
Jinhong Jung Kijung ShinTaehyung Kwon Jihoon Ko

TENSORCODEC: Compact Lossy Compression of 
Tensors without Strong Data Assumptions

Best Student Paper Runner-up



Various data can be expressed as tensors
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Why do we need to compress tensors?
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2. Memory requirement

1. Network I/O
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E.g.,) Scientific simulation data



Limitations of existing approaches 
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• Existing methods heavily rely on assumptions on input data.

Low-rank structure Smooth (e.g., videos) Sparse
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• However, not all real-world tensors meet the assumptions.

• How can we compress such general tensors?

Our objective: compression w/o assumptions
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Problem definition

Lossy compression of tensors without any data assumption.

• Given: a general tensor 𝓧 ∈ ℝ𝑁1×⋯×𝑁𝑑.

• Find: the compressed data 𝐷.

• To minimize: (1) the size of 𝐷 and (2) the reconstruction error 𝓧−𝓨

where 𝓨 is the tensor reconstructed from 𝐷.
6

𝓧: 90GB 𝓨𝑫
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Tensor-Train decomposition (TTD)
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• Our approach is founded on the Tensor-Train decomposition (TTD).

• TTD efficiently compresses large matrices.
• E.g., Compression of node embeddings for efficiency of GNNs
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• TT-cores (𝓖) can be stored instead of the input tensor.

• They can be used to approximately restore the input tensor. 

→ lossy compression.

Tensor-Train decomposition (TTD)
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Overview of TensorCodec

• Our compression algorithm, TensorCodec, makes TTD more 
expressive, concise, and accurate.

• Q1 Expressiveness: How can we enhance the expressiveness of TTD?

• Q2 Conciseness: How can we reduce the parameters of TTD?

• Q3 Accuracy: How can we improve approximation accuracy of TTD?

• TensorCodec employs Neural TTD         , Folding         , and reordering
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Limited Expressiveness of TTD

• TT-cores are fixed for all tensor entries.

• How can we make TT-cores adaptive to each tensor entry?
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• We make TT-cores adaptive to each entry using LSTM returning TT-cores.

A1. Neural TTD (NTTD)
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A2. Folding

• Folding is the process of mapping each entry of a low-order tensor to 
an entry of a high-order tensor by splitting dimensions.
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A2. Folding

• The sum of the mode-sizes of a tensor decreases by folding.

• The number of parameters of NTTD is proportional to the sum.
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4 x 4 =16
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16 x 2 = 32
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A3. Reordering

• Reordering is the process of changing the orders of indices of all 
modes so that the similar entries are located nearby.
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A3. Reordering

• The closer the entries are in the original tensor, the closer they are in 
the folded tensor.

• Reordering helps the model fit the tensor because they share more 
inputs to LSTM.
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Outputs of TensorCodec

• The outputs of compression are (1) neural-network parameters
and (2) an index mapping after reordering 
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Reconstruction from the outputs
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A1. NTTD         Better Expressiveness of TTD

Summary: contributions of each component
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A2. Folding          Better Conciseness of NTTD

A3. Reordering          Better Fitness of NTTD         Better Accuracy



Overall training process for fitting the input

• The outputs of compression are (1) neural-network parameters
and (2) an index mapping after reordering 
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Overall training process for fitting the input

1. Initialize orders (A3-1).

2. Update NTTD using a gradient descent.

3. Update the orders as in (A3-2).

4. Repeat 2 and 3 until the error converges.
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• Our goal: minimize the differences between neighboring slices.

• Consider a complete graph.

• Nodes: slices (i.e., mode indices)

• Edge weights: L2 distances between the slices.

A3-1. Order initialization
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A3-1. Order initialization

• Find a short cycle with a 2-approximate solution of the TSP. 

• Then, remove the largest-weight edge.

• The path becomes the order of slices.
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A3-2. Order update using hill climbing

• Finding similar pairs of slices using locality-
sensitive hashing (LSH) for L2 distance.

• Swap one slice with the neighboring slice 
of the other if fitting loss decreases.

• Repeat the above steps.
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Experimental settings

• Eight real-world datasets: six 3-order tensors and two 4-order tensors. 
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Experimental settings

• Lossy-compression baselines:

• Low-rank tensor compression methods

• CP, Tucker, TT, and TR decompositions.

• Smooth-tensor compression methods

• TTHRESH and SZ3.

• Sparse-tensor compression methods

• NeuKron.
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TensorCodec is concise and precise

• The compressed outputs of TensorCodec is up to 7.38x smaller. 

• TensorCodec shows up to 3.33x better accuracy.
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All components of TensorCodec are useful

• TensorCodec outperforms all of its variants with missing components.
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TensorCodec (TC)-R: 
variant of TC without 
reordering.

TC-T: variant of TC-R 
without order initialization.

TC-N: variant of TC-T 
without a neural network.



TensorCodec is scalable

• Compression time of TensorCodec is linear in the tensor entry count.
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TensorCodec is scalable

• Its reconstruction time is sub-linear in the tensor entry count.
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Further Analysis

• Which slices are closely ordered by TensorCodec?

• Can TensorCodec approximate high-rank tensors with few parameters?
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Reordering by TensorCodec is effective
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Reordering by 
TensorCodec

Reordering by 
NeuKron

• Reordered results of TensorCodec align with our intuition.
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TensorCodec is expressive
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• TensorCodec fits high-rank tensors with a small number of parameters.

3-order tensor 4-order tensor
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Conclusion

• We propose TensorCodec for lossy compression of general tensors.

• TensorCodec is concise, accurate, and scalable.
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Concise Accurate Scalable
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Thank you for listening!

Any question?

Code & Datasets: https://github.com/kbrother/TensorCodec


