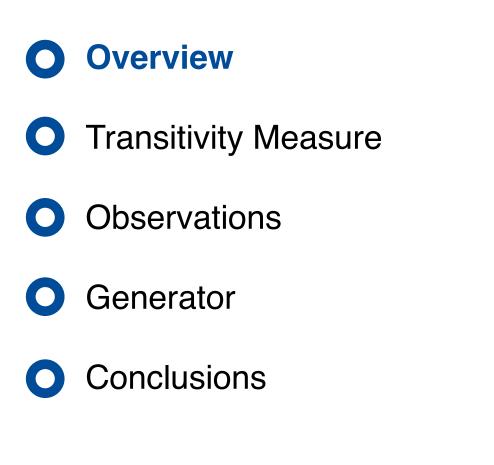


How Transitive Are Real-World Group Interactions? Measurement and Reproduction

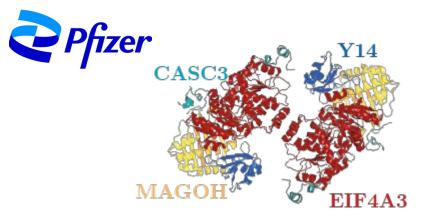
Fanchen Bu


Minyoung Choe



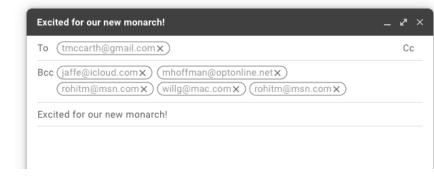
Jaemin Yoo

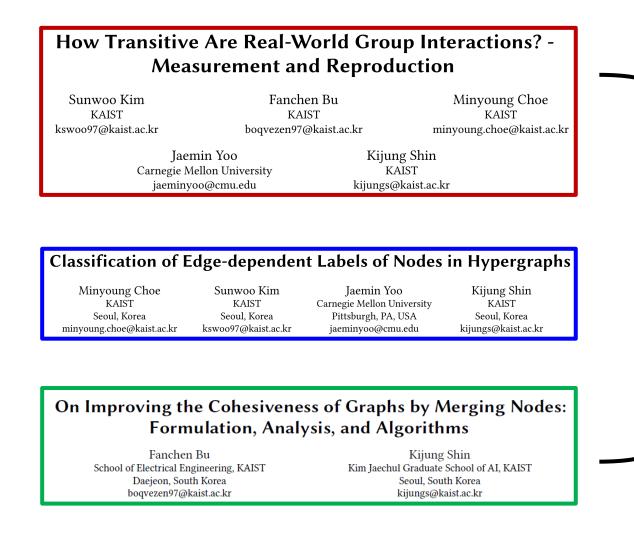
Roadmap

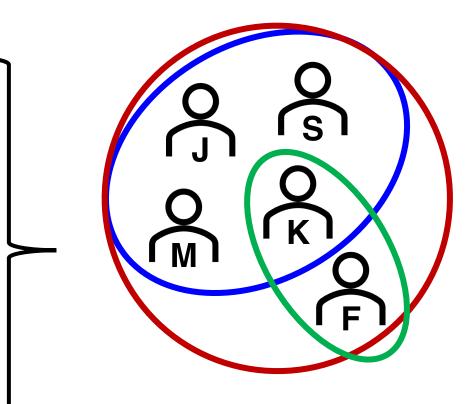


Group Interactions are EVERYWHERE!

Group Chat

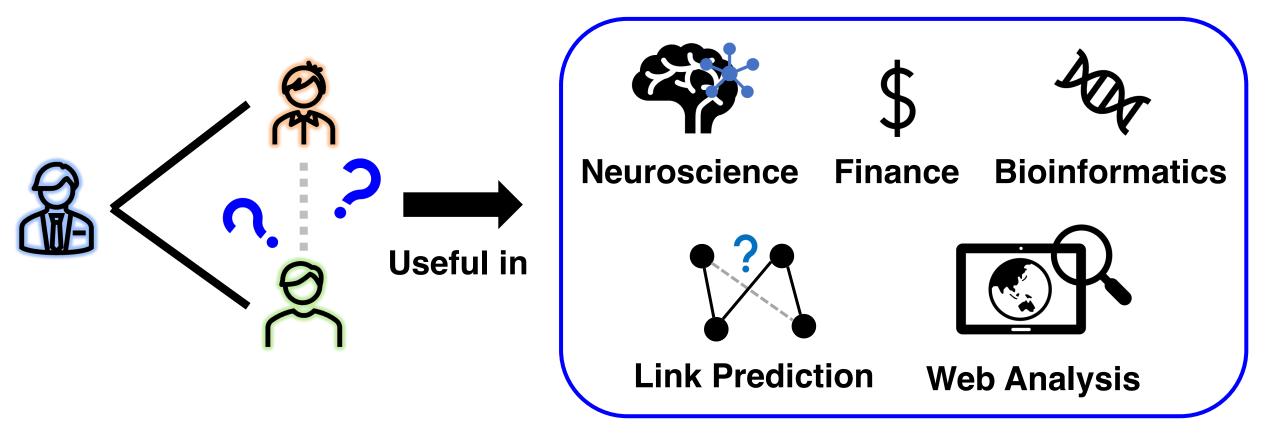

Protein Interaction


How Transitive Are Real-World Group Interactions? -Measurement and Reproduction


Sunwoo Kim	unwoo Kim Fanche KAIST KAI		Minyoung Choe KAIST
kswoo97@kaist.ac.kr	boqvezen97@l	-	minyoung.choe@kaist.ac.kr
Jaem	in Yoo	Kijur	g Shin
Carnegie Me	llon University	KA	AIST
jaeminyoo@cmu.edu		kijungs@)kaist.ac.kr

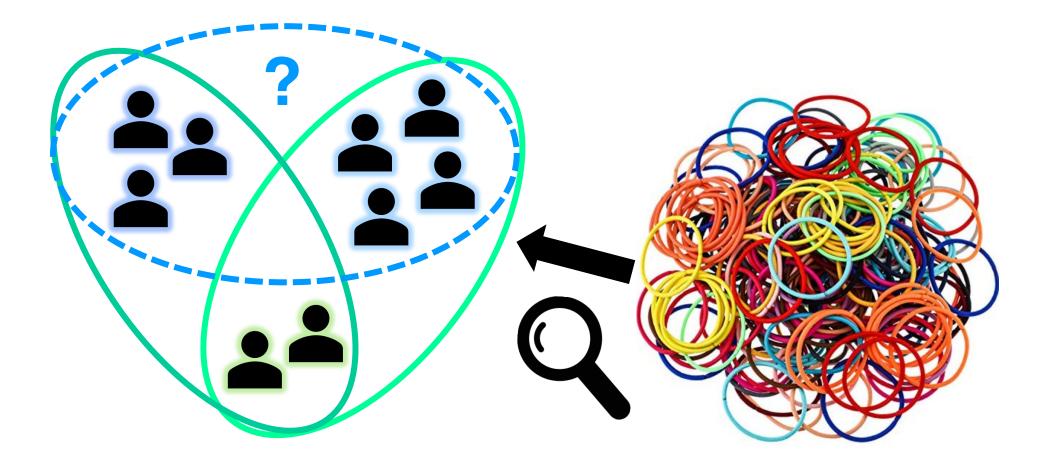
Co-Authorship

Group Interactions \rightarrow **HYPERGRAPH**!



