
SLADE: Dynamic Anomaly Detection in Edge Streams 

without Labels via Self-Supervised Learning

Sunwoo KimJongha Lee Kijung Shin



SLADE: Dynamic Anomaly Detection in Edge Streams without Labels via Self-Supervised LearningJongha Lee

Anomalies in Real-world Networks
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Conclusion                    Introduction Problem Description Proposed Method Experiments

In real-world networks, various anomalies exist and harm normal users

• Account hijackers in social media

• Spammers in email networks

• Fraudsters in financial networks
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Challenge 1. Time Delay in Detection 
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In anomaly detection, detection time delay can cause severe damage

• We should minimize the detection time delay to take proper action immediately
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Challenge 2. Dynamically Changing States 
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The state of users in real-world networks can change over time

• For example, a state can be either normal or abnormal

• We need more complicated models to detect complex dynamic anomalies
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Challenge 2. Dynamically Changing States 
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The state of users in real-world networks can change over time

• For example, a state can be either normal or abnormal

• We need more complicated models to detect complex dynamic anomalies
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Challenge 3. Absence of Anomaly Labels 

Input Graph

(Observable)

Ground Truth Labels

(Unobservable)
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Anomaly labels might be absent in the observable input graph

• We require models that can be trained without label supervision
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Problem Definition

Time
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Dynamic Anomaly Detection in Edge Streams

• To classify the current dynamic status of the actor node in edge streams

• The actor node refers to the node that performs an action within the edge

• The dynamic status can be either normal or abnormal
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Our Graph Model: CTDG

9

Conclusion                    Introduction Problem Description Proposed Method Experiments

Continuous Time Dynamic GraphEdge Stream
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Continuous Time Dynamic Graph (CTDG)

• The input graph is incrementally updated by each newly arriving edge with its timestamp

• Allows for incremental anomaly detection to minimize time delay
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Proposed Method: SLADE
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Self-supervised Learning for Anomaly Detection in Edge Streams

• Incremental method to minimize time delay

• Dynamic representation of interaction patterns
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Proposed Method: SLADE
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Self-supervised Learning for Anomaly Detection in Edge Streams

• Incremental method to minimize time delay

• Dynamic representation of interaction patterns
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Proposed Method: SLADE
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Self-supervised Learning for Anomaly Detection in Edge Streams

• Incremental method to minimize time delay

• Dynamic representation of interaction patterns

• Self-supervised learning without label supervision
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Assumptions for Nodes in a Normal state
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A1. Stable Long-term Interaction Patterns

• Repetitively engage in similar interactions over a long-term period 

• Show stable long-term interaction patterns in a temporal aspect
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Assumptions for Nodes in a Normal state

t100

t101
t102

t1,t5,…

t2,t11,… t3,t6,…
≈

15

Conclusion                    Introduction Problem Description Proposed Method Experiments

A2. Potential for Restoration of Patterns

• Easily restore the long-term interaction patterns using recent interaction information

• Show structural similarities between long-term and short-term interaction patterns
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SLADE: (1) Self-supervised Tasks

t

t-1

t-2

tt-1

t-1

16

Conclusion                    Introduction Problem Description Proposed Method Experiments

S1. Temporal Contrast

• Aligns with A1 (stable long-term interaction patterns)

• To minimize drift in dynamic node representations within short-time periods 

S2. Memory Generation

• Aligns with A2 (potential for restoration of patterns)

• To generate dynamic node representations based on recent interactions 
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SLADE: (2) Model Architecture
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Module1. Memory Module

• Time-evolving parameter vectors representing the long-term interaction patterns
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SLADE: (2) Model Architecture
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Module2. Memory Updater

• To update its memory vector whenever a node participates in a new interaction

• Through this process, the long-term interaction patterns can be stored in memory
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SLADE: (2) Model Architecture
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Module3. Memory Generator

• To generate the memory vectors based on recent interactions after masking

• Generated memory represents short-term interaction patterns of a node
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SLADE: (3) Training Objective

20

Conclusion                    Introduction Problem Description Proposed Method Experiments

Temporal Contrast Loss

• To minimize drift in memories within a short time interval for S1 (temporal contrast) 

Memory Generation Loss

• To accurately generate memories from recent interactions for S2 (memory generation) 
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SLADE: (4) Anomaly Scoring
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Temporal
Contrast

Memory
Generation

Temporal Contrast Score

• How much each node deviates from A1 (stable long-term interaction patterns)

✓ How well the model performs S1 (temporal contrast) task for each node

Memory Generation Score

• How much each node deviates from A2 (potential for restoration of patterns)

✓ How well the model performs S2 (memory generation) task for each node
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Research Questions
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RQ1) Accuracy

✓ How accurately does SLADE detect anomalies, compared to other baselines?

RQ2) Speed

✓ Does SLADE exhibit a detection speed constant with respect to the graph size?

RQ3) Type Analysis

✓ Can SLADE accurately detect various types of anomalies?
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Experimental Settings
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Datasets

✓ 2 social networks (Wikipedia, Reddit)

✓ 2 financial networks (Bitcoin-alpha, Bitcoin-OTC)

✓ 2 email networks (Email-EU) with anomaly injection 

Baselines

✓ Unsupervised: 4 rule-based methods (SedanSpot, MIDAS-R, F-FADE, Anoedge-l)

✓ Supervised: 5 neural network-based methods (JODIE, Dyrep, TGAT, TGN, SAD)
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RQ1) Accuracy
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SLADE outperforms other baselines in dynamic anomaly detection

• Including unsupervised methods and supervised methods relying on label supervision

Unsupervised baselines SLADE (with fixed hyperparameters)

SLADE (with optimal hyperparameters in validation)
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RQ1) Accuracy
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SLADE outperforms other baselines in dynamic anomaly detection

• Including unsupervised methods and supervised methods relying on label supervision

Supervised baselines SLADE (with fixed hyperparameters)

SLADE (with optimal hyperparameters in validation)
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RQ2) Speed
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SLADE minimize the detection time delay based on an incremental algorithm

• Maintains a constant inference time per edge regardless of graph size

• Offers the best trade-off between performance and inference time

SLADE

Better

Baselines
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RQ3) Type Analysis
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Hijacked Anomalies New Anomalies Consistent Anomalies

T1. Hijacked Anomalies (deviate from A1 and A2)

T2. New or Rarely-interacting Anomalies (deviate from A1 and A2)

T3. Consistent Anomalies (deviate from A2)
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RQ3) Type Analysis
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Synthetic-Hijack Synthetic-New

SLADE can effectively detect below anomaly types without label supervision

• Normal Nodes (blue)

• T1. Hijacked Anomalies (yellow)

• T2. New or Rarely Interacting Anomalies (green)

• T3. Consistent Anomalies (red)
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Paper: https://doi.org/10.1145/3637528.3671845 Github: https://github.com/jhsk777/SLADE 

We propose SLADE for the rapid detection of dynamic anomalies in edge 

streams, without relying on labels

✓ Unsupervised: SLADE can detect dynamic anomalies without label supervision

✓ Effective: SLADE outperforms other baselines in dynamic anomaly detection

✓ Constant Inference Speed: SLADE requires a constant inference time per edge


