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Introduction

Node Properties in Real-world Networks

Various characteristics of entities can be represented as node properties
* Predicting these properties can be valuable for many real-world applications

- Anomalous states in financial networks (anomaly detection)

- Users' preferred song categories for next week on a streaming site (recommendation)
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Introduction

Challenges in Predicting Node Properties

Node properties dynamically change in real-world networks
« Many real-world networks evolve over time, with emerging interactions

Previous methods based on static graphs become less effective and efficient in such a case
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Introduction

Challenges in Predicting Node Properties

Temporal Neural Networks (TGNNs) can be used for node property prediction
« These models can predict dynamically changing node properties by incrementally update node

representations that capture complex temporal and structural patterns

TGNNs

A
<>
[

Dynamic
representation

Jongha Lee Simple yet Effective Node Property Prediction on Edge Streams under Distribution Shifts



Introduction

Challenges in Predicting Node Properties

Temporal Neural Networks (TGNNs) can be used for node property prediction
« These models can predict dynamically changing node properties by incrementally update node

representations that capture complex temporal and structural patterns
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Introduction

Challenges in Predicting Node Properties

However, performance of TGNNs drops when node features are absent
* TGNNSs can be less effective without proper node features in node property prediction

Performance of TGNNs on the Email-EU dataset
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Introduction

Challenges in Predicting Node Properties

TGNNSs are vulnerable to distribution shifts in real-world networks
« Many TGNN models employ complex architectures such as RNNs and attention modules

* However, complex model architectures can be vulnerable to distribution shifts

Example of distribution shifts in a collaboration network ' Performance degradations of TGNNs under distribution shift
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Problem Description

Problem Definition

Node Property Prediction in Edge Streams

« To predict the node property of each query node in edge streams

* Only past edges can be utilized for predicting the current node properties

Queries
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Problem Description

Problem Definition

Subtasks of Node Property Prediction in Edge Streams

* Dynamic Node Classification
« Dynamic Anomaly Detection
* Node Affinity Prediction

Location classes
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Problem Description

Our Graph Model for Edge Stream: CTDG

CTDG (Continuous Time Dynamic Graph)-based methods

* Incrementally update the graph by adding time information as a new edge arrives

* Allow for incremental algorithms to minimize time delay
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Problem Description

Our Graph Model for Edge Stream: CTDG

Node Property Prediction Process using CTDGs

« Specifically, temporal edges appear over time and are used to update the memory

« Based on the updated memory, the model make predictions for incoming property queries
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Proposed Method

Proposed Method: SPALSH

Simple node Property prediction via representation Learning with Augmented

features under distribution SHifts
« Effective in predicting node properties using proposed augmented node features
» Accurately and efficiently select the proper feature augmentation schemes

« Lightweight MLP-based model that is highly efficient and robust under distribution shifts
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Proposed Method

Overview of SPLASH

(1) Node Feature Augmentation

(2) Node Feature Selection
(3) SLIM Model (Our Proposed TGNN Model)
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Proposed Method

Overview of SPLASH

(1) Node Feature Augmentation

(2) Node Feature Selection
(3) SLIM Model (Our Proposed TGNN Model)
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Proposed Method

Feature Augmentation (Training Phase)

Goal: to augment the node features of seen nodes within the training graph
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Proposed Method

Feature Augmentation (Training Phase)

Random Feature Augmentation

» This process aims to encode stable and absolute positions of seen nodes
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Proposed Method

Feature Augmentation (Training Phase)

Positional Feature Augmentation

* This process aims to encode stable and relative positions of seen nodes
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Proposed Method

Feature Augmentation (Training Phase)

Structural Feature Augmentation

» This process aims to encode dynamic structural patterns of seen nodes
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Proposed Method

Overview of SPLASH

(1) Node Feature Augmentation

(2) Node Feature Selection
(3) SLIM Model (Our Proposed TGNN Model)
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Proposed Method

Feature Propagation (Test Phase)

Goal: to generate the node features of unseen nodes in the test phase

8 : Unseen Nodes

T
NGl @ ) ol @ )
5 —q. | st
g abx(z) ¢ P ‘ U’K(Z) £(7)
" G [t® ., i Feature i g O e
\t O . Propagation \t O
ﬁ n % b ¢ O ’ ﬁ n % Y
- t(/“)‘i’ = t(/4)1;P

Jongha Lee Simple yet Effective Node Property Prediction on Edge Streams under Distribution Shifts