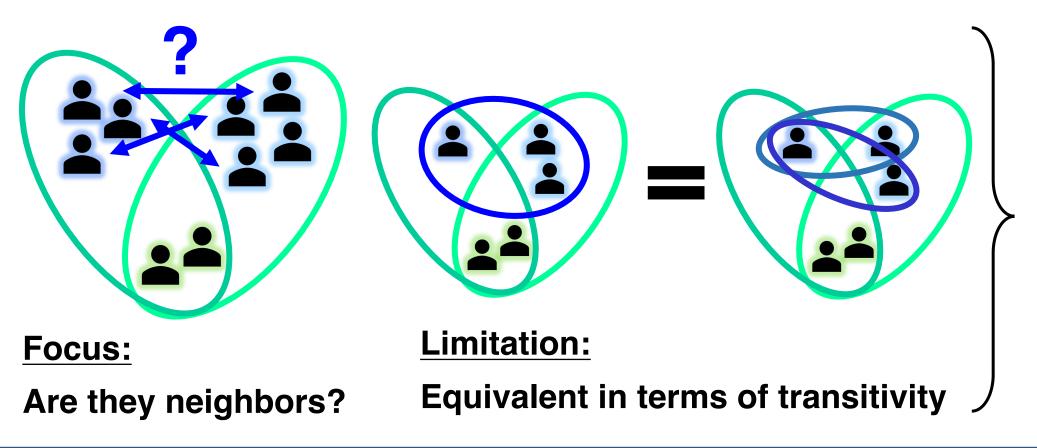
Co-Authorship

Hypergraph


Transitivity in a GRAPH

• Probability of two neighbors of a node being also adjacent.

Transitivity of GROUP INTERACTIONS?

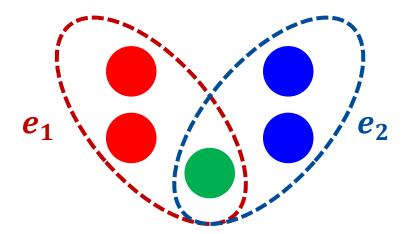

How can we measure the transitivity of group interactions?

Transitivity of GROUP INTERACTIONS?

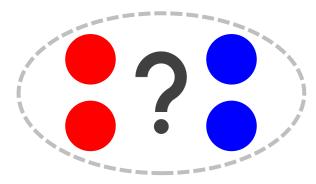
Existing hypergraph transitivity measures focus on pairwise

interactions rather than group interactions.

Inappropriate for capturing the transitivity of group interactions


Roadmap

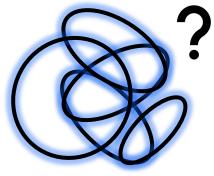
Overview O Transitivity Measure **Observations** Generators Conclusions


Basic Terminology & Concept

• We describe several basic terminologies.

- Hyperwedge $w: \{e_1, e_2\}$
- Left-wing L(w):
- Right-wing *R*(*w*):
- Body-group *B*(*w*):
- We aim to quantify the group interactions between the nodes in the

two wings: L(w) and R(w).


Basic Terminology & Concept

- We define transitivity measures on two different levels.
- Hyperwedge-level (\mathcal{T}) : Transitivity of a given hyperwedge w.
- Hypergraph-level (T): Transitivity of a given hypergraph G.

Hyperwedge-level

Transitivity

Hypergraph-level

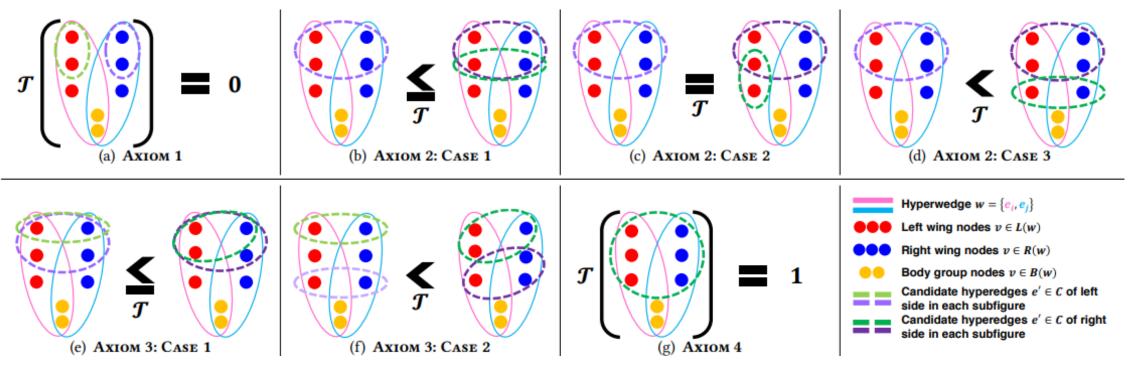
Transitivity

Criteria of a principled measure

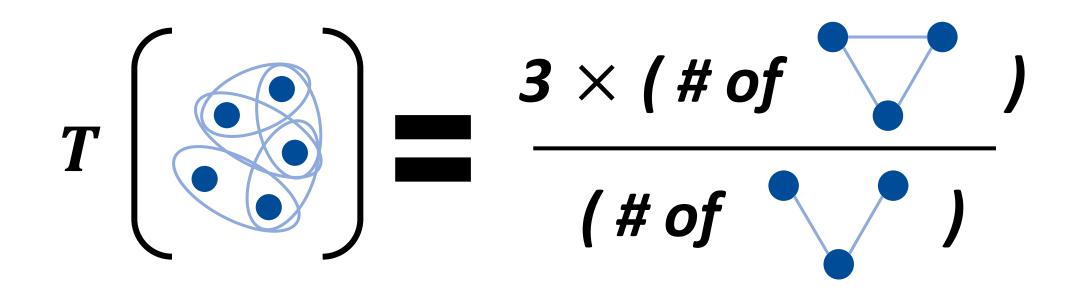
- How can we say a specific measure is principled (captures the transitivity of group interactions well)?
- We provide **7 AXIOMs** to formally describe such desirable properties of a principled transitivity measure.

Measures	Satisfies Axioms?
Measure A	0
Measure B	X

Measure A: Principled

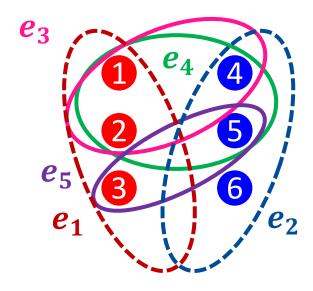


Measure B: Not principled

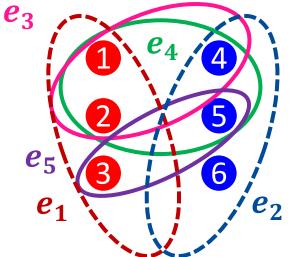

Criteria of a principled measure

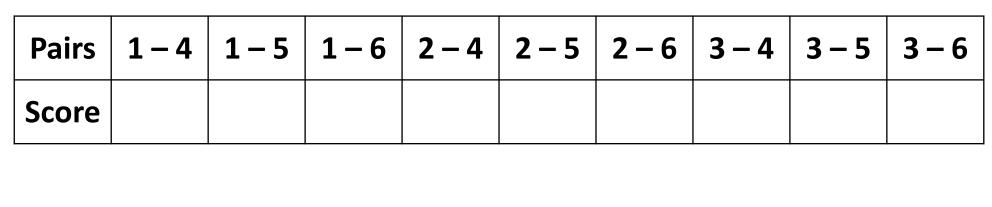
- Axiom 1 5 describe conditions of a hyperwedge-level measure \mathcal{T} :
 - A1 & A4: When the value of \mathcal{T} is minimized/maximized.
 - A2 & A3: How the value of \mathcal{T} varies under certain situations.
 - A5: The bound of \mathcal{T} .

