* Subject to: the size of summary graph G, Size(G') <k
= (e.g.,) # of supernodes in G', # of bits to encode G’

—



Slze of summary graph in bits

* The size of an unweighted summary graph in bits is defined as
Sizepirs(G') = 2|P|log,|S| + |V]log, |S]
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Slze of summary graph in bits

* The size of an unweighted summary graph in bits is defined as
Sizepirs(G') = 2|P|log,|S| +|V]log, |S]
*2|P| log, |S| corresponds to | P| superedges in bits
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Slze of summary graph in bits

* The size of an unweighted summary graph in bits is defined as
Sizepirs(G') = 2|P| log,|S| +[V]log, |S]
* 2|P|log, |S| corresponds to |P| superedges in bits

* |V|log, |S| corresponds to supernodes membership of |V |
subnodes in bits




Slze of summary graph in bits

* The size of a weighted summary graph in

nits is defined as

Sizeyirs(G") = 2|P| log,|S| +

[V]log, |S

T |P| logZ Wmax

* 2|P|log, |S| corresponds to

P| superedges in bits

* |[V]log, |S| corresponds to supernodes membership of |V

subnodes in bits

* For a weighted summary graph, |P|log, w,,,, cOrresponds
to |P| superedge weights in bits

—
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Road map

* Introduction

* Notations & Problem formulation

e Considered algorithms <<

* Experiments & Theoretical analysis

* Conclusion
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Optlmization algorithms

* We introduce three optimization algorithms (W) for finding a
weighted summary graph

" k-Grass (W) [1], SSumM (W) [2], MoSSo-Lossy (W) [3]




Extendmg optimization algorithms

* We introduce three optimization algorithms (W) for finding a
weighted summary graph

" k-Grass (W) [1], SSumM (W) [2], MoSSo-Lossy (W) [3]

* We extend each algorithm to provide an unweighted summary
graph (U) by modifying their objective function

Algorithm Algorithm
k-Grass (W) k-Grass (U)
SSumM (W) SSumM (U)

MoSSo-Lossy (W) MoSSo-Lossy (U)

—
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Extendmg optimization algorithms

* We introduce three optimization algorithms (W) for finding a
weighted summary graph

" k-Grass (W) [1], SSumM (W) [2], MoSSo-Lossy (W) [3]

* We extend each algorithm to provide an unweighted summary
graph (U) by modifying their objective function

Algorithm Algorithm
SSumM (W) SSumM (U)
MoSSo-Lossy (W) MoSSo-Lossy (U)

e ——
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Inputs & output

* Given an input graph G, k-Grass produces a summary graph
whose size is smaller than the size budget

Input: (1) input graph G, and (2) size budget k
Output: summary graph G’
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Initialization

It first initializes the set of supernodes so that each subnode
forms a singleton supernode

1. initialize G’
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Merging

» After that, it greedily merges a supernode pair whose merger
increases the objective function Loss() least

3. merge a supernode pair {A, B} whose merger increases Loss() least

e —
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Loss functlon of k-Grass

* Loss function of k-Grass (U, W) is the L reconstruction error
la—21],
where 4 is an adjacency matrix of a reconstructed graph

* Note that the adjacency matrix is reconstructed from an
unweighted summary graph (U) or from a weighted summary

graph (U)
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Termination

* If the size of summary graph Size(G') is smaller than the
budget, it returns a summary graph

2. while Size(G") > k do
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Road map

* Introduction

* Notations & Problem formulation

* Considered algorithms

* Experiments & Theoretical analysis <<

* Conclusion




Experiments: settings

* Datasets
= 8 Real-world graphs (0.2M - 0.2B edges)

Social Internet Collaboration Co-purchase Hyperlinks Email

‘ dblp  amazon \g DBpe o dia @

* Considered graph summarization algorithms
" {k-Grass, SSumM, MoSSo-Lossy} X {Weighted (W), Unweighted (U)}

—



Experiments: metrics

* Compression ratio  Size,;. .(G")

2|E|log, |V|
where G = (V, E) is the input graph and G’ is a summary graph




Experiments: metrics

* Compression ratio  Size,;;<(G)

2|E|log, |V|
where G = (V, E) is the input graph and G' is a summary graph

» Quality: Ly /L, reconstruction error ||A— A’|| pe{12}




Experiments: metrics

* Compression ratio  Size,;;<(G)

2|E|log, |V|
where G = (V, E) is the input graph and G’ is a summary graph

* Quality: L /L, reconstruction error HA = A,”p={1 2}

* Node importance: PageRank (PR) [4]
" damping factor = 0.85

—



Experiments: metrics

* Compression ratio  Size,;;<(G)

2|E|log, |V|
where G = (V, E) is the input graph and G' is a summary graph

» Quality: Ly /L, reconstruction error [|A — A’sz{l 2
* Node importance: PageRank (PR) [4]

" damping factor = 0.85

* Node proximity: Random Walk with Restart (RWR) [5]
» damping factor = 0.95 with 100 randomly-sampled seeds

—
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Experiments: quality of summary graphs

* Unweighted summary graphs described the input graph up
to 8.2X more accurately than weighted ones

» L4 reconstruction error

1040 o
S 1088 51071
L W 46
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» L, reconstruction error
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S 91 5107
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Experiments: maintain node importance

* Unweighted summary graphs maintained the node
importance up to 7.8X more accurate than weighted ones

108" [OMoSSo-Lossy (W)
-
d~gm S VYV MoSSo-Lossy (U)
S A= =
G107 VT CISsumM (W)
<S> nd 0.0.t
» oqot{ | X |7.8 VY SSumM (U)
v ...........
| | I I
0.2 04 0.6 0.8
. 105 - . C h10'7'5' _
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Experiments: preserve node proximity

* The answers from unweighted summary graphs are up to
5.9X more accurate than from weighted summary graphs

S oﬁt [OMoSSo-Lossy (W)
“(2“3) 5107 X WV MoSSo-Lossy (U)
oY [C1SSumM (W)

C % % 1071 VYV SSumM (U)
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Why can edge weights be harmful?

 Consider a graph G and its weighted summary (S, P, w)

e Assume w is not fixed but variable

* Theorem 1. When the L1 reconstruction error is minimized,
the weight of each superedge {4, B} € P is set so that the
weights of all reconstructed subedges are either 1 or 0, as if
an unweighted summary graph is used

* That is, edge weights do not contribute to accuracy while
requiring additional space

—
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Road map

* Introduction

* Notations & Problem formulation

* Considered algorithms

* Experiments & Theoretical analysis

e Conclusion <<
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Conclusmn

* We conducted a systematic comparison between two graph
summarization models with and without superedge weights

* We empirically revealed a surprising finding that removing
superedge weights leads to significant improvements

* We developed a theoretical analysis to shed light on this
counterintuitive observations (Theorem 1)

Github link: https://github.com/ShinhwanKang/PAKDD22-ComparativeStudy

e ——
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