

Continuous CP Decomposition of Sparse Tensor Streams

Taehyung Kwon*

Inkyu Park*

Dongjin Lee

Kijung Shin

Roadmap

- Introduction <
- Problem Definition
- Proposed Method: SliceNStitch
 - Continuous Tensor Model
 - Optimization Algorithms
- Experiment Results
- Conclusions

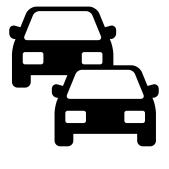
Tensors are Everywhere

Tensors

- Multi-dimensional arrays
- Powerful tools to represent multi-aspect data

Tensor Streams

• Tensor data are collected incrementally over time



(source, destination, 1)

Traffic history data

(user, product, quantity)

Purchase history data

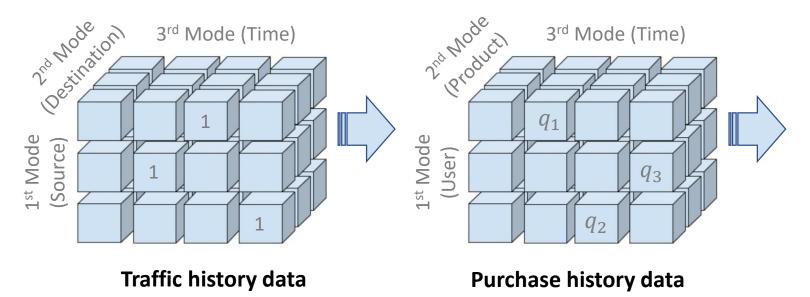
Tensors are Everywhere

Tensors

- Multi-dimensional arrays
- Powerful tools to represent multi-aspect data

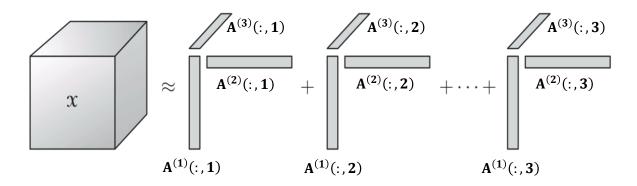
Tensor Streams

• Tensor data are collected incrementally over time



CP Decomposition

- CANDECOMP/PARAFAC (CP) decomposition
 - Low-rank approximation of the tensor
 - **Consider:** $\mathcal{X} \in \mathbb{R}^{N_1 \times \cdots \times N_M}$, rank R
 - To Find: factor matrices $A^{(1)}, \cdots, A^{(M)}$
 - Minimize: $\| \mathcal{X} \widetilde{\mathcal{X}} \|_{F}$ where $\widetilde{\mathcal{X}} \equiv \sum_{r=1}^{R} A^{(1)}(:, r) \circ \cdots \circ A^{(M)}(:, r)$



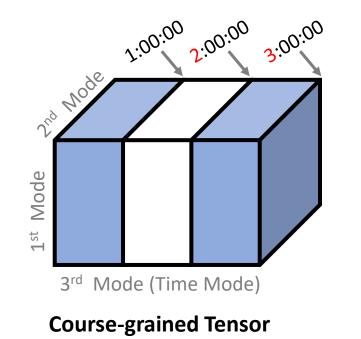
CP Decomposition

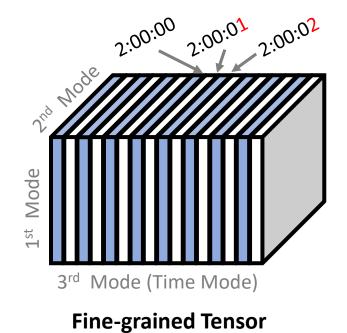
- Alternating Least Squares (ALS) [2]
 - Standard algorithm for computing CPD of static tensor
 - Input: static tensor $\mathcal{X} \in \mathbb{R}^{N_1 \times \cdots \times N_M}$, rank R
 - Initialize factor matrices $\{A^{(m)}\}_{m=1}^{M}$
 - While not converge:
 - For $m = 1, \cdots, M$:
 - $A^{(m)} \leftarrow \underset{A^{(m)}}{\operatorname{argmin}} \| \mathcal{X} \widetilde{\mathcal{X}} \|_{F}$ (least-squares problem)