Criteria of a principled measure


- Axiom 6 & 7 describe conditions of a hypergraph-level measure T:
 - A6: How should the value of T(G) be when G is an ordinary graph.
 - A7: The bound of T.

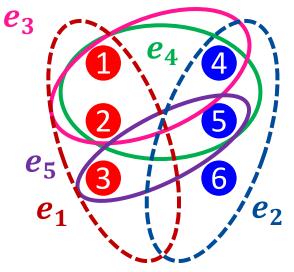
- We describe our proposed transitivity measure: HyperTrans.
- Most importantly, HyperTrans is a principled transitivity measure.


Measure			Α	xion	ns		
Measure	1	2	3	4	5	6	7
B1 (Jaccard index)	X	X	X	X	~	~	V
B2 (Ratio of covered interacations)	V	V	X	X	V	V	V
B3 (Klamt et al. [29])	V	X	X	X	V	V	V
B4 (Torres et al. [47])	V	~	X	X	V	V	V
B5 (Gallager et al. [20] A)	X	X	X	X	V	V	V
B6 (Gallager et al. [20] B)	X	X	X	X	V	X	V
B7 (HyperTrans-mean)	V	X	V	~	V	V	V
B8 (HyperTrans-non- $P(w)$)	V	X	V	~	V	V	V
B9 (HyperTrans-unnormalized)	~	V	V	V	X	V	X
Proposed: HyperTrans	•	~	•	~	V	~	~


- We describe further details of HyperTrans.
- First, hyperwedge-level HyperTrans is an average of scores of pair interactions between the nodes in L(w) and those in R(w).

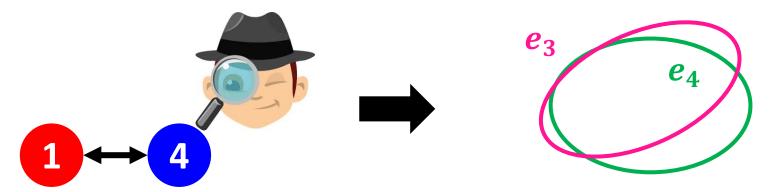
- Assume a hyperwedge $w = \{e_1, e_2\}$.
- There are 3 overlapping hyperedges: e_3 , e_4 , and e_5 .
- 9 pair interactions between L(w) and R(w) are

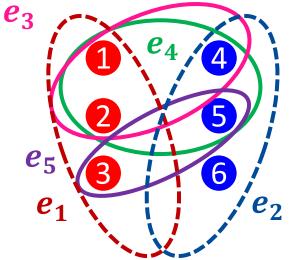
$$1 \leftrightarrow 4 \quad 1 \leftrightarrow 5 \quad 1 \leftrightarrow 6 \quad 2 \leftrightarrow 4 \quad 2 \leftrightarrow 5$$
$$2 \leftrightarrow 6 \quad 3 \leftrightarrow 4 \quad 3 \leftrightarrow 5 \quad 3 \leftrightarrow 6$$

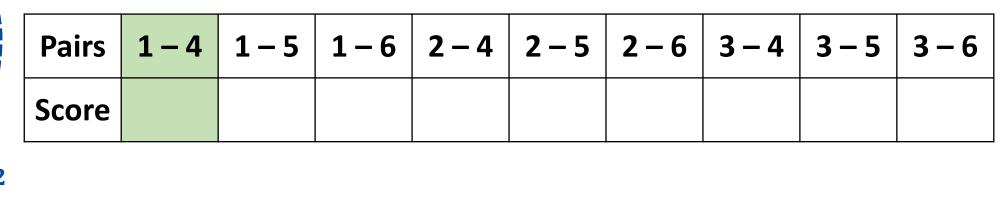


Computing score of a pair interaction $\{v_i, v_j\}$:

Step 1) Find hyperedges that contain $\{v_i, v_j\}$.

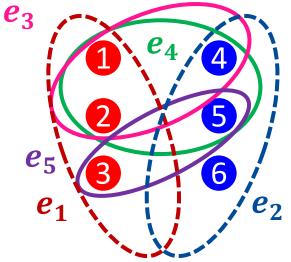

Step 2) Compute scores of the found hyperedges.


Step 3) Find the maximum score among them \rightarrow score of $\{v_i, v_j\}$.



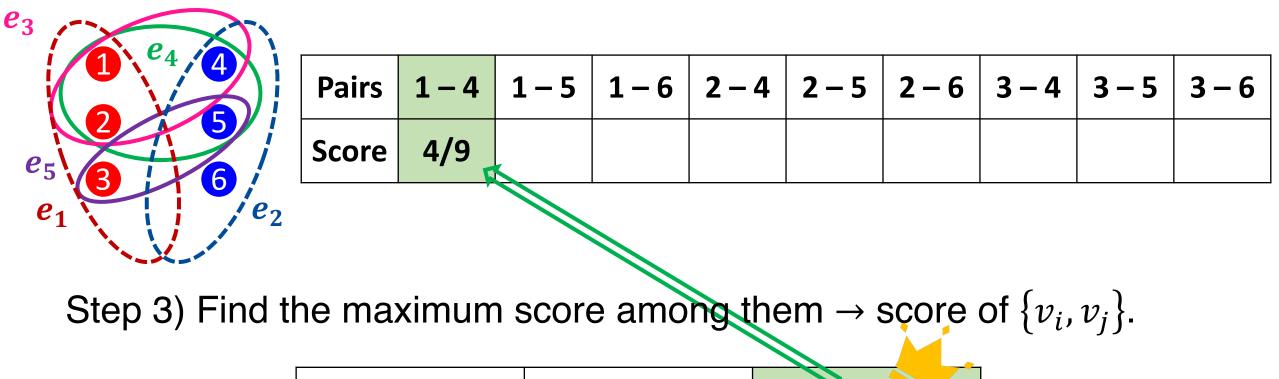
Pairs	1-4	1-5	1-6	2-4	2 – 5	2 – 6	3 – 4	3 – 5	3 – 6
Score									

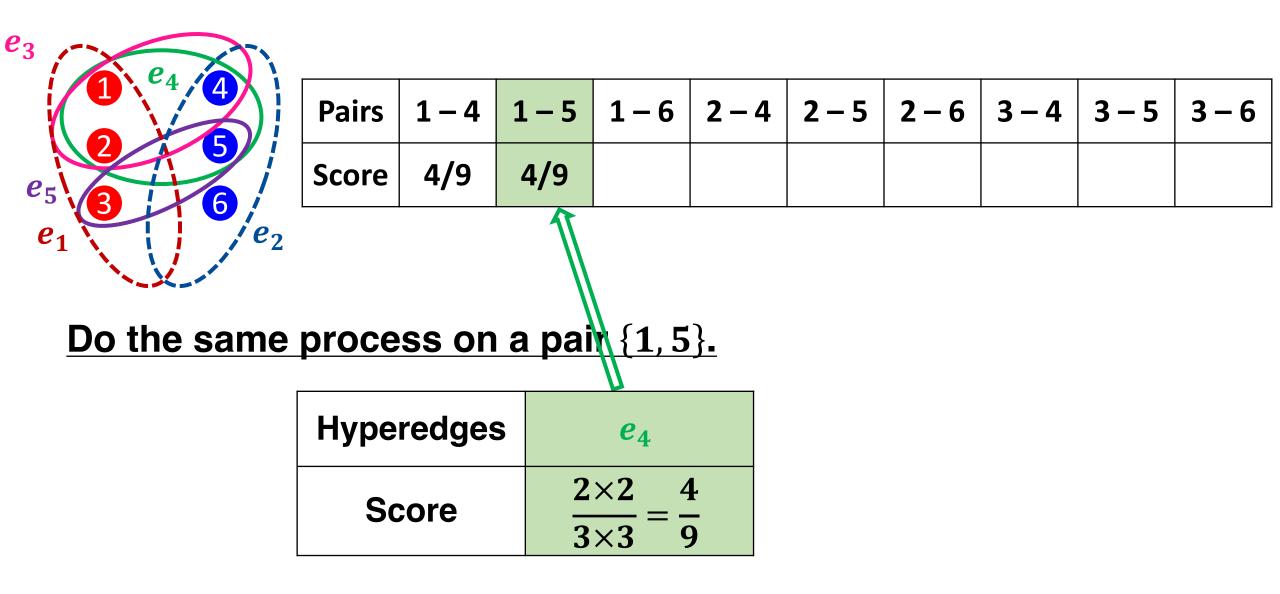
Step 1) Find hyperedges that contain $\{v_i, v_j\}$.

