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Tensors are Everywhere

• Tensors
• Multi-dimensional arrays

• Powerful tools to represent multi-aspect data

• Tensor Streams
• Tensor data are collected incrementally over time

Traffic history data

(source, destination, 1)

Purchase history data

(user, product, quantity)
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CP Decomposition

• CANDECOMP/PARAFAC (CP) decomposition
• Low-rank approximation of the tensor

• Consider: 𝒳 ∈ ℝN1×⋯×NM , rank R

• To Find: factor matrices A 1 , ⋯ , A M

• Minimize: 𝒳 − ෩𝒳
F

where ෩𝒳 ≡ σr=1
R A 1 : , r ∘ ⋯ ∘ A M : , r

𝐀 𝟏 : , 𝟏 𝐀 𝟏 : , 𝟐 𝐀 𝟏 : , 𝟑

𝐀 𝟐 : , 𝟏

𝐀 𝟑 : , 𝟏

𝐀 𝟐 : , 𝟐 𝐀 𝟐 : , 𝟑

𝐀 𝟑 : , 𝟐 𝐀 𝟑 : , 𝟑
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CP Decomposition

• Alternating Least Squares (ALS) [2]
• Standard algorithm for computing CPD of static tensor
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• Input: static tensor 𝒳 ∈ ℝN1×⋯×NM, rank R

• Initialize factor matrices A m
m=1

M

• While not converge:

• For m = 1,⋯ ,M:

• A m ← argmin
A m

𝒳 − ෩𝒳
F

• Output: factor matrices A m
m=1

M

(least-squares problem)
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Limitations of Common Tensor Modeling

• Tensor streams grow once per period
• Outputs of CPD are also updated once per period

• To perform CPD continuously for real-time application,
• Granularity of the time mode must be extremely fine
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Limitations of Common Tensor Modeling

• Problems of fine-grained tensor modelings
• Degradation of fitness

• Increase the number of parameters
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In This Work

• We propose SliceNStitch for continuous CPD,

which is fast, space-efficient, and accurate

• New data model

• Fast online algorithms

9

Coarse-grained Fine-grained
SliceNStitch
(Proposed)

Update Interval Long (👎) Short (👍) Short (👍)

Parameters Few (👍) Many (👎) Few (👍)

Fitness High (👍) Low (👎) High (👍)

Remark: This work has appeared at ICDE 2021 [1]
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Problem Definition

• Continuous CP decomposition

• Given: a multi-aspect data stream

• Update: CP decomposition instantly in response to

each new event in the stream

• Without: waiting for the current period to end
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Continuous Tensor Model

• Tensor window and units evolve at each time

1
st

M
o

d
e

3rd Mode (Time Mode)
1

st
M

o
d

e
3rd Mode (Time Mode)

Tensor window at time 3:00:00 Tensor window at time 3:00:01

Tensor unit

13



/ 38

Event-driven Implementation

• Each single data causes an event:
• Move the quantity to the next tensor unit (𝒳 → 𝒳 + Δ𝒳)
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SliceNStitch-Matrix (𝐒𝐍𝐒𝐌𝐀𝐓)

• Factor matrices of previous window are good initial 
points

• Single iteration of ALS is enough to achieve high accuracy
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• Input: (1) tensor 𝒳 + Δ𝒳 ∈ ℝN1×⋯×NM

(2) factor matrices A m
m=1

M
of previous window 𝒳

• For m = 1,⋯ ,M:

• A m ← argmin
A m

𝒳 + Δ𝒳 − ෩𝒳
F

• Output: updated factor matrices A m
m=1

M

(least-squares problem)
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SliceNStitch-Matrix (𝐒𝐍𝐒𝐌𝐀𝐓)

• Pros:
• High-quality solution, since it uses all non-zero entries 

• Cons:
• High computational cost, since it uses all non-zero entries  <<

• Solution: Update only the rows of factor matrices

which are used for approximating changed entries
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Outline of Improved Algorithms

• Update time mode factor matrix:
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Outline of Improved Algorithms

• Update non-time mode factor matrices:
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SliceNStitch-Vector (𝐒𝐍𝐒𝐕𝐄𝐂)