• Output: factor matrices $\{A^{(m)}\}_{m=1}^{M}$

Limitations of Common Tensor Modeling

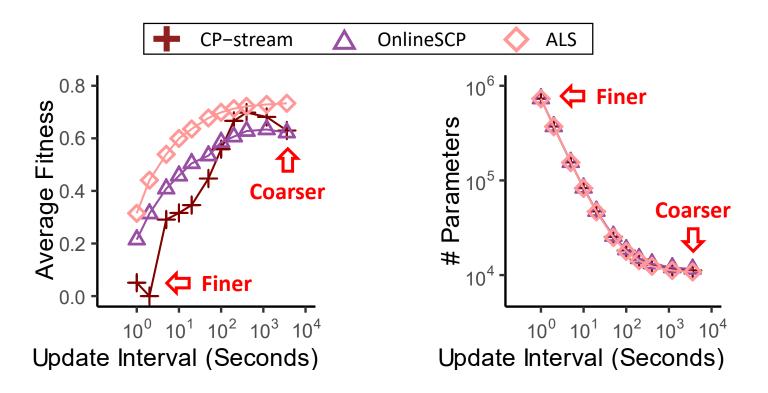
- Tensor streams grow once per period
 - Outputs of CPD are also updated once per period
- To perform CPD continuously for real-time application,
 - Granularity of the time mode must be extremely fine





Limitations of Common Tensor Modeling

- Problems of fine-grained tensor modelings
 - Degradation of fitness
 - Increase the number of parameters



In This Work

- We propose **SliceNStitch** for continuous CPD, which is fast, space-efficient, and accurate
 - New data model
 - Fast online algorithms

	Coarse-grained	Fine-grained	SliceNStitch (Proposed)
Update Interval	Long (🖓)	Short (Short (
Parameters	Few (👍)	Many (🖓)	Few (
Fitness	High (睂)	Low (卾)	High (睂)

<u>Remark</u>: This work has appeared at ICDE 2021 [1]

Roadmap

- Introduction
- Problem Definition <<
- Proposed Method: SliceNStitch
 - Continuous Tensor Model
 - Optimization Algorithms
- Experiment Results
- Conclusions

Problem Definition

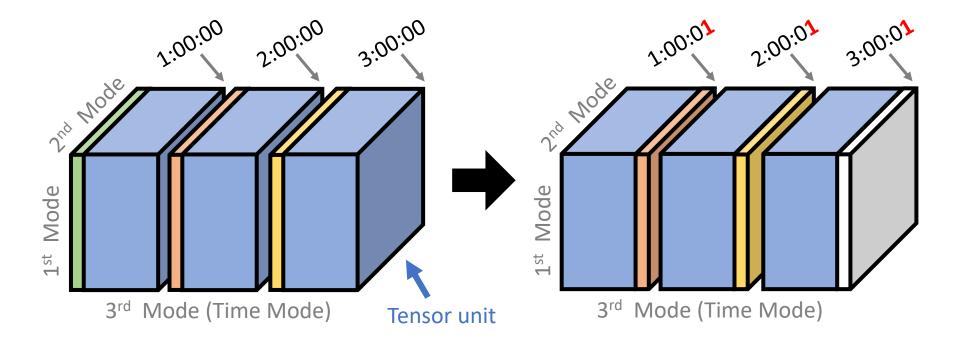
- Continuous CP decomposition
 - Given: a multi-aspect data stream
 - Update: CP decomposition instantly in response to each new event in the stream
 - Without: waiting for the current period to end

Roadmap

- Introduction
- Problem Definition
- Proposed Method: SliceNStitch
 - Continuous Tensor Model <
 - Optimization Algorithms
- Experiment Results
- Conclusions

