
Jinhong Jung Kijung ShinTaehyung Kwon Jihoon Ko

TENSORCODEC: Compact Lossy Compression of
Tensors without Strong Data Assumptions

Best Student Paper Runner-up

Various data can be expressed as tensors

2

Introduction Preliminaries Proposed Method Experiments Conclusion

Air pollutant
measurements

Traffic volumes

1 p.m.

2 p.m.

3 p.m.

Destination

So
u

rc
e

July 1

July 2

July 3

Lo
ca

ti
o

n

Pollutant type

Why do we need to compress tensors?

3

2. Memory requirement

1. Network I/O

Introduction Preliminaries Proposed Method Experiments Conclusion

E.g.,) Scientific simulation data

Limitations of existing approaches

4

• Existing methods heavily rely on assumptions on input data.

Low-rank structure Smooth (e.g., videos) Sparse

Introduction Preliminaries Proposed Method Experiments Conclusion

• However, not all real-world tensors meet the assumptions.

• How can we compress such general tensors?

Our objective: compression w/o assumptions

5

Introduction Preliminaries Proposed Method Experiments Conclusion

High-rank structure DenseNot smooth

Problem definition

Lossy compression of tensors without any data assumption.

• Given: a general tensor 𝓧 ∈ ℝ𝑁1×⋯×𝑁𝑑.

• Find: the compressed data 𝐷.

• To minimize: (1) the size of 𝐷 and (2) the reconstruction error 𝓧−𝓨

where 𝓨 is the tensor reconstructed from 𝐷.
6

𝓧: 90GB 𝓨𝑫

Introduction Preliminaries Proposed Method Experiments Conclusion

Outline

1. Introduction.

2. Preliminaries.

3. Proposed method.

4. Experiments.

5. Conclusion.

7

Tensor-Train decomposition (TTD)

8

• Our approach is founded on the Tensor-Train decomposition (TTD).

• TTD efficiently compresses large matrices.
• E.g., Compression of node embeddings for efficiency of GNNs

Introduction Preliminaries Proposed Method Experiments Conclusion

Node
embeddings

TTD fitted
to node

embeddings

• TT-cores (𝓖) can be stored instead of the input tensor.

• They can be used to approximately restore the input tensor.

→ lossy compression.

Tensor-Train decomposition (TTD)

9

𝓧𝟐,𝟑,𝟏

2nd Mode

1
st

M
o

d
e

𝓖:,:,𝟐
𝟏

𝓖:,:,𝟑
𝟐 𝓖:,:,𝟏

𝟑

Introduction Preliminaries Proposed Method Experiments Conclusion

≈

Outline

1. Introduction.

2. Preliminaries.

3. Proposed method.

4. Experiments.

5. Conclusion.

10

Overview of TensorCodec

• Our compression algorithm, TensorCodec, makes TTD more
expressive, concise, and accurate.

• Q1 Expressiveness: How can we enhance the expressiveness of TTD?

• Q2 Conciseness: How can we reduce the parameters of TTD?

• Q3 Accuracy: How can we improve approximation accuracy of TTD?

• TensorCodec employs Neural TTD , Folding , and reordering

11

Introduction Preliminaries Proposed Method Experiments Conclusion

Limited Expressiveness of TTD

• TT-cores are fixed for all tensor entries.

• How can we make TT-cores adaptive to each tensor entry?

12

Introduction Preliminaries Proposed Method Experiments Conclusion

𝓖:,:,𝟑
𝟐

𝓖:,:,𝟏
𝟑

෩𝓧𝟐,𝟑,𝟏

෩𝓧𝟓,𝟑,𝟏

• We make TT-cores adaptive to each entry using LSTM returning TT-cores.

A1. Neural TTD (NTTD)

13

Target Entry:

𝓧 2, 3, 1
2 3 1

Real-valued outputs

≈×

Embedding

Linear
(for 1×R)

LSTM

Embedding

Linear
(for R×R)

LSTM

Embedding

Linear
(for R×1)

LSTM

×

Introduction Preliminaries Proposed Method Experiments Conclusion

𝓖 𝟏 𝟐
𝓖 2 𝟐, 𝟑 𝓖 𝟑 𝟐, 𝟑, 𝟏

A2. Folding

• Folding is the process of mapping each entry of a low-order tensor to
an entry of a high-order tensor by splitting dimensions.

14

2-order tensor 3-order tensor

A2. Folding

• The sum of the mode-sizes of a tensor decreases by folding.

• The number of parameters of NTTD is proportional to the sum.

15

4 x 4 =16

Introduction Preliminaries Proposed Method Experiments Conclusion

16 x 2 = 32

2-order tensor 4-order tensor

A3. Reordering

• Reordering is the process of changing the orders of indices of all
modes so that the similar entries are located nearby.

16

1
st

M
o

d
e Reorder

1
2

3
4

1
4

2
3

A3. Reordering

• The closer the entries are in the original tensor, the closer they are in
the folded tensor.

• Reordering helps the model fit the tensor because they share more
inputs to LSTM.