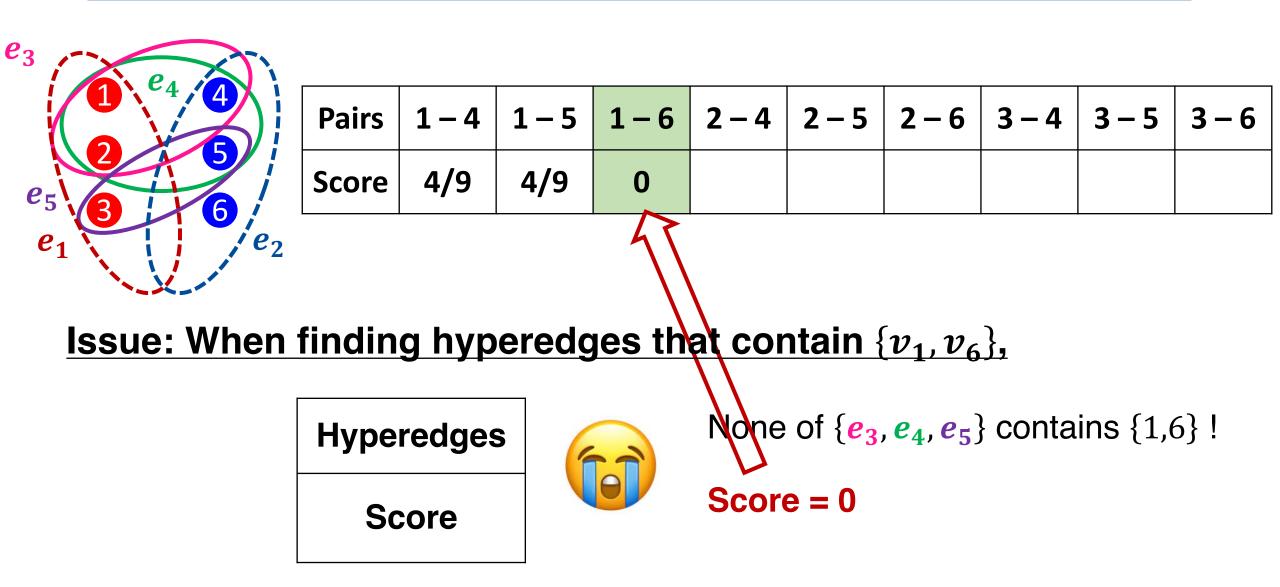


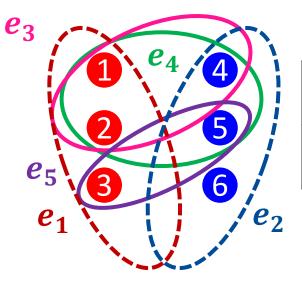
Step 2) Compute scores of the found hyperedges.

- Score of *e* in *w* is the quantified contribution of *e* to the interaction between L(w) and R(w).

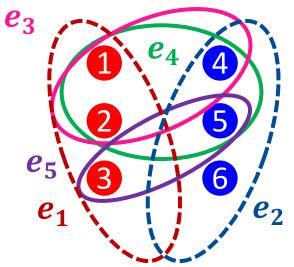

E.g.
$$\frac{|L(w) \cap e| \times |R(w) \cap e|}{|(L(w) \cup e) \setminus R(w)| \times |(R(w) \cup e) \setminus L(w)|}$$


Pairs	1-4	1-5	1-6	2 – 4	2 – 5	2 – 6	3 – 4	3 – 5	3 – 6
Score									


Step 2) Compute scores of the found hyperedges.

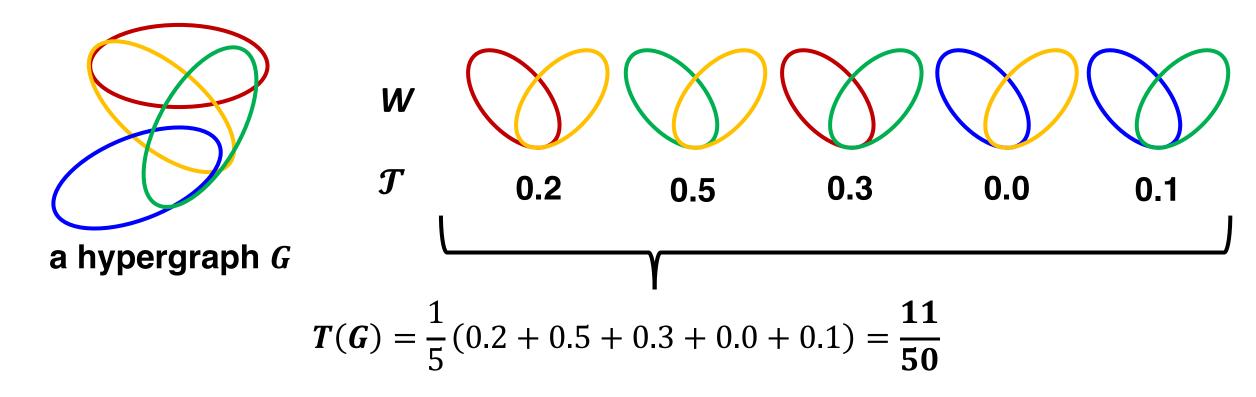

Hyperedges	<i>e</i> ₃	<i>e</i> ₄
Score	$\frac{2\times 1}{3\times 3}=\frac{2}{9}$	$\frac{2\times 2}{3\times 3}=\frac{4}{9}$

Hyperedges	<i>e</i> ₃	e_4
Score	$\frac{2\times 1}{3\times 3}=\frac{2}{9}$	$\frac{2\times 2}{3\times 3}=\frac{4}{9}$



Pairs	1-4	1 – 5	1-6	2 – 4	2 – 5	2 – 6	3 – 4	3 – 5	3 – 6
Score	4/9	4/9	0	4/9	4/9	0	0	1/9	0

Perform this process on the entire pairs.