Proposed Method

Feature Propagation (Test Phase)

Structural Feature Augmentation for Unseen Nodes

 The same process S used in the training phase is applied to unseen nodes
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Proposed Method

Feature Propagation (Test Phase)

Positional Feature Augmentation for Unseen Nodes

* This process aims to represent the node feature for the unseen node using a simple linear

interpolation of neighboring nodes’ features
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Proposed Method

Feature Propagation (Test Phase)

Random Feature Augmentation for Unseen Nodes

« Astherandom features assigned to unseen nodes cannot be trained, the same linear

interpolation is used instead for unseen nodes
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Proposed Method

Overview of SPLASH

(1) Node Feature Augmentation

(2) Node Feature Selection
(3) SLIM Model (Our Proposed TGNN Model)
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Proposed Method

Node Feature Selection

Goal: to efficiently identify a feature augmentation process that is effective
for property label prediction

Feature Augmentation
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Proposed Method

Node Feature Selection

Fitting with Node Encodings

- Each augmentation process generates node encodings using recent neighbors, followed by

training the corresponding linear model to fit the property labels
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Proposed Method

Node Feature Selection

Evaluation Using the Validation Set

» The risk of each augmentation process with the trained linear model is evaluated on the

validation set
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Proposed Method

Node Feature Selection

Augmentation Process Selection

« The feature augmentation process with the lowest sum of risks on the validation set is

selected
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Proposed Method

Overview of SPLASH

(1) Node Feature Augmentation
(2) Node Feature Selection
(3) SLIM Model (Our Proposed TGNN Model)
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Proposed Method

SLIM Model

Goal: to efficiently and effectively predict node properties using a simple MLP-

based model with augmented node features
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Proposed Method

SLIM Model

Message Encoding Module
« SLIM first generates messages from recent temporal edges using selected augmentation

process and MLPs
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Proposed Method

SLIM Model

Proposed SLIM Model Architecture
« SLIM computes the latest representation of a given target node by aggregating the

messages in the previous module and predicts its property label
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Experiments

Research Questions

RQ1) Accuracy & Generalization

v" How accurately does SPLASH predict node properties under distribution shifts?
RQ2) Efficiency & Scalability

v How efficient and scalable is SPLASH?
RQ3) Qualitative Analysis

v" Does SPLASH outperform other baselines in qualitative evaluation?
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Experiments

Experimental Settings

Datasets
v 3 social networks (Wikipedia, Reddit, MOOC) for dynamic anomaly detection
v" Email network (Email-EU) and event network (GDELT) for dynamic node classification
v Trade network (tgbn-trade) and music platform network (tgbn-genre) for node affinity

prediction

Baselines
v' 8 TGNNSs: JODIE, DySAT, TGAT, TGN, GraphMixer, DyGFormer, FreeDyG, SLADE
v" 8 TGNNs with random features: JODIE+RF, DySAT+RF, TGAT+RF, TGN+RF, GraphMixer+RF,
DyGFormer+RF, FreeDyG+RF, SLADE+RF
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Experiments

RQ1) Accuracy & Generalization

SPLASH outperforms other baselines in hode property prediction

* Including TGNNs without node features and TGNNs using random features

TGNN baselines B TGNN baselines with random features B SPLASH
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Experiments

RQ1) Accuracy & Generalization

SPLASH shows better generalization capabilities compared to other baselines

* As the distribution shift becomes more severe, the performance gap widens

TGNN baselines B TGNN baselines with random features B SPLASH
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RQ2) Efficiency & Scalability

SPLASH enables efficient and scalable node property prediction

Jongha Lee

Maintains a constant inference time per property query regardless of graph size

Experiments

Offers the best trade-off between performance and inference time
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Experiments

RQ3) Qualitative Analysis

SPLASH shows qualitatively better performance than other baselines
* In the Email EU dataset, which has a static class property, SPLASH generates the most

cohesive clusters for each class compared to other baselines
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Conclusion

Conclusion

o Github: https://github.com/jhsk777/SPLASH

 We propose SPLASH, a simple yet effective method for node property prediction in

edge streams under distribution shifts
v Fast & Lightweight: SPLASH uses only MLP layers, enabling fast inference

v’ Effective: SPLASH outperforms other baselines in node property prediction

v" Robust: SPLASH shows the smallest performance drop as the distribution shift intensifies
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