Continuous Tensor Model

Tensor window and units evolve at each time

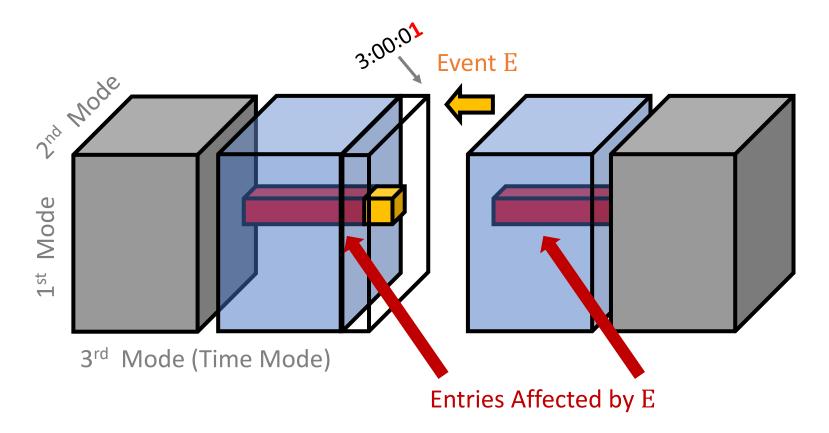


Tensor window at time 3:00:00

Tensor window at time 3:00:01

Event-driven Implementation

- Each single data causes an event:
 - Move the quantity to the next tensor unit ($\mathcal{X} \rightarrow \mathcal{X} + \Delta \mathcal{X}$)



Roadmap

- Introduction
- Problem Definition
- Proposed Method: SliceNStitch
 - Continuous Tensor Model
 - Optimization Algorithms <
- Experiment Results
- Conclusions

SliceNStitch-Matrix (SNS_{MAT})

- Factor matrices of previous window are good initial points
- Single iteration of ALS is enough to achieve high accuracy

• Input: (1) tensor $\mathcal{X} + \Delta \mathcal{X} \in \mathbb{R}^{N_1 \times \cdots \times N_M}$

(2) factor matrices $\{A^{(m)}\}_{m=1}^{M}$ of previous window \mathcal{X}

• For
$$m = 1, \dots, M$$
:

- $A^{(m)} \leftarrow \underset{A^{(m)}}{\operatorname{argmin}} \| (\mathcal{X} + \Delta \mathcal{X}) \widetilde{\mathcal{X}} \|_{F}$ (least-squares problem)
- Output: updated factor matrices $\{A^{(m)}\}_{m=1}^{M}$

SliceNStitch-Matrix (SNS_{MAT})

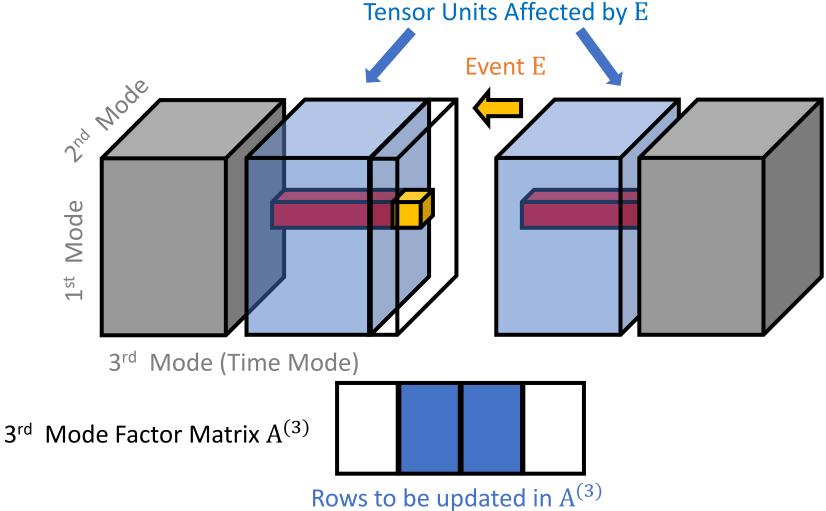
• Pros:

