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Hypergraphs are Everywhere
• Many real-world interactions are group-wise.
• Ex) Collaborations of researchers, interactions of proteins, co-purchases of items.

• A hypergraph can represent such group-wise interactions naturally.
• A hypergraph is a set of hyperedges that allow containing any number of nodes.
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Machine Learning on Hypergraphs
• Hypergraph-based ML approaches show its effectiveness on various tasks.
• Methods: HGNN [Feng et al. 2019], HNHN [Dong, Sawin, and Bengio 2020], AllSet

[Chien et al. 2022], etc.
• Tasks: classification [Feng et al. 2019], clustering [Benson, Gleich, and Leskovec 2016], 

outlier detection [Lee, Choe, and Shin 2022], etc.

• Most hypergraph neural networks (HNNs) are trained in a (semi-)supervised way.
• High-quality data labeling is time, resource, and labor-intensive.
• HNNs trained in a supervised way may overfit and fail to generalize.

• Self-supervised learning, which does not require labels, has become popular, and 
especially contrastive learning (CL) has achieved great success.
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Contrastive Learning Paradigm
• CL aims to maximize the agreement between differently augmented views of the 

same input via a contrastive loss [Chen et al. 2020]. 
• CL has demonstrated its effectiveness in computer vision, NLP, and graph domains.
• CL on hypergraphs remains largely underexplored.
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In This Work

• In this work, we propose TriCL, a novel hypergraph contrastive 
learning method, to answer the following questions.

Questions?
• (Q1) What to contrast?
• (Q2) How to augment a hypergraph?
• (Q3) How to select negative samples?
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Road Map

• Preamble

• Proposed Method: TriCL

• Experiments

• Conclusion
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Proposed Approach: TriCL

• Goal: to train a hypergraph encoder in a contrastive manner
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Proposed Approach: TriCL
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① Hypergraph augmentation



Hypergraph Augmentation
• TriCL first generates two alternative views of the hypergraph ℋ, by applying 

stochastic hypergraph augmentation functions 𝒯!and 𝒯".
• Augmentation: node feature masking + membership masking.
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Proposed Approach: TriCL
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② Hypergraph encoder



Hypergraph Encoder
• The encoder produces node and hyperedge representations, 𝐏 and 𝐐, for 

two augmented views.
• TriCL uses a simple mean pooling layer as an encoder.
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Proposed Approach: TriCL
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③ Projection head



Projection Head
• SimCLR [Chen et al. 2020] empirically demonstrates that including 

projection head helps to improve the quality of representations. 
• Projection head: two-layer MLP and ELU activation.
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Proposed Approach: TriCL
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④ Tri-directional contrastive loss



Tri-directional Contrastive Loss
• Three contrastive objectives:

1. Node-level contrast: discriminate the same node from other nodes.
2. Group-level contrast: discriminate the same hyperedge from other hyperedges.
3. Membership-level contrast: discriminate a ‘real’ membership from a ‘fake’ one.
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Motivating Examples
Q) How can the three forms of contrast be helpful for representation learning?

① In node classification, Information about a group of nodes could be helpful.
• Papers written by the same author are more likely to belong to the same field 

and cover similar topics (i.e., homophily exists in hypergraphs).
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Motivating Examples
Q) How can the three forms of contrast be helpful for node representation learning?

① In node classification, Information about a group of nodes could be helpful.
② Leveraging node-hyperedge membership helps enrich the information of 

node and hyperedge.
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Tri-directional Contrastive Loss
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(Proposed) Tri-directional contrastive loss:
ℒ = ℒ# +𝜔$ℒ$ +𝜔%ℒ%

For node 𝑖:

For all nodes:

Node contrastive loss
• Discriminate the same node from other nodes.
• Embed microscopic structural information into embeddings.



Tri-directional Contrastive Loss
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(Proposed) Tri-directional contrastive loss:
ℒ = ℒ# +𝜔$ℒ$ +𝜔%ℒ%

For hyperedge 𝑗:

For all hyperedges:

Group contrastive loss
• Discriminate the same hyperedge from other hyperedges.
• Embed group-level structural information into embeddings.



