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Introduction

Anomalies in Real-world Networks

In real-world networks, various anomalies exist and harm normal users
« Account hijackers in social media

« Spammers in email networks

 Fraudsters in financial networks
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Introduction Problem Description Proposed Method Experiments Conclusion

Challenge 1. Time Delay in Detection

In anomaly detection, detection time delay can cause severe damage

« We should minimize the detection time delay to take proper action immediately
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Introduction

Challenge 2. Dynamically Changing States

The state of users in real-world networks can change over time
« For example, a state can be either normal or abnormal

«  We need more complicated models to detect complex dynamic anomalies
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Introduction

Challenge 3. Absence of Anomaly Labels

Anomaly labels might be absent in the observable input graph

«  We require models that can be trained without label supervision

Ground Truth Labels Input Graph

(Unobservable) (Observable)

Jongha Lee SLADE: Dynamic Anomaly Detection in Edge Streams without Labels via Self-Supervised Learning



Contents

* Introduction

* Problem Description

* Proposed Method: SLADE ./\
- Experimental Results ./

 Conclusion

Jongha Lee SLADE: Dynamic Anomaly Detection in Edge Streams without Labels via Self-Supervised Learning



Introduction Problem Description Proposed Method Experiments Conclusion

Problem Definition

Dynamic Anomaly Detection in Edge Streams
« To classify the current dynamic status of the actor node in edge streams
« The actor node refers to the node that performs an action within the edge

« The dynamic status can be either normal or abnormal
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Problem Description

Our Graph Model: CTDG

Continuous Time Dynamic Graph (CTDG)
« The input graph is incrementally updated by each newly arriving edge with its timestamp

« Allows for incremental anomaly detection to minimize time delay
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Introduction Problem Description Proposed Method Experiments Conclusion

Proposed Method: SLADE

Self-supervised Learning for Anomaly Detection in Edge Streams
* Incremental method to minimize time delay

« Dynamic representation of interaction patterns
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Proposed Method: SLADE

Self-supervised Learning for Anomaly Detection in Edge Streams
* Incremental method to minimize time delay

« Dynamic representation of interaction patterns
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Proposed Method

Proposed Method: SLADE

Self-supervised Learning for Anomaly Detection in Edge Streams
* Incremental method to minimize time delay
« Dynamic representation of interaction patterns

« Self-supervised learning without label supervision
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Introduction Problem Description Proposed Method Experiments Conclusion

Assumptions for Nodes in a Normal state

A1. Stable Long-term Interaction Patterns
« Repetitively engage in similar interactions over a long-term period

« Show stable long-term interaction patterns in a temporal aspect
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Proposed Method

Assumptions for Nodes in a Normal state

A2. Potential for Restoration of Patterns
 Easily restore the long-term interaction patterns using recent interaction information

« Show structural similarities between long-term and short-term interaction patterns
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Proposed Method

SLADE: (1) Self-supervised Tasks

S1. Temporal Contrast

« Aligns with A1 (stable long-term interaction patterns)

« To minimize drift in dynamic node representations within short-time periods
S2. Memory Generation

« Aligns with A2 (potential for restoration of patterns)

« To generate dynamic node representations based on recent interactions
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Introduction Problem Description Proposed Method Experiments Conclusion

SLADE: (2) Model Architecture

Module1. Memory Module

- Time-evolving parameter vectors representing the long-term interaction patterns
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Proposed Method

SLADE: (2) Model Architecture

Module2. Memory Updater
« To update its memory vector whenever a node participates in a new interaction

« Through this process, the long-term interaction patterns can be stored in memory
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Proposed Method

SLADE: (2) Model Architecture

Module3. Memory Generator
- To generate the memory vectors based on recent interactions after masking

« Generated memory represents short-term interaction patterns of a node
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Proposed Method

SLADE: (3) Training Objective

Temporal Contrast Loss

« To minimize drift in memories within a short time interval for S1 (temporal contrast)
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Proposed Method

SLADE: (4) Anomaly Scoring

Temporal Contrast Score

« How much each node deviates from A1 (stable long-term interaction patterns)

v" How well the model performs S1 (temporal contrast) task for each node

Memory Generation Score

« How much each node deviates from A2 (potential for restoration of patterns)

v" How well the model performs S2 (memory generation) task for each node
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Introduction Problem Description Proposed Method Experiments Conclusion

Research Questions

RQ1) Accuracy

v" How accurately does SLADE detect anomalies, compared to other baselines?
RQ2) Speed

v Does SLADE exhibit a detection speed constant with respect to the graph size?
RQ3) Type Analysis

v Can SLADE accurately detect various types of anomalies?
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Experiments

Experimental Settings

Datasets
v’ 2 social networks (Wikipedia, Reddit)
v 2 financial networks (Bitcoin-alpha, Bitcoin-OTC)

v 2 email networks (Email-EU) with anomaly injection
Baselines

v Unsupervised: 4 rule-based methods (SedanSpot, MIDAS-R, F-FADE, Anoedge-I)
v" Supervised: 5 neural network-based methods (JODIE, Dyrep, TGAT, TGN, SAD)

Jongha Lee SLADE: Dynamic Anomaly Detection in Edge Streams without Labels via Self-Supervised Learning



Experiments

RQ1) Accuracy

SLADE outperforms other baselines in dynamic anomaly detection

* Including unsupervised methods and supervised methods relying on label supervision

B Unsupervised baselines Il SLADE (with fixed hyperparameters)
SLADE (with optimal hyperparameters in validation)
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Experiments

RQ2) Speed

SLADE minimize the detection time delay based on an incremental algorithm
« Maintains a constant inference time per edge regardless of graph size

« Offers the best trade-off between performance and inference time
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Experiments

RQ3) Type Analysis

T1. Hijacked Anomalies (deviate from A1 and A2)
T2. New or Rarely-interacting Anomalies (deviate from A1 and A2)

T3. Consistent Anomalies (deviate from A2)

Hijacked Anomalies New Anomalies Consistent Anomalies
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Experiments

RQ3) Type Analysis

SLADE can effectively detect below anomaly types without label supervision

« Normal Nodes (blue)
« T1. Hijacked Anomalies ( )

« T2. New or Rarely Interacting Anomalies (green)

« T3. Consistent Anomalies (red)
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Conclusion

Conclusion

We propose SLADE for the rapid detection of dynamic anomalies in edge

streams, without relying on labels

v Unsupervised: SLADE can detect dynamic anomalies without label supervision

v Effective: SLADE outperforms other baselines in dynamic anomaly detection

v" Constant Inference Speed: SLADE requires a constant inference time per edge
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