- High-quality solution, since it uses all non-zero entries
- Cons:
 - High computational cost, since it uses all non-zero entries <<

• Solution: Update <u>only the rows of factor matrices</u> which are used for approximating changed entries

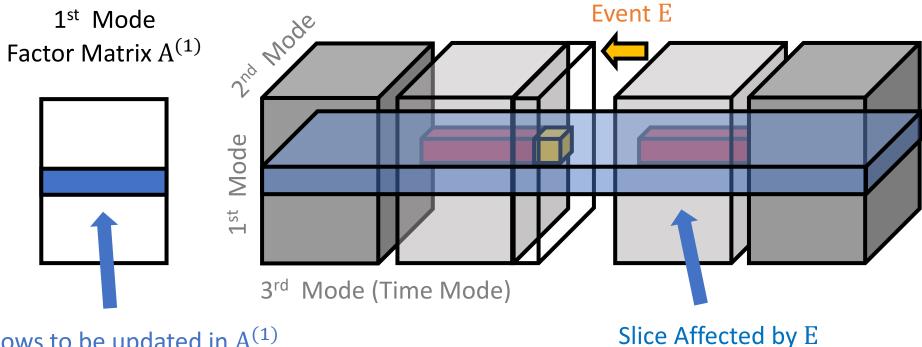
Outline of Improved Algorithms

• Update time mode factor matrix:



Outline of Improved Algorithms

• Update non-time mode factor matrices:



Rows to be updated in $A^{(1)}$

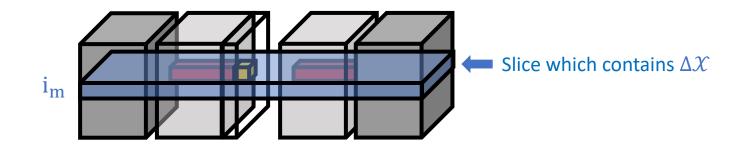
SliceNStitch-Vector (SNS_{VEC})

• Time mode:

- Approximate ${\mathcal X}$ as $\widetilde{{\mathcal X}}$ in the least squares solution
- Computational complexity $\propto NNZ(\Delta X)$

• Non-time mode:

- Approximate the least squares problem
- $\min_{\mathbf{A}^{(\mathbf{m})}} \left\| (\mathcal{X} + \Delta \mathcal{X}) \widetilde{\mathcal{X}} \right\|_{\mathbf{F}} \rightarrow \min_{\mathbf{A}^{(\mathbf{m})}(:,\mathbf{i}_{\mathbf{m}})} \left\| (\mathcal{X} + \Delta \mathcal{X}) \widetilde{\mathcal{X}} \right\|_{\mathbf{F}}$
- Computational complexity \propto NNZ(Slice which contains ΔX)



SliceNStitch-Vector (SNS_{VEC})

• Pros:

• Significantly faster than $\ensuremath{\mathsf{SNS}_\mathsf{MAT}}$

• Cons:

- Numerically unstable (: no normalization)
- Slow if many non-zeros are in the slice <<

 Solution: Use <u>random sampling</u> with smaller sample size if too many non-zeros are in the slice

SliceNStitch-Random (SNS_{RND})

• If NNZ(Slice contains ΔX) $\leq \theta$:

- Use SNS_{VEC}
- Otherwise:
 - Randomly select θ indices (= S) from the slice contains ΔX
 - Define $\overline{\mathcal{X}}_S$ s.t. $\widetilde{\mathcal{X}}(J) + \overline{\mathcal{X}}_S(J) = \begin{cases} \mathcal{X}(J), & \text{if } J \in S \\ \widetilde{\mathcal{X}}(J), & \text{otherwise : Approximation} \end{cases}$
 - Approximate \mathcal{X} as $\widetilde{\mathcal{X}} + \overline{\mathcal{X}}_S$ in the least squares solution of $\mathrm{SNS}_{\mathrm{VEC}}$
 - Computational complexity $\propto \theta$