17

Introduction Preliminaries Proposed Method Experiments Conclusion

Outputs of TensorCodec

• The outputs of compression are (1) neural-network parameters
and (2) an index mapping after reordering

18

Embedding

Linear
(for 1×R)

LSTM

Original tensor Reordered tensor

Introduction Preliminaries Proposed Method Experiments Conclusion

1
3
4
2

Index mappingneural network parameters

Reconstruction from the outputs

19

Introduction Preliminaries Proposed Method Experiments Conclusion

Entry
indices
(2, 3, 1)

Reordered
indices

(12, 23, 2)

Reordering Folding

Folded
indices

(2, 4, 6, 3, 2)

Reconstructed
value
2.17

NTTD

?

A1. NTTD Better Expressiveness of TTD

Summary: contributions of each component

20

Introduction Preliminaries Proposed Method Experiments Conclusion

A2. Folding Better Conciseness of NTTD

A3. Reordering Better Fitness of NTTD Better Accuracy

Overall training process for fitting the input

• The outputs of compression are (1) neural-network parameters
and (2) an index mapping after reordering

21

Embedding

Linear
(for 1×R)

LSTM

Original tensor Reordered tensor

Introduction Preliminaries Proposed Method Experiments Conclusion

1
3
4
2

Index mappingneural network parameters

How to fit?

Overall training process for fitting the input

1. Initialize orders (A3-1).

2. Update NTTD using a gradient descent.

3. Update the orders as in (A3-2).

4. Repeat 2 and 3 until the error converges.

22

Introduction Preliminaries Proposed Method Experiments Conclusion

Details

• Our goal: minimize the differences between neighboring slices.

• Consider a complete graph.

• Nodes: slices (i.e., mode indices)

• Edge weights: L2 distances between the slices.

A3-1. Order initialization

23

Introduction Preliminaries Proposed Method Experiments Conclusion

Details

A3-1. Order initialization

• Find a short cycle with a 2-approximate solution of the TSP.

• Then, remove the largest-weight edge.

• The path becomes the order of slices.

24

Introduction Preliminaries Proposed Method Experiments Conclusion

Details

A3-2. Order update using hill climbing

• Finding similar pairs of slices using locality-
sensitive hashing (LSH) for L2 distance.

• Swap one slice with the neighboring slice
of the other if fitting loss decreases.

• Repeat the above steps.

25

Introduction Preliminaries Proposed Method Experiments Conclusion

Details

Outline

1. Introduction.

2. Preliminaries.

3. Proposed method.

4. Experiments.

5. Conclusion.

26

Experimental settings

• Eight real-world datasets: six 3-order tensors and two 4-order tensors.

27

Air quality
measurement

Traffic volume Video feature Stock datum

Introduction Preliminaries Proposed Method Experiments Conclusion

Experimental settings

• Lossy-compression baselines:

• Low-rank tensor compression methods

• CP, Tucker, TT, and TR decompositions.

• Smooth-tensor compression methods

• TTHRESH and SZ3.

• Sparse-tensor compression methods

• NeuKron.

28

Introduction Preliminaries Proposed Method Experiments Conclusion

TensorCodec is concise and precise

• The compressed outputs of TensorCodec is up to 7.38x smaller.

• TensorCodec shows up to 3.33x better accuracy.

Stock Activity Action Absorb

29

Introduction Preliminaries Proposed Method Experiments Conclusion

All components of TensorCodec are useful

• TensorCodec outperforms all of its variants with missing components.

30

Action Air quality PEMS-SF Uber

Introduction Preliminaries Proposed Method Experiments Conclusion

TensorCodec (TC)-R:
variant of TC without
reordering.

TC-T: variant of TC-R
without order initialization.

TC-N: variant of TC-T
without a neural network.

TensorCodec is scalable

• Compression time of TensorCodec is linear in the tensor entry count.

31

Introduction Preliminaries Proposed Method Experiments Conclusion

TensorCodec is scalable

• Its reconstruction time is sub-linear in the tensor entry count.

32

3-order
tensor

4-order
tensor

Introduction Preliminaries Proposed Method Experiments Conclusion

Further Analysis

• Which slices are closely ordered by TensorCodec?

• Can TensorCodec approximate high-rank tensors with few parameters?

33

Reordering by TensorCodec is effective

34

Reordering by
TensorCodec

Reordering by
NeuKron

• Reordered results of TensorCodec align with our intuition.

Introduction Preliminaries Proposed Method Experiments Conclusion

Lo
ca

ti
o

n

TensorCodec is expressive

35

• TensorCodec fits high-rank tensors with a small number of parameters.

3-order tensor 4-order tensor

Introduction Preliminaries Proposed Method Experiments Conclusion

Outline

1. Introduction.

2. Preliminaries.

3. Proposed method.

4. Experiments.

5. Conclusion.

36

Conclusion

• We propose TensorCodec for lossy compression of general tensors.

• TensorCodec is concise, accurate, and scalable.

37

Concise Accurate Scalable

Introduction Preliminaries Proposed Method Experiments Conclusion

Thank you for listening!

Any question?

Code & Datasets: https://github.com/kbrother/TensorCodec

