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Similarity Between Sets is Used Everywhere

• Similarity between sets has been employed in many areas:

• Recommendation

• Graph compression

• Medical analysis

• Other examples include plagiarism detection and gene expression.
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Do two MRI images have 
similar keypoints?
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Why Do We Embed Sets?

• Sets grow in numbers and sizes. 

• E.g., 1. Millions of users rate tens of thousands of movies.

• E.g., 2. Many nodes in graphs have thousands of neighbors. 

→ Computation of set similarity requires substantial storage and time.

How can we represent sets accurately, concisely, and fast?
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Similarity Preserving Set Embedding

• Given: (1) a set 𝑆 of sets and (2) a budget 𝑏

• Find: a latent representation 𝑧𝑠 of each set 𝑠 ∈ 𝑆

• to Minimize: 𝑠𝑖𝑚 𝑠, 𝑠′ − ෢𝑠𝑖𝑚 𝑧𝑠, 𝑧𝑠′

• Subject to: the total encoding cost 𝐶𝑜𝑠𝑡 𝑧𝑠: 𝑠 ∈ 𝑆 ≤ 𝑏

• Desired to: compute set similarity in a constant time

Set of Sets Embedding Space
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Similarity Preserving Set Embedding (cont.)

• There are diverse set similarity measures.

• It is desirable to be used for various similarity measures. 

Similarity of Pair 𝑨,𝑩 of Sets

Jaccard Index
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵

Overlap Coefficient
𝐴 ∩ 𝐵

min 𝐴 , 𝐵

Dice Index
2 ⋅ 𝐴 ∩ 𝐵

𝐴 + 𝐵

Cosine Similarity
𝐴 ∩ 𝐵

𝐴 ⋅ 𝐵

Versatility
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Roadmap

1. Concepts

2. Basic Method: Set2Box

3. Advanced Method: Set2Box+

4. Experimental Results

5. Conclusion
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Box Embedding

• Set2Box is an accurate algorithm for similarity preserving set embedding.

• We represent sets as boxes (ranges) instead of vectors (points).

Box Embedding (Set2Box)

Box 𝑩𝑿 of set 𝑋

Box 𝑩𝒀 of set 𝑌

Vector 𝑉𝑋 of set 𝑋

Vector 𝑉𝑌 of set 𝑌

Vector Embedding
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Box Embedding (cont.)

𝑩𝑿 = 𝒄𝑿, 𝒇𝑿
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3
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𝑴𝑿 ∈ ℝ𝒅

𝒎𝑿 ∈ ℝ𝒅

𝒄𝑿 ∈ ℝ𝒅

A box 𝑩𝑿 consists of two vectors:

• Center 𝒄𝑿 = 4,3

• Offset 𝒇𝑿 = 3,2

From 𝑐𝑋 and 𝑟𝑋, we can obtain min/max vectors:

• Min point 𝒎𝑿 = 𝒄𝑿 − 𝒇𝑿 = 1,1

• Max point 𝑴𝑿 = 𝒄𝑿 + 𝒇𝑿 = 7,5

The volume of the box is computed by:

𝕍 𝑩𝑿 = ς𝒊=𝟏
𝒅 𝑴𝑿 𝒊 − 𝒎𝑿 𝒊 = 6 ⋅ 4 = 24321 5 6 70
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Box Embedding (cont.)
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𝐵𝑋 = 𝑐𝑋, 𝑓𝑋

𝐵𝑌 = 𝑐𝑌, 𝑓𝑌

𝐵𝑋 ∩ 𝐵𝑌

The min/max vectors of box 𝐵𝑌 are:

• Min point 𝒎𝒀 = 𝒄𝒀 − 𝒇𝒀 = 2,1

• Max point 𝑴𝒀 = 𝒄𝒀 + 𝒇𝒀 = 6,5

The min/max vectors of box 𝐵𝑋 are:

• Min point 𝒎𝑿 = 𝒄𝑿 − 𝒇𝑿 = 1,4

• Max point 𝑴𝑿 = 𝒄𝑿 + 𝒇𝑿 = 5,6

The min/max vectors of box 𝐵𝑋 ∩ 𝐵𝑌 are:

• Min point 𝒎𝑿∩𝒀 = 𝐦𝐚𝐱 𝒎𝑿,𝒎𝒀 = 2,4

• Max point 𝑴𝑿∩𝒀 = 𝐦𝐢𝐧 𝑴𝑿, 𝑴𝒀 = 5,5
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Box Embedding (cont.)