SliceNStitch-Random (SNS_{RND})

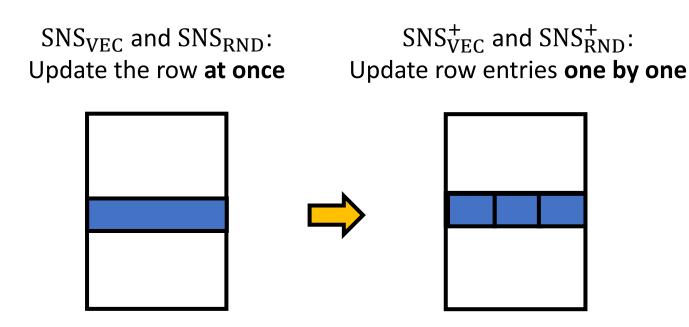
• Pros:

- Computational complexity is constant
- Cons:
 - Numerically unstable (∵ no normalization) <<

 Solution: Use <u>clipping</u> to prevent the extreme value which yields numerical instability

SliceNStitch-Stable (SNS^+_{VEC} , SNS^+_{RND})

- Update entries one by one
 - Clip each value if the absolute value is larger than $\boldsymbol{\eta}$



Roadmap

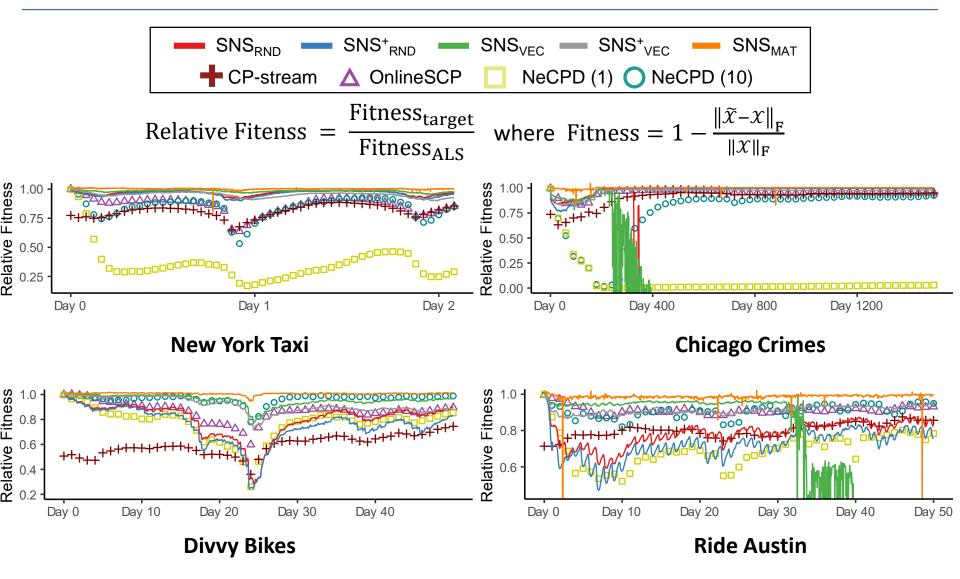
- Introduction
- Problem Definition
- Proposed Method: SliceNStitch
 - Continuous Tensor Model
 - Optimization Algorithms
- Experiment Results <<
- Conclusions

Experimental Settings

• 4 real-world sparse time series datasets

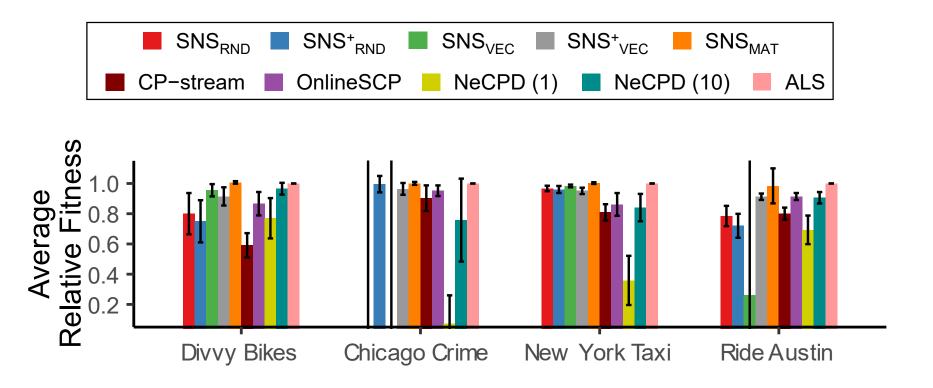
- 4 baselines that update CPD periodically
 - ALS [2], onlineSCP [3], CP-stream [4], NeCPD [5]