Tri-directional Contrastive Loss
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(Proposed) Tri-directional contrastive loss:
ℒ = ℒ# +𝜔$ℒ$ +𝜔%ℒ%

For membership (i, 𝑗):

For all memberships:

Membership contrastive loss
• Discriminate a ‘real’ membership from a ‘fake’ one.
• Apply group-level constraints to nodes. 



Road Map

• Preamble

• Proposed Method: TriCL

• Experiments

• Conclusion
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Datasets

• 10 commonly used benchmark datasets
• Co-citation: Cora, Citeseer, and Pubmed [Sen et al. 2008]
• Co-authorship: Cora and DBLP [Rossi and Ahmed 2015]
• Vision and graphics: NTU2012 [Chen et al. 2003] and ModelNet40 [Wu et al. 2015]
• UCI repository: Zoo, 20Newsgroups, and Mushroom [Dua and Graff 2017]

24



Baselines
• 10 (semi-)supervised models: 
• MLP
• Graph neural networks: 

• GCN [Kipf and Welling 2017]
• GAT [Velickovic et al. 2018]

• Hypergraph neural networks: 
• HGNN [Feng et al. 2019]
• HyperConv [Bai, Zhang, and Torr 2021]
• HNHN [Dong, Sawin, and Bengio 2020]
• HyperGCN [Yadati et al. 2019]
• HyperSAGE [Arya et al. 2020]
• UniGCN [Huang and Yang 2021]
• AllSetTransformer [Chien et al. 2022]

• 4 unsupervised models:
• Network embedding method: 

• Node2vec [Grover and Leskovec 2016]

• Graph CL methods: 
• DGI [Velickovic et al. 2018]
• GRACE [Zhu et al. 2020]

• Hypergraph CL method:
• S2-HHGR [Zhang et al. 2021]
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Evaluation Protocol

Q) How to assess the quality of node representations learnt by TriCL?
• Task-1: Node classification
• Linear evaluation: train the encoder unsupervised manner and then employ a ℓ!-

regularized logistic regression model on top of the frozen representations.

• Task-2: Clustering
• k-means clustering: train the encoder unsupervised manner and then employ k-

means clustering on top of the frozen representations.
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Performance on Node Classification
• TriCL consistently outperforms its unsupervised baselines by significant margins.

• It also outperforms the models trained with label supervision.
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Ablation Study
• The more types of contrast we use, the better the performance tends to be.
• Using all types of contrast achieves the best performance in most cases as 

they are complementarily reinforcing each other. 
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Robustness to the Number of Negatives
• TriCL-Subsampling (𝑘) uses randomly subsampled 𝑘 negatives across the 

hypergraph to construct the node- and group-level contrastive loss.
• TriCL is very robust to the number of negatives.
• Even if only two negatives are used, the performance degradation is <1%.
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Performance on Clustering
• TriCL achieves strong clustering performance in terms of NMI and F1.
• Why? The node embeddings learned by TriCL simultaneously preserve local 

and community structural information by fully utilizing group-level contrast.
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Qualitative Analysis
• TriCL gives more visually and numerically (based on t-SNE plots and the 

Silhouette score) distinguishable clusters than its two variants.

31

TriCL-N TriCL-NG TriCL

Citeseer

Cora-C



Road Map

• Preamble

• Proposed Method: TriCL

• Experiments

• Conclusion

32



Conclusion
• We proposed TriCL, a novel hypergraph contrastive learning method.
• (Q1) What to contrast?
• (A) Tri-directional contrast: node, group, and membership contrast

• (Q2) How to augment a hypergraph?
• (A) Node feature masking and membership masking

• (Q3) How to select negative samples?
• (A) Uniform random sampling
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Code and Data: 
https://github.com/wooner49/TriCL

https://github.com/wooner49/TriCL
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