1.   Transitivity Law 𝐴 ⊂ 𝐵, 𝐵 ⊂ 𝐶 → 𝐴 ⊂ 𝐶

2.   Idempotent Law
𝐴 ∪ 𝐴 = 𝐴
𝐴 ∩ 𝐴 = 𝐴

3.   Commutative Law
𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴
𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴

4.   Associative Law
𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 ∪ 𝐵 ∪ 𝐶
𝐴 ∩ 𝐵 ∩ 𝐶 = 𝐴 ∩ 𝐵 ∩ 𝐶

5.   Absorption Law
𝐴 ∪ 𝐴 ∩ 𝐵 = 𝐴
𝐴 ∩ 𝐴 ∪ 𝐵 = 𝐴

6.   Distributive Law
𝐴 ∩ 𝐵 ∪ 𝐶 = 𝐴 ∩ 𝐵 ∪ 𝐴 ∩ 𝐶
𝐴 ∪ 𝐵 ∩ 𝐶 = 𝐴 ∪ 𝐵 ∩ 𝐴 ∪ 𝐶

• Several set operations hold in box embedding. 

ConclusionExperimental ResultsAdvanced MethodConcepts Basic MethodIntroduction
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Roadmap
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Set2Box: Representing Sets as Boxes

• We learn a pair of embedding matrices of entities 𝓔:

• 𝑸𝐜 ∈ ℝ 𝓔 ×𝒅: centers of entities

• 𝑸𝐟 ∈ ℝ 𝓔 ×𝒅: offsets of entities

• We aggregate (i.e., pool) entities’ embeddings to obtain the box 𝐵𝑠 of the set 𝑠.

𝑸𝐜

𝑸𝒇

Latent Space (ℝ𝑑)

Box 𝐵𝑠

center 𝒄𝒔

offset 𝒇𝒔

a
b
c

e
d

a
b
c
d
e

Set 𝑠 = b, c, e
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Set2Box: Representing Sets as Boxes (cont.)

• We aim to preserve relations among triple {s1, s2, s3} of sets.

• Preserve the cardinalities of the subsets by the volumes of the boxes. 

Latent Space (ℝ𝑑)

Box 𝐵𝑠1

1

2 3

4

5

67

Set s1

Box 𝐵𝑠2 Box 𝐵𝑠3Set s3Set s2
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5
67
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Set2Box: Representing Sets as Boxes (cont.)

• We aim to preserve relations among triple {s1, s2, s3} of sets.

• Learn the relative sizes of the following seven subsets:

|s1|, |s2|, |s3|, |s1∩s2|, |s2∩s3|, |s3∩s1|, and |s1∩s2∩s3|

• The objective is to preserve the sizes by the box volumes:

Singlewise overlaps Pairwise overlaps Triplewise overlap

𝑠1 ∝ 𝕍 𝑩𝒔𝟏

𝑠2 ∝ 𝕍 𝑩𝒔𝟐

𝑠3 ∝ 𝕍 𝑩𝒔𝟑

𝑠1 ∩ 𝑠2 ∝ 𝕍 𝑩𝒔𝟏 ∩ 𝑩𝒔𝟐

𝑠2 ∩ 𝑠3 ∝ 𝕍 𝑩𝒔𝟐 ∩ 𝑩𝒔𝟑

𝑠3 ∩ 𝑠1 ∝ 𝕍 𝑩𝒔𝟑 ∩ 𝑩𝒔𝟏

𝑠1 ∩ 𝑠2 ∩ 𝑠3 ∝ 𝕍 𝑩𝒔𝟏 ∩ 𝑩𝒔𝟐 ∩ 𝑩𝒔𝟑

MSE Loss

ConclusionExperimental ResultsAdvanced MethodConcepts Basic MethodIntroduction
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Set2Box+: Even More Concise & Accurate

• We propose Set2Box+ to derive better conciseness and accuracy.

• Set2Box+ consists of two effective schemes:

❑ Box quantization makes boxes more concise. 

❑ Joint training improves the accuracy.

ConclusionExperimental ResultsAdvanced MethodConcepts Basic MethodIntroduction
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Set2Box+: Even More Concise & Accurate (cont.)

• Box quantization (BQ) compresses boxes. 

• Divide the box 𝐵 ∈ ℝ𝑑 into 𝑫 subspaces where each dimension is ℝ𝑑/𝐷.

• In each subspace, there are 𝑲 key boxes.