Exp 1. SliceNStitch is Accurate



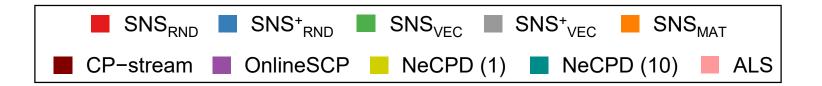
Exp 1. SliceNStitch is Accurate

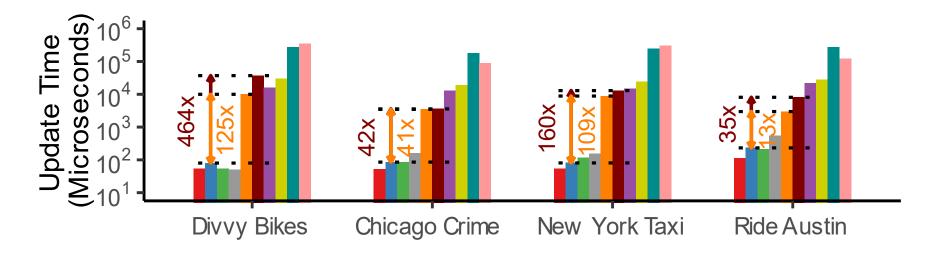
 SliceNStitch achieve 72 - 100% relative fitness compared to the most accurate baseline



Exp 2. SliceNStitch is Fast

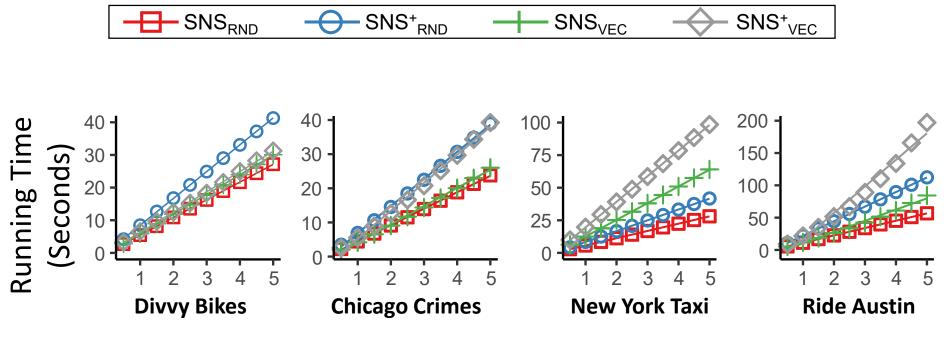
• SNS^+_{RND} is up to $464 \times faster$ than CP-stream





Exp 3. SliceNStitch is Scalable

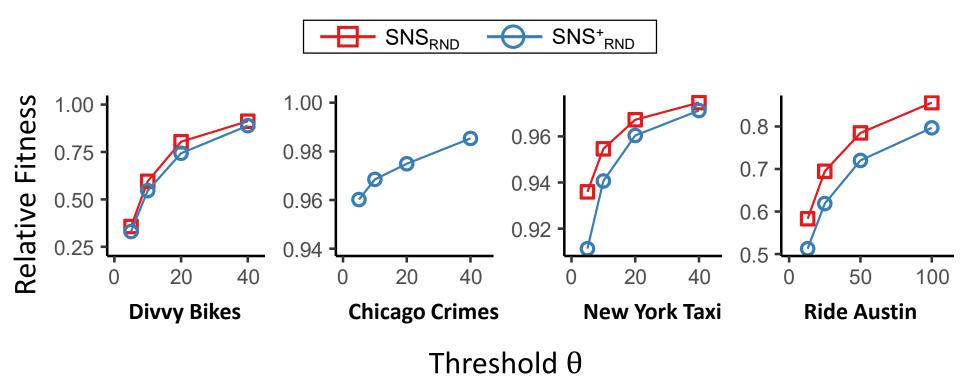
 Total runtime of SliceNStitch is linear in the number of events