Pairs	1-4	1 – 5	1-6	2 – 4	2 – 5	2 – 6	3 – 4	3 – 5	3 – 6
Score	4/9	4/9	0	4/9	4/9	0	0	1/9	0

<u>Compute an average of all scores = Hyperwedge-level HyperTrans</u>

$$\frac{1}{9} \times \left(\frac{4}{9} + \frac{4}{9} + 0 + \frac{4}{9} + \frac{4}{9} + 0 + 0 + \frac{1}{9} + 0\right) = \frac{17}{81}$$

• Hypergraph-level HyperTrans is an average of all hyperwedge-

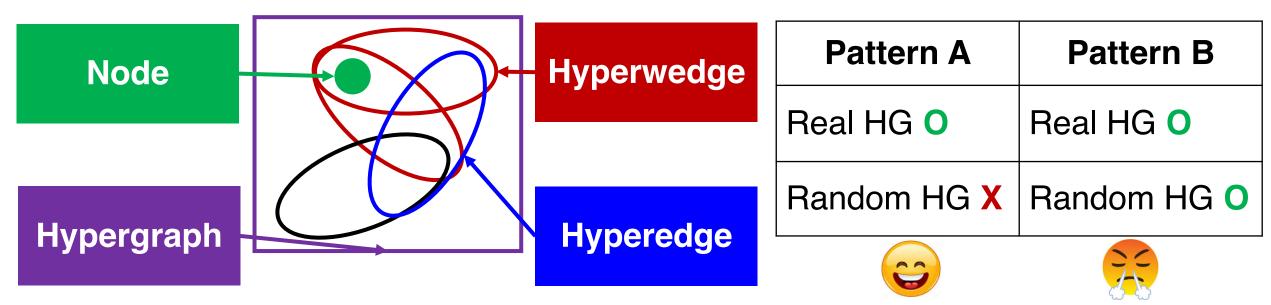
level HyperTrans of a given hypergraph.

• Formal expression of HyperTrans:

$$\mathcal{T}(w) = \sum_{v \in L(w)} \sum_{v' \in R(w)} \frac{\max_{e \in E} \{f(w, e) \times \mathbb{I}[v, v' \in e]\}}{|L(w)| \times |R(w)|}$$
Hyperwedge-Level

$$\mathcal{T}(G) = \frac{1}{|W_G|} \sum_{w \in W_G} \mathcal{T}(w)$$

Hypergraph-Level


Roadmap

Overview Transitivity Measure Observations Generator Conclusions

Level of Observations

- We analyze the transitivity patterns in real-world hypergraphs.
- To show that the observed patterns are not random, we use HyperCL [1] to generate random counterparts of real-world hypergraphs.

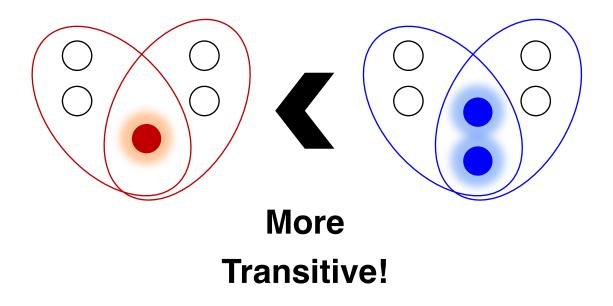
[1]: Lee, Choe, and Shin. How Do Hyperedges Overlap in Real-World Hypergraphs? - Patterns, Measures, and Generators. The Web Conference. 2021.

** HyperCL generates random hypergraphs where the expected node degree distribution is preserved.

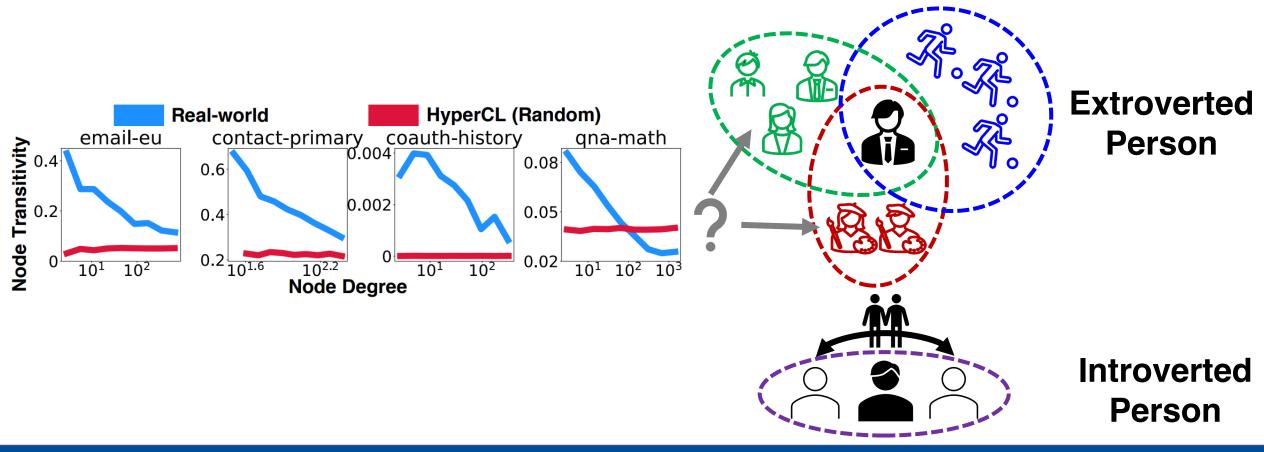
 Observation 1 (Hypergraph-level): Real-world hypergraphs are more transitive than randomized hypergraphs.

Data	Real	HyperCL	Z-stat	P-value
email-enron	0.195	0.078	378.3	0.00**
email-eu	0.125	0.053	240.1	0.00**
ndc-classes	0.052	0.008	146.7	0.00**
ndc-substances	0.019	0.005	47.3	0.00**
contact-high	0.345	0.119	764.7	0.00**
contact-primary	0.336	0.223	380.7	0.00**
coauth-dblp coauth-geology coauth-history	$0.007 \\ 0.005 \\ 0.002$	0.000^{*} 0.000^{*} 0.000^{*}	23.2 16.6 6.6	0.00** 0.00** 0.00**
qna-ubuntu	0.005	0.014	32.0	0.00**
qna-server	0.005	0.017	38.3	0.00**
qna-math	0.025	0.040	46.6	0.00**

Hypergraph Transitivity


Differences are all statistically significant

(at
$$\alpha = 0.05$$
).


 Observation 2 (Hyperwedge-level): There exist positive correlations between body-group sizes and hyperwedge transitivities in real-world hypergraphs.

Rank Correlation

Data	Real	HyperCL
email-enron	0.09	-0.09
email-eu	0.12	-0.14
ndc-classes	0.32	-0.10
ndc-substances	0.14	-0.10
contact-high	0.13	0.00*
contact-primary	0.13	0.00*
coauth-dblp coauth-geology coauth-history	$0.12 \\ 0.14 \\ 0.12$	0.00* 0.00* 0.05
qna-ubuntu qna-server qna-math	$0.04 \\ 0.04 \\ 0.04$	0.00* 0.00* 0.01

 Observation 3 (Node-level): In real-world hypergraphs, the transitivity of a node is negatively correlated to its degree.

How Transitive Are Real-World Group Interactions? – Measurement and Reproduction

 Observation 4 (Hyperedge-level): Real-world hypergraphs have wider ranges of hyperedge transitivity than their random counterparts.

