Are Weights Useful in Graph Summarization? – A Comparative Study

Shinhwan Kang Kyuhan Lee Kijung Shin

KAIST AI
Graphs are everywhere!

- **Graphs represent relationships** such as
 - Friends in social networks
 - Purchase history
 - Hyperlinks between web pages
Graphs become large!

• Graphs *grow rapidly* at an unprecedented pace

<table>
<thead>
<tr>
<th>Users</th>
<th>Web pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 million</td>
<td>0.6 billion</td>
</tr>
<tr>
<td>157.4 million</td>
<td>1.9 billion</td>
</tr>
<tr>
<td>(2022)</td>
<td>(2022)</td>
</tr>
</tbody>
</table>
Graphs become large!

- Graphs *grow rapidly* at an unprecedented pace

<table>
<thead>
<tr>
<th></th>
<th>Users</th>
<th>Web pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>25 million</td>
<td>0.6 billion</td>
</tr>
<tr>
<td>2022</td>
<td>157.4 million</td>
<td>1.9 billion</td>
</tr>
</tbody>
</table>

How do we efficiently utilize such large graphs?
Graph compression

- Useful for *efficient utilization of large graphs*
- To find a *compact representation* that exactly or approximately describes an input graph
Graph summarization: overview

• Promising graph compression technique

• *Summary graph* is in the *form of a graph*
 ▪ Can process graph queries directly without restoration
 ▪ Can apply other graph compression techniques

Graph summarization

Input graph ➔ *Summary graph* ➔ Compressed graph
Graph summarization: overview

- We can categorize graph summarization methods depending on loss of information during summarization.
Graph summarization: overview

• We can categorize graph summarization methods depending on loss of information during summarization

• We focus on lossy graph summarization

Lossless → **Lossy**

Graph summarization algorithm → Weighted

Input graph → model → Restored graph

Restoration
Graph summarization models

• We also can categorize graph summarization methods depending on summarization models

• One of the two representative models allows edge weights in summary graphs; the other does not
Weighted graph summarization model

- **Supernode**: a node in a summary graph
- **Superedge**: an edge in a summary graph
Weighted graph summarization model

- Summary graphs with edge weights contain information about the number of edges on each superedge.
Unweighted graph summarization model

- Summary graphs without edge weights *do not retain information about the number of edges* on each superedge.
Which one is better between two models?

- There was *no systematic comparison* between two extensively-studied graph summarization models.
Which one is better between two models?

- There was no systematic comparison between two extensively-studied graph summarization models.
- We conduct a systematic comparison in five aspects:
 - For example, reconstruction and compression ratios.
- To this end, we extend three algorithms to both models.

Which one is better?

Weighted graph summarization model

Unweighted graph summarization model
Road map

• Introduction

• *Notations & Problem formulation* <<

• Considered algorithms

• Experiments & Theoretical analysis

• Conclusion
Notations: input graph

- Input graph $G = (V, E)$
 - Set of subnodes $V = \{1,2,...,|V|\}$
 - Set of subedges $E \subseteq \binom{V}{2}$

Input graph $G = (V, E)$
Notations: input graph

- **Input graph** \(G = (V, E) \)
 - Set of subnodes \(V = \{1, 2, \ldots, |V|\} \)
 - Set of subedges \(E \subseteq \binom{V}{2} \)
- **Adjacency matrix** \(A \in \mathbb{R}^{|V| \times |V|} \) of \(G \)
 - \(A_{ij} = 1 \) if \(\{i, j\} \in E \) and \(A_{ij} = 0 \) otherwise

\[
\begin{array}{cccccc}
 & a & b & c & d & e \\
a & 0 & 1 & 0 & 1 & 0 \\
b & 1 & 0 & 1 & 0 & 0 \\
c & 0 & 1 & 0 & 1 & 0 \\
d & 1 & 0 & 1 & 0 & 1 \\
e & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\]

Input graph \(G = (V, E) \)
Notations: summary graph

• Summary graph $G' = (S, P)$ of $G = (V, E)$
 - Set of *supernodes* S is a partition of V
 - Set of *superedges* $P \subseteq \binom{S}{2}$
(Un)weighted summary graph

• Summary graph G' is either **weighted** or **unweighted**
Superedge weight function

• Summary graph G' is either weighted or unweighted
• *Weighted* summary graph additionally has a *superedge weight function* ω
 - ω takes each superedge and returns the its weights
 - (e.g.,) $\omega_{AB} = 4, \omega_{BC} = 1$
(Un)weighted reconstructed graph

- **Reconstructed** graph \hat{G} is obtained from a summary graph G'
- \hat{A} denotes an **adjacency matrix** of a reconstructed graph \hat{G}
Reconstructed adjacency matrix

• With \textit{unweighted} summary graphs, entries of \hat{A} are defined as

$$\hat{A}_{ij} = \begin{cases} 1, & \text{if } i \neq j \text{ and } \{S_i, S_j\} \in P \\ 0, & \text{otherwise} \end{cases}$$
Reconstructed adjacency matrix