The number of events ($\times 10^5$)

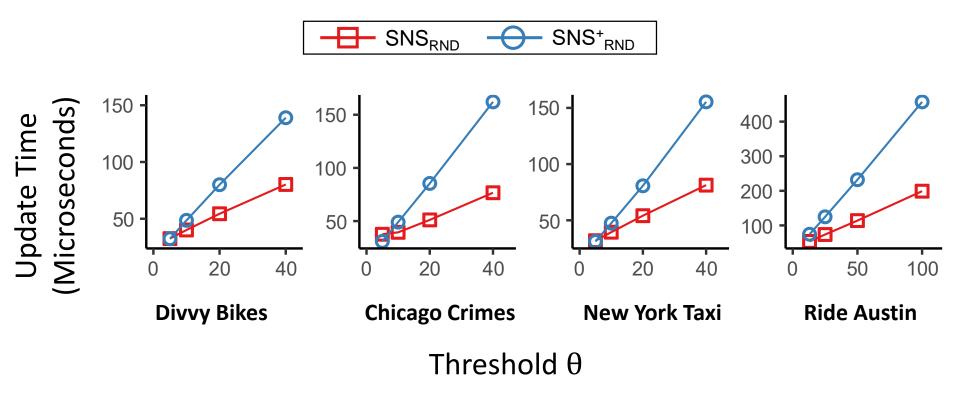
Exp 4. Effect of Sampling Threshold $\boldsymbol{\theta}$

- As θ increases,
 - Fitness increases with diminishing returns
 - Runtime grows linearly



Exp 4. Effect of Sampling Threshold $\boldsymbol{\theta}$

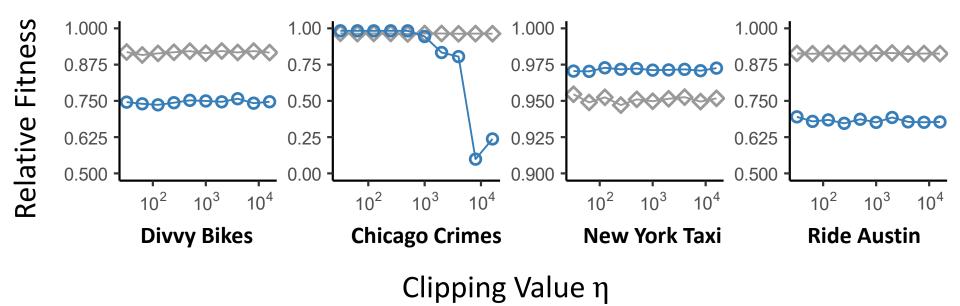
- As θ increases,
 - Fitness increases with diminishing returns
 - Runtime grows linearly



Exp 5. Effect of Clipping Value η

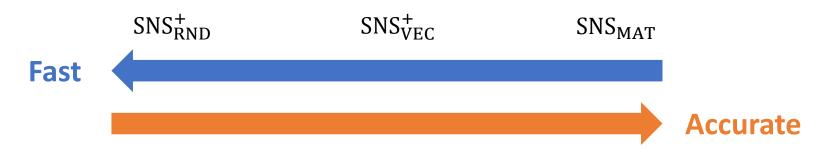
• Fitness is insensitive to η as long as η is small enough