• Time mode:

• Approximate 𝒳 as ෩𝒳 in the least squares solution

• Computational complexity ∝ NNZ(Δ𝒳)

• Non-time mode:
• Approximate the least squares problem

• min
A m

𝒳 + Δ𝒳 − ෩𝒳
F

→   min
A m :,im

𝒳 + Δ𝒳 − ෩𝒳
F

• Computational complexity ∝ NNZ(Slice which contains Δ𝒳)

20

Slice which contains Δ𝒳
im
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SliceNStitch-Vector (𝐒𝐍𝐒𝐕𝐄𝐂)

• Pros:
• Significantly faster than SNSMAT

• Cons:
• Numerically unstable  (∵ no normalization)

• Slow if many non-zeros are in the slice  <<

• Solution: Use random sampling with smaller sample size 
if too many non-zeros are in the slice

21
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SliceNStitch-Random (𝐒𝐍𝐒𝐑𝐍𝐃)

• If NNZ(Slice contains 𝚫𝓧) ≤ 𝛉:
• Use SNSVEC

• Otherwise:
• Randomly select θ indices (= S) from the slice contains Δ𝒳

• Define ഥ𝒳𝑆 s.t. ෩𝒳 J + ഥ𝒳S J = ൝
𝒳 J , if J ∈ S
෩𝒳 J , otherwise

• Approximate 𝒳 as ෩𝒳 + ഥ𝒳𝑆 in the least squares solution of 
SNSVEC

• Computational complexity ∝ θ

22

: Original tensor

: Approximation
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SliceNStitch-Random (𝐒𝐍𝐒𝐑𝐍𝐃)

• Pros:
• Computational complexity is constant

• Cons:
• Numerically unstable  (∵ no normalization)  <<

• Solution: Use clipping to prevent the extreme value 
which yields numerical instability
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SliceNStitch-Stable (𝐒𝐍𝐒𝐕𝐄𝐂
+ , 𝐒𝐍𝐒𝐑𝐍𝐃

+ )

• Update entries one by one
• Clip each value if the absolute value is larger than η

24

SNSVEC and SNSRND:
Update the row at once

SNSVEC
+ and SNSRND

+ :
Update row entries one by one
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Experimental Settings

• 4 real-world sparse time series datasets

• 4 baselines that update CPD periodically
• ALS [2], onlineSCP [3], CP-stream [4], NeCPD [5]

26
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Exp 1. SliceNStitch is Accurate
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Exp 1. SliceNStitch is Accurate

• SliceNStitch achieve 72 - 100% relative fitness compared 
to the most accurate baseline

28
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Exp 2. SliceNStitch is Fast

• SNSRND
+ is up to 464 × faster than CP-stream
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Exp 3. SliceNStitch is Scalable

• Total runtime of SliceNStitch is linear in the number of 
events
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Exp 4. Effect of Sampling Threshold 𝛉

• As θ increases,
• Fitness increases with diminishing returns

• Runtime grows linearly
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Exp 4. Effect of Sampling Threshold 𝛉

• As θ increases,
• Fitness increases with diminishing returns

• Runtime grows linearly
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Exp 5. Effect of Clipping Value 𝛈

• Fitness is insensitive to η as long as η is small enough 
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Practitioner’s Guide

• We do not recommend SNSVEC and SNSRND due to 
instability issues

• We recommend using the most accurate version within 
your runtime budget

• If SNSRND
+ is chosen, increase the sampling threshold θ

enough within your runtime budget

34

SNSRND
+ SNSVEC

+ SNSMAT

Fast

Accurate
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Precision @ Top 20
Time Gap between

Occurrence and Detection

SNSRND
+ 0.80 0.0015 sec

OnlineSCP 0.80 1601.00 sec

CP-stream 0.70 1424.57 sec

Application: Anomaly Detection

• SliceNStitch detects anomalies much faster with 
comparable accuracy

35
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Conclusion

• We propose SliceNStitch for continuous CPD with
• Near-instant updates

• High fitness

• Small number of parameters

37

CP−stream OnlineSCP ALSSliceNStitch (Proposed)
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