- With *unweighted* summary graphs, entries of \hat{A} are defined as

$$\hat{A}_{ij} = \begin{cases} 1, & \text{if } i \neq j \text{ and } \{S_i, S_j\} \in P \\ 0, & \text{otherwise} \end{cases}$$

Unweighted summary graph G'

Reconstructed graph \hat{G}

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Reconstructed adjacency matrix

• With *weighted* summary graphs, entries of \hat{A} are defined as

$$\hat{A}_{ij} = \begin{cases} \frac{\omega_{S_iS_j}}{\pi_{S_iS_j}}, & \text{if } i \neq j \text{ and } \{S_i, S_j\} \in P \\ 0, & \text{otherwise} \end{cases}$$

π_{AB}: # of possible subedges between supernodes A and B
Reconstructed adjacency matrix

With weighted summary graphs, entries of \hat{A} are defined as

$$\hat{A}_{ij} = \begin{cases} \frac{\omega_{S_iS_j}}{\pi_{S_iS_j}}, & \text{if } i \neq j \text{ and } \{S_i, S_j\} \in P \\ 0, & \text{otherwise} \end{cases}$$

π_{AB}: # of possible subedges between supernodes A and B
Optimization problem formulation

• **Given**: input graph G and a size budget k

• **Find**: summary graph G'

 ▪ G': (Un)weighted summary graph

• **To minimize**: the L_p reconstruction error $\|A - \hat{A}\|_p$

• **Subject to**: the size of summary graph G', $\text{Size}(G') \leq k$

 ▪ (e.g.,) # of supernodes in G', # of bits to encode G'
Size of summary graph in bits

- The size of an unweighted summary graph in bits is defined as

\[
Size_{bits}(G') = 2|P| \log_2 |S| + |V| \log_2 |S|
\]
Size of summary graph in bits

• The size of an unweighted summary graph in bits is defined as

\[\text{Size}_{\text{bits}}(G') = 2|P| \log_2 |S| + |V| \log_2 |S| \]

• \(2|P| \log_2 |S|\) corresponds to \(|P| \text{ superedges in bits}\)
Size of summary graph in bits

- The size of an unweighted summary graph in bits is defined as

\[\text{Size}_{\text{bits}}(G') = 2|P| \log_2 |S| + |V| \log_2 |S| \]

- \(2|P| \log_2 |S|\) corresponds to \(|P|\) superedges in bits

- \(|V| \log_2 |S|\) corresponds to supernodes membership of \(|V|\) subnodes in bits
Size of summary graph in bits

- The size of a **weighted** summary graph in bits is defined as

\[
\text{Size}_{\text{bits}}(G') = 2|P| \log_2 |S| + |V| \log_2 |S| + |P| \log_2 \omega_{\text{max}}
\]

- \(2|P| \log_2 |S|\) corresponds to \(|P|\) superedges in bits

- \(|V| \log_2 |S|\) corresponds to supernodes membership of \(|V|\) subnodes in bits

- For a **weighted summary graph**, \(|P| \log_2 \omega_{\text{max}}\) corresponds to \(|P|\) superedge weights in bits
Road map

• Introduction
• Notations & Problem formulation
• Considered algorithms <<
• Experiments & Theoretical analysis
• Conclusion
Optimization algorithms

• We introduce three *optimization algorithms (W)* for finding a *weighted summary graph*
 - *k-Grass (W)* [1], *SSumM (W)* [2], *MoSSo-Lossy (W)* [3]
Extending optimization algorithms

• We introduce three optimization algorithms (W) for finding a weighted summary graph
 ▪ \textit{k-Grass} (W) [1], \textit{SSumM} (W) [2], \textit{MoSSo-Lossy} (W) [3]

• We \textbf{extend} each algorithm \textit{to provide an unweighted summary graph (U)} by modifying their objective function

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{k-Grass} (W)</td>
<td>\textit{k-Grass} (U)</td>
</tr>
<tr>
<td>\textit{SSumM} (W)</td>
<td>\textit{SSumM} (U)</td>
</tr>
<tr>
<td>\textit{MoSSo-Lossy} (W)</td>
<td>\textit{MoSSo-Lossy} (U)</td>
</tr>
</tbody>
</table>
Extending optimization algorithms

• We introduce three optimization algorithms (W) for finding a weighted summary graph
 - \textit{k-Grass} (W) [1], \textit{SSumM} (W) [2], \textit{MoSSo-Lossy} (W) [3]
• We extend each algorithm to provide an unweighted summary graph (U) by modifying their objective function
Inputs & output

- Given an input graph G, k-Grass produces a summary graph whose size is smaller than the size budget

Input: (1) input graph G, and (2) size budget k

Output: summary graph G'

1. initialize G'
2. while $\text{Size}(G') > k$ do
3. merge a supernode pair $\{A, B\}$ whose merger increases Loss() least
4. return G'
Initialization