$$-$$
 SNS⁺_{RND} $-$ SNS⁺_{VEC}



Practitioner's Guide

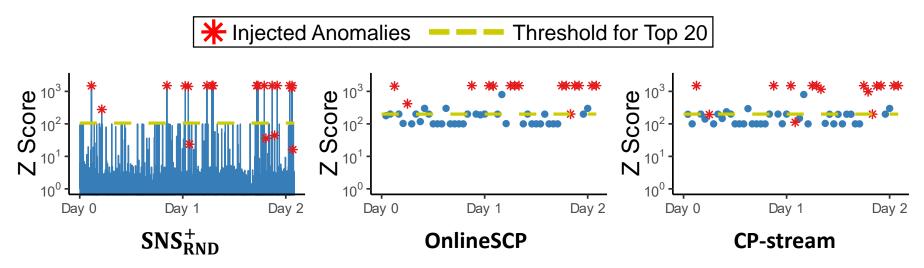
- We do not recommend $\mbox{SNS}_{\rm VEC}$ and $\mbox{SNS}_{\rm RND}$ due to instability issues
- We recommend using the most accurate version within your runtime budget



- If SNS^+_{RND} is chosen, increase the sampling threshold θ enough within your runtime budget

Application: Anomaly Detection

 SliceNStitch detects anomalies much faster with comparable accuracy



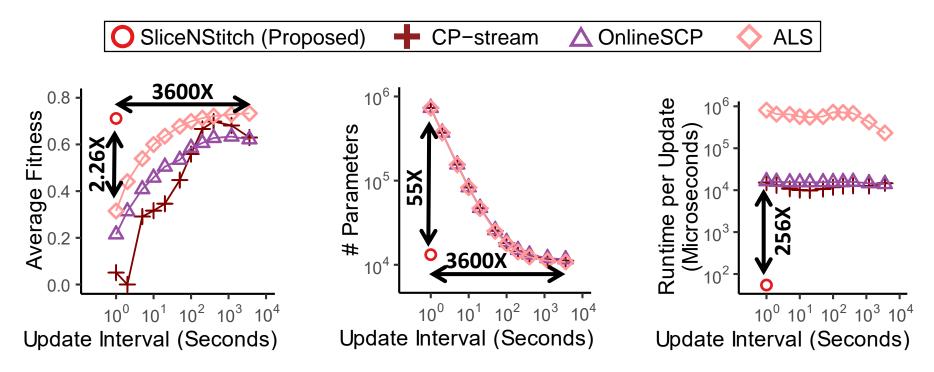
	Precision @ Top 20	Time Gap between Occurrence and Detection	
SNS ⁺ _{RND}	0.80	0.0015 sec	
OnlineSCP	0.80	1601.00 sec	
CP-stream	0.70	1424.57 sec	35 / 3

Roadmap

- Introduction
- Problem Definition
- Proposed Method: SliceNStitch
 - Continuous Tensor Model
 - Optimization Algorithms
- Experiment Results
- Conclusions <<

Conclusion

- We propose **SliceNStitch** for continuous CPD with
 - Near-instant updates
 - High fitness
 - Small number of parameters



References

[1] Taehyung Kwon*, Inkyu Park*, Dongjin Lee, and Kijung Shin, "SliceNStitch: Continuous CP Decomposition of Sparse Tensor Streams," in ICDE 2021.

[2] R. A. Harshman, "Parafac2: Mathematical and Technical Notes," UCLA Working Papers in Phonetics, vol. 22, 30-44, 1972.

[3] Shuo Zhou, Sarah M. Erfani, and James Bailey, "Online CP Decomposition for Sparse Tensors," in ICDM, 2018.

[4] Shaden Smith, Kejun Huang, Nicholas D. Sidiropoulos, and George Karypis, "Streaming Tensor Factorization for Infinite Data Sources," in SDM, 2018.

[5] Ali Anaissi, Basem Suleiman, and Seid Miad Zandavi, "NeCPD: An Online Tensor Decomposition with Optimal Stochastic Gradient Descent," arXiv preprint arXiv:2003.08844, 2020.