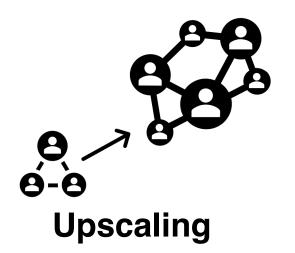
Trans	itivit	y Rang	ge	T = 1 —	
Data	Real	HyperCL	THera		
email-enron email-eu	0.725 0.809	0.279 0.248	0.732 0.792		
ndc-classes ndc-substances	0.600	0.075 0.032	0.410 0.411	$\mathcal{T} = 0.2$ $=$	
contact-high contact-primary	0.794 0.693	0.316 0.395	0.768 0.839	J = 0.2	
coauth-dblp coauth-geology coauth-history	1.0 1.0 1.0	0.105 0.069 0.333	1.0 1.0 1.0	T = 0	
qna-ubuntu qna-server qna-math	0.667 0.667 0.667	$0.5 \\ 0.333 \\ 1.00$	1.0 1.0 1.0	Real	Random

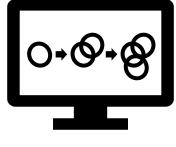
Sunwoo Kim

How Transitive Are Real-World Group Interactions? – Measurement and Reproduction

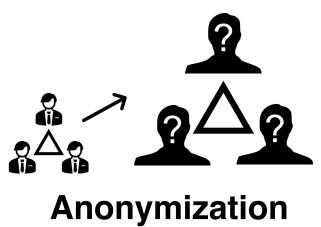
Roadmap

Overview Transitivity Measure Observations Generator Conclusions



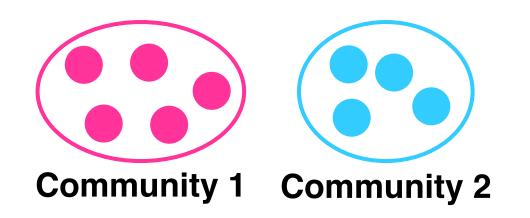

THera: Transitivity-preserving Generator

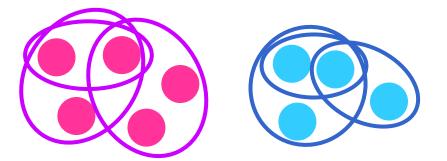
• A realistic synthetic (hyper)graph is useful in...



Finding causes of patterns

Simulation

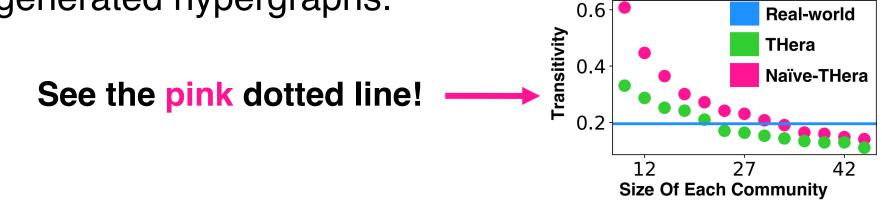



THera: Transitivity-preserving Generator

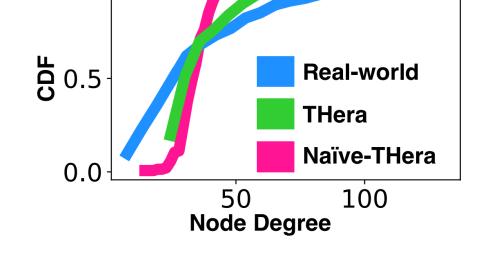
• We propose a transitivity-preserving hypergraph generator, namely

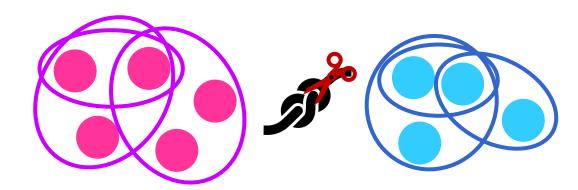
THera: <u>Transitive</u> <u>Hypergraph</u> gen<u>ERA</u>tor.

• **THera** is based on a community structure of nodes:



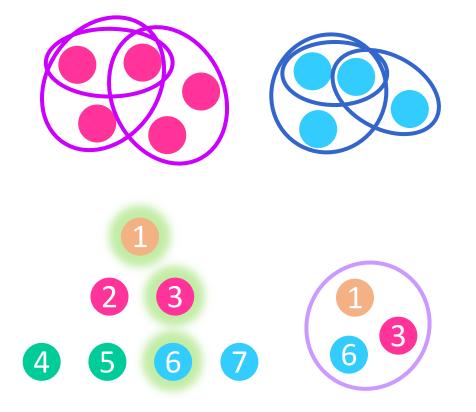
Creating hyperedges within communities


THera: Transitivity-preserving Generator


- We first introduce our preliminary approach: Naïve-THera.
- Naïve-THera assigns each node to a community and creates intra-community hyperedges only.
- By adjusting the community sizes, we can control the transitivity of generated hypergraphs.

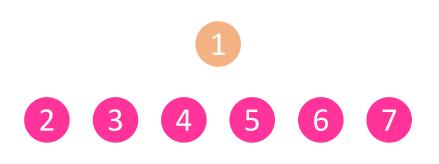
1.0

- However, Naïve-THera makes unrealistic hypergraphs:
 - It creates near-uniform degree distribution.
 - It creates disconnected hypergraphs.

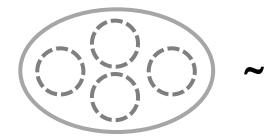


THera (Our proposal) has two types of hyperedge generation,

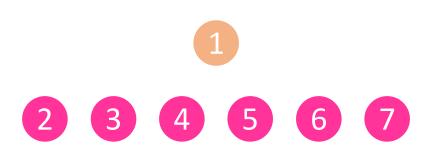
and the second type of hyperedge mitigates such issues:


- **#1) IntraCommunity:** Assigns each node to a community and creates hyperedges within each community.
- **#2) Hierarchical:** Assigns each node a level in the tree and creates hyperedges by sampling nodes proportional to the level of each node.

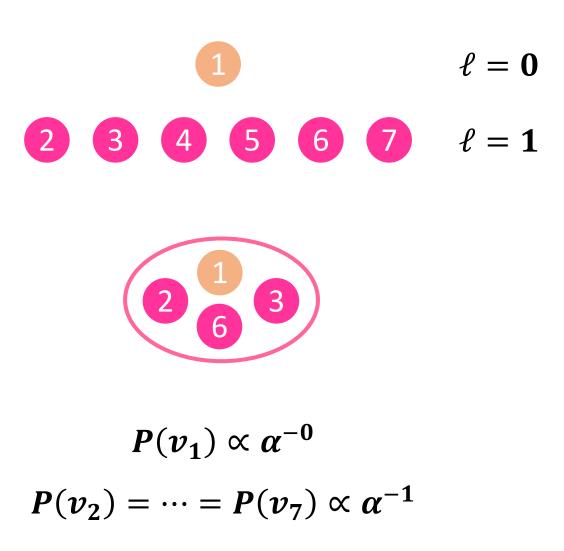
- 1. Start from node 1.
- 2. Introduce C = 6 nodes.
- 3. Decide hyperedge type ($\propto p$) & size.
- 4. If **IntraCommunity**: create a hyperedge within the community.
- 5. If Hierarchical: sample nodes depending on the level and fill a hyperedge with them.



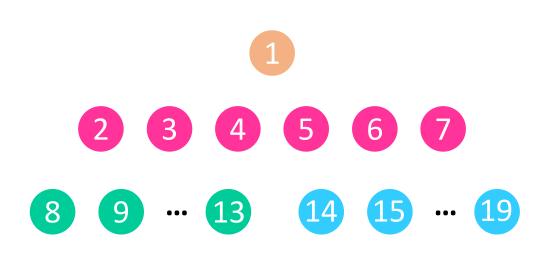
- 1. Start from node 1.
- 2. Introduce C = 6 nodes.
- 3. Decide hyperedge type ($\propto p$) & size.
- 4. If **IntraCommunity:** create a hyperedge within the community.
- 5. If Hierarchical: sample nodes depending on the level and fill a hyperedge with them.