- It *first initializes the set of supernodes* so that each subnode forms a singleton supernode

Input: (1) input graph G, and (2) size budget k
Output: summary graph G'

1. *initialize G'*
2. while $Size(G') > k$ do
3. merge a supernode pair \(\{A, B\} \) whose merger increases $Loss()$ least
4. return G'
Merging

• After that, it *greedily merges a supernode pair* whose merger increases the objective function $Loss()$ least

Input: (1) input graph G, and (2) size budget k
Output: summary graph G'

1. initialize G'
2. while $Size(G') > k$ do
3. *merge a supernode pair* $\{A, B\}$ whose merger increases $Loss()$ least
4. return G'
Loss function of k-Grass

• Loss function of k-Grass \((U, W)\) is the \(L_p\) reconstruction error

\[||A - \hat{A}||_p \]

where \(\hat{A}\) is an adjacency matrix of a reconstructed graph

• Note that the adjacency matrix is reconstructed from an unweighted summary graph \((U)\) or from a weighted summary graph \((U)\)
Termination

• If the size of summary graph $\text{Size}(G')$ is smaller than the budget, it returns a summary graph

Input: (1) input graph G, and (2) size budget k
Output: summary graph G'
1. initialize G'
2. while $\text{Size}(G') > k$ do
3. merge a supernode pair $\{A, B\}$ whose merger increases Loss() least
4. return G'
Road map

• Introduction
• Notations & Problem formulation
• Considered algorithms
• *Experiments & Theoretical analysis* <<
• Conclusion
Experiments: settings

- Datasets
 - 8 Real-world graphs (0.2M - 0.2B edges)

<table>
<thead>
<tr>
<th>Social</th>
<th>Internet</th>
<th>Collaboration</th>
<th>Co-purchase</th>
<th>Hyperlinks</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Considered graph summarization algorithms
 - \{k-Grass, SSumM, MoSSo-Lossy\} X \{Weighted (W), Unweighted (U)\}
Experiments: metrics

- Compression ratio $\frac{\text{Size}_{\text{bits}}(G')}{2|E| \log_2 |V|}$

where $G = (V, E)$ is the input graph and G' is a summary graph
Experiments: metrics

• Compression ratio

\[\frac{\text{Size}_{\text{bits}}(G')}{2|E| \log_2 |V|} \]

where \(G = (V, E) \) is the input graph and \(G' \) is a summary graph

• Quality: \(L_1/L_2 \) reconstruction error

\[\|A - A'\|_p \] \(p = \{1, 2\} \)
Experiments: metrics

- Compression ratio

\[
\frac{\text{Size}_{\text{bits}}(G')}{2 |E| \log_2 |V|}
\]

where \(G = (V, E) \) is the input graph and \(G' \) is a summary graph.

- Quality: \(L_1 / L_2 \) reconstruction error

\[
\|A - A'\|_p = \{1, 2\}
\]

- Node importance: PageRank (PR) [4]
 - damping factor = 0.85
Experiments: metrics

- Compression ratio: $\frac{\text{Size}_{\text{bits}}(G')}{2|E| \log_2 |V|}$
 where $G = (V, E)$ is the input graph and G' is a summary graph

- Quality: L_1/L_2 reconstruction error $\left| |A - A'| \right|_{p=\{1,2\}}$

- Node importance: PageRank (PR) [4]
 - damping factor = 0.85

- Node proximity: Random Walk with Restart (RWR) [5]
 - damping factor = 0.95 with 100 randomly-sampled seeds
Experiments: quality of summary graphs

- Unweighted summary graphs described the input graph up to 8.2X more accurately than weighted ones.

- L_1 reconstruction error

- L_2 reconstruction error
Experiments: maintain node importance

- Unweighted summary graphs *maintained the node importance up to 7.8X more accurate* than weighted ones.
Experiments: preserve node proximity

- The answers from unweighted summary graphs are up to 5.9X more accurate than from weighted summary graphs.
Why can edge weights be harmful?

- Consider a graph G and its weighted summary (S, P, ω)
- Assume ω is not fixed but variable

Theorem 1. When the $L1$ reconstruction error is minimized, the weight of each superedge $\{A, B\} \in P$ is set so that the weights of all reconstructed subedges are either 1 or 0, as if an unweighted summary graph is used

- That is, edge weights do not contribute to accuracy while requiring additional space
Road map

• Introduction
• Notations & Problem formulation
• Considered algorithms
• Experiments & Theoretical analysis
• Conclusion <<
Conclusion

• We *conducted a systematic comparison* between two graph summarization models with and without superedge weights.

• We empirically *revealed a surprising finding* that removing superedge weights leads to significant improvements.

• We *developed a theoretical analysis* to shed light on this counterintuitive observations (*Theorem 1*).

Github link: https://github.com/ShinhwanKang/PAKDD22-ComparativeStudy
References

Are Weights Useful in Graph Summarization? – A Comparative Study

Shinhwan Kang Kyuhan Lee Kijung Shin

KAIST AI