- 1. Start from node 1.
- 2. Introduce C = 6 nodes.
- 3. Decide hyperedge type ($\propto p$) & size.
- 4. If **IntraCommunity:** create a hyperedge within the community.
- 5. If Hierarchical: sample nodes depending on the level and fill a hyperedge with them.

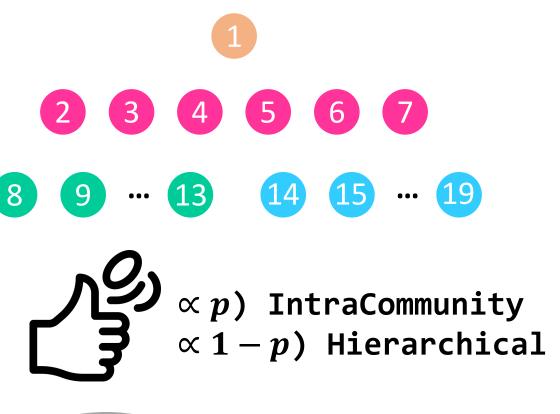
1
2 3 4 5 6 7
$$(x, p)$$
 IntraCommunity
 $(x, 1-p)$ Hierarchical

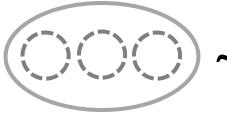

From real-word hyperedge size distribution

- 1. Start from node 1.
- 2. Introduce C = 6 nodes.
- 3. Decide hyperedge type ($\propto p$) & size.
- 4. If **IntraCommunity:** create a hyperedge within the community.
- 5. If Hierarchical: sample nodes depending on the level and fill a hyperedge with them.



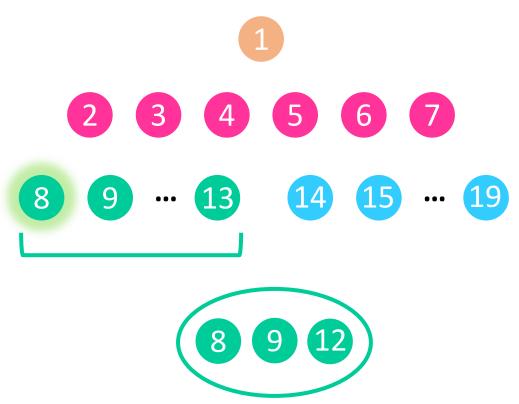
- 1. Start from node 1.
- 2. Introduce C = 6 nodes.
- 3. Decide hyperedge type ($\propto p$) & size.
- 4. If **IntraCommunity**: create a hyperedge within the community.
- 5. If Hierarchical: sample nodesdepending on the level and fill ahyperedge with them.

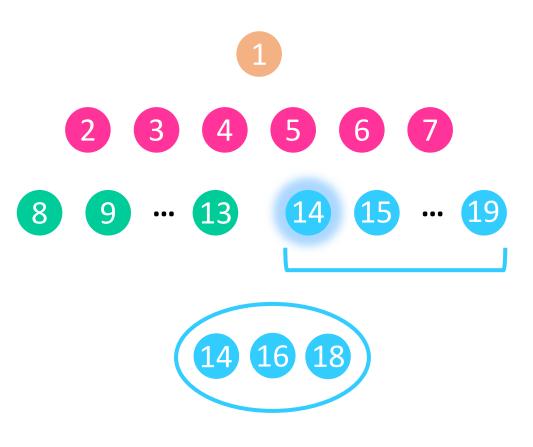

- 7. Now, introduce 2×6 nodes.
- 8. Decide hyperedge type ($\propto p$) & size.
- 9. If **IntraCommunity** that contains v_8 : create a hyperedge with green nodes.
- 10. If **IntraCommunity** that contains v_{14} : create a hyperedge with cyan nodes.
- 11. If Hierarchical: sample nodes dep. level and fill a hyperedge with them.



7. Now, introduce 2×6 nodes.

- 8. Decide hyperedge type ($\propto p$) & size.
- 9. If IntraCommunity that contains v_8 : create a hyperedge with green nodes.
- 10. If IntraCommunity that contains v_{14} : create a hyperedge with cyan nodes.

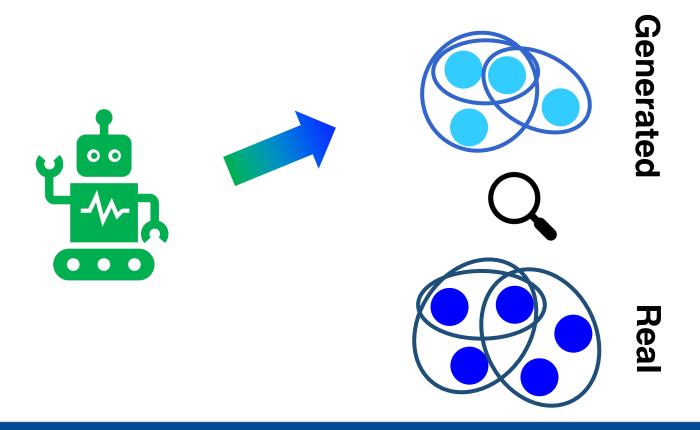

11. If Hierarchical: sample nodes dep. level and fill a hyperedge with them.


From real-word hyperedge size distribution

- 7. Now, introduce 2×6 nodes.
- 8. Decide hyperedge type ($\propto p$) & size.
- 9. If IntraCommunity that contains v_8 : create a hyperedge with green nodes.
- 10. If **IntraCommunity** that contains v_{14} : create a hyperedge with cyan nodes.
- 11. If Hierarchical: sample nodes dep. level and fill a hyperedge with them.

- 7. Now, introduce 2×6 nodes.
- 8. Decide hyperedge type ($\propto p$) & size.
- 9. If IntraCommunity that contains v_8 : create a hyperedge with green nodes.
- 10. If IntraCommunity that contains v_{14} : create a hyperedge with cyan nodes.

11. If Hierarchical: sample nodes dep. level and fill a hyperedge with them.



- 7. Now, introduce 2×6 nodes.
- 8. Decide hyperedge type ($\propto p$) & size.
- 9. If **IntraCommunity** that contains v_8 : create a hyperedge with green nodes.
- 10. If IntraCommunity that contains v_{14} : create a hyperedge with cyan nodes.
- 11. If Hierarchical: sample nodes dep. level and fill a hyperedge with them.

*dep: depending on the $\ell = \mathbf{0}$ $\ell = 1$ 5 6 **15** ... **19** $\ell = 2$ 13 8 9 14 ••• $P(v_1) \propto \alpha^{-0}$ $P(v_2) = \cdots = P(v_7) \propto \alpha^{-1}$ $P(v_{\mathbf{R}}) = \cdots = P(v_{\mathbf{1}\mathbf{9}}) \propto \alpha^{-2}$

Reproducibility of THera

- Verify how well THera reproduces the transitivity patterns of realworld hypergraphs.
- We investigate whether **THera** reproduces Observation 1 4 well.

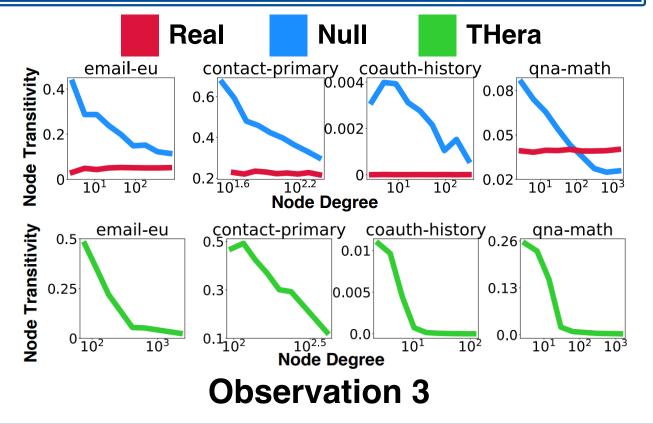
Preserving Observation 1

• **THera** preserves the hypergraph transitivity value of real-world hypergraphs most well among the 6 generators.

Statistic	Generator	em enron	ail eu	classes	NDC substances	co high	ontact primary	dblp	coauthorsh geology	ip history	ubuntu	q&a server	math	Average ranking
	Real World	0.195	0.125	0.052	0.019	0.345	0.336	0.007	0.005	0.002	0.005	0.005	0.025	Real
Hypergraph	THERA	0.192	0.124	0.052	0.019	0.344	0.334	0.007	0.005	0.002	0.004	0.004	0.025	1.08
transitivity T(G)	HyperCL [33] HyperPA [16] HyperFF [30] HyperLap [33] HyperLap+ [33]	0.078 0.090 0.176 0.123 0.231	0.053 0.110 0.125 0.085 0.144	$\begin{array}{c} 0.008 \\ 0.070 \\ 0.006 \\ 0.008 \\ 0.026 \end{array}$	0.005 - 0.003 0.008 0.016	0.119 0.121 0.006 0.220 0.322	0.223 0.153 0.007 0.301 0.338	0.000* - 0.047 0.001 0.042	0.000* - 0.048 0.000* 0.019	0.000* - 0.048 0.000* 0.005	$\begin{array}{c} 0.014 \\ 0.003 \\ 0.051 \\ 0.016 \\ 0.029 \end{array}$	0.017 - 0.050 0.015 0.023	0.040 - 0.054 0.004 0.007	4.08 4.75 4.83 3.25 3.54

** Colors: Most well

Sunwoo Kim


How Transitive Are Real-World Group Interactions? – Measurement and Reproduction

Preserving Observation 2 & 3

- THera preserves the correlation between,
 - (Obs 2) Hyperwedge transitivities and body-group sizes.
 - (Obs 3) Node transitivities and node degrees.

Data	Real	HyperCL	THera
email-enron	0.09	-0.09	0.23
email-eu	0.12	-0.14	0.22
ndc-classes	0.32	-0.10	0.40
ndc-substances	0.14	-0.10	0.24
contact-high	0.13	0.00*	0.29
contact-primary	0.13	0.00*	0.30
coauth-dblp	0.12	0.00*	0.20
coauth-geology	0.14	0.00*	0.26
coauth-history	0.12	0.05	0.19
qna-ubuntu	0.04	0.00*	0.03
qna-server	0.04	0.00*	0.04
qna-math	0.04	0.01	0.13

Observation 2

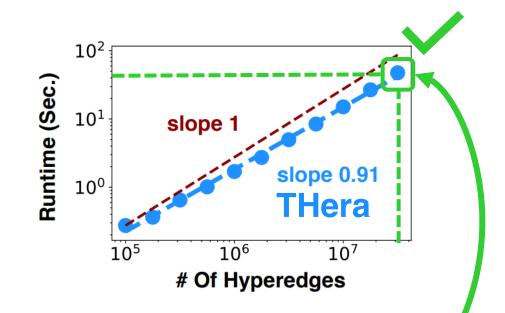
Preserving Observation 4

• THera preserves the range of hyperedge transitivity well.

Data	Real	HyperCL	THera
email-enron email-eu	0.725 0.809	0.279 0.248	0.732 0.792
ndc-classes ndc-substances	0.600 1.0	0.075 0.032	$\begin{array}{c} 0.410\\ 0.411\end{array}$
contact-high contact-primary	0.794 0.693	0.316 0.395	0.768 0.839
coauth-dblp coauth-geology coauth-history	$1.0 \\ 1.0 \\ 1.0$	$0.105 \\ 0.069 \\ 0.333$	$1.0 \\ 1.0 \\ 1.0$
qna-ubuntu qna-server qna-math	0.667 0.667 0.667	0.5 0.333 1.00	1.0 1.0 1.0

Sunwoo Kim

Scalability of THera


• **THera** achieves the fastest generation time and the least memory consumption among the 5 generators.

Statistic	Generator	0	coauthorsh	ip	q&a			email		ndc		contact		Average
Statistic	Generator	dblp	geology	history	ubuntu	math	server	enron	eu	classes	substances	high	primary	ranking
	THERA	4.07	2.39	1.86	0.39	0.33	0.63	0.04	0.18	0.04	0.09	0.10	0.18	1.7
Runtime	HyperPA [16]	-	-	-	374.51	-	-	5.02	5011.84	1155.00	-	2.29	4.56	5.0
	HyperFF [30]	226.79	114.24	53.48	12.78	17.23	3.15	0.05	0.09	0.32	0.10	0.02	0.02	2.7
(sec.)	HyperLap [33]	19.07	9.57	2.24	0.57	0.45	1.14	0.01	0.14	0.01	0.10	0.06	0.04	1.8
	HyperLap+ [33]	1322.6	611.91	160.75	12.08	1.00	23.46	0.06	2.74	0.29	3.92	0.26	0.51	3.7
	THERA	1535	761	325	90	36	129	2	3	2	11	11	23	2.0
Memory	HyperPA [16]	-	-	-	21	-	-	76	60169	21351	-	2	2	4.2
consumption	HyperFF [30]	3307	1655	739	107	147	26	1	2	4	1	1	1	2.0
(MB)	HyperLap [33]	3197	1498	529	134	86	204	11	32	15	41	12	11	3.1
. ,	HyperLap+ [33]	5042	3005	1901	591	110	321	9	39	14	412	10	18	3.8

Scalability of THera

• **THera** has the least time & memory complexity among the 3 incremental generators.

Generator	Time complexity	Memory complexity	Incremental	
THERA	$O(\log_2 V \times \sum_{e \in E} e)$	$O(V + \sum_{e \in E} e)$	 ✓ 	
HyperPA [16]	$O(\sum_{e \in E} \log_2 { V \choose e })$	$O(\sum_{e \in E} 2^{ e })$	 ✓ 	
HyperFF [30]	$O(V \times \sum_{e \in E} e)$	$O(V + \sum_{e \in E} e)$	~	
HyperLap [33] HyperLap+ [33]	$O(\sum_{e \in E} e)$ $O(\log_2 V \times \sum_{e \in E} e)$	$O(V + \sum_{e \in E} e)$ $O(V + \sum_{e \in E} e)$	×	

Can generate $10^{7.5} \approx 3.5M$ hyperedges within a minute!

Roadmap

Overview Transitivity Measure Observations Generator **Conclusions**

Sunwoo Kim

Conclusions

In this work, we present...

- Criteria: Axioms that a principled transitivity measure should satisfy.
- Measure: HyperTrans, a principled transitivity measure.
- **Observations: Analysis** of the real-world hypergraphs.

Generator: THera, a scalable and realistic hypergraph generator.

= Paper: <u>https://doi.org/10.1145/3580305.3599382</u>

Github: https://github.com/kswoo97/hypertrans

Sunwoo Kim

Thank You For Listening!

Fanchen Bu

Minyoung Choe

Jaemin Yoo

Kijung Shin