𝑑-dimensional original box

2 3 1 3𝑏 =

𝐷-dimensional discrete vector

෨𝐵 =

𝑑-dimensional reconstructed box

𝒏 ⋅ 𝑫 ⋅ 𝐥𝐨𝐠𝟐𝑲 bits

Subspace 1 (ℝ
𝑑

𝐷) Subspace 2 (ℝ
𝑑

𝐷)

Subspace 3 (ℝ
𝑑

𝐷) Subspace 4 (ℝ
𝑑

𝐷)

𝟐 ⋅ 𝑫 ⋅ 𝑲 ⋅ 𝟑𝟐 ⋅ 𝒅 bits

𝟐 ⋅ 𝟑𝟐 ⋅ 𝒅 bits

𝐵 =
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Set2Box+: Even More Concise & Accurate (cont.)

• Box quantization (BQ) compresses boxes. 

• To encode 𝒏 number of 𝒅-dimensional boxes:

(Original) 𝟔𝟒𝒏𝒅 bits ≫ (BQ) 𝟔𝟒𝑫𝑲𝒅 + 𝒏𝑫 𝐥𝐨𝐠𝟐𝑲 bits

𝑑-dimensional original box

2 3 1 3𝑏 =
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𝒏 ⋅ 𝑫 ⋅ 𝐥𝐨𝐠𝟐𝑲 bits
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෨𝐵 =

𝑑-dimensional reconstructed box
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Set2Box+: Even More Concise & Accurate (cont.)

• How does box quantization find the closest key box? 

ConclusionExperimental ResultsAdvanced MethodConcepts Basic MethodIntroduction

𝟐 = argmax
𝑖

𝐁𝐎𝐑 𝑥 2 , 𝐾𝑖
2

To compute box similarities, we define Box Overlap Ratio:

𝐁𝐎𝐑 𝐵𝑋 , 𝐵𝑌 =
1

2

𝕍 𝐵𝑋 ∩ 𝐵𝑌
𝕍 𝐵𝑋

+
𝕍 𝐵𝑋 ∩ 𝐵𝑌
𝕍 𝐵𝑌
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Set2Box+: Even More Concise & Accurate (cont.)

• An overview of box quantization (BQ).

• 𝓛: Similarity preserving MSE loss

ConclusionExperimental ResultsAdvanced MethodConcepts Basic MethodIntroduction
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Speed of Set2Box+

• Set2Box+ computes estimated set similarity sets in a constant time.

ConclusionExperimental ResultsAdvanced MethodConcepts Basic MethodIntroduction

Lemma (Time Complexity of Similarity Estimation)

Given a pair of sets 𝑠 and 𝑠′ and their boxes 𝐵𝑠 and 𝐵𝑠′, respectively, it takes 𝑶 𝒅

time to compute the estimated similarity ෢sim 𝐵𝑠, 𝐵𝑠′ , where 𝒅 is a user-defined 

constant that does not depend on the sizes of 𝑠 and 𝑠′.
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Other Details

• In the paper, you can find:

✓ Set context pooling

✓ End-to-end discrete code learning

✓ Joint training original and reconstructed boxes

✓ Box smoothing for effective learning

ConclusionExperimental ResultsAdvanced MethodConcepts Basic MethodIntroduction
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1. Concepts

2. Basic Method: Set2Box

3. Advanced Method: Set2Box+

4. Experimental Results

5. Conclusion
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Accuracy & Conciseness of Set2Box+

• Set2Box+ preserves set similarities most accurately compared to baselines.

• Set2Box+ gives up to 40.8X smaller estimation error 

while requiring about 60% fewer bits to encode sets.
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Accuracy & Conciseness of Set2Box+ (cont.)

• For example, Set2Box+ preserves the Overlap Coefficient between sets more 

accurately with smaller encoding cost.
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Effects of Box Quantization & Joint Training

• We compare following variants:

• Set2Box-PQ: Product quantization for center & offset

• Set2Box-BQ: Box quantization without joint training

• Set2Box+: The proposed method with box quantization and joint training

ConclusionExperimental ResultsAdvanced MethodConcepts Basic MethodIntroduction

Box quantization and joint training of Set2Box+ incrementally 
improves the accuracy (in terms of MSE) averaged over all datasets.



Simple Epidemic Models with Segmentation Can Be Better than Complex OnesI 2021 36ICDM 2022 Set2Box: Similarity Preserving Representation Learning of Sets

Roadmap

1. Concepts

2. Basic Method: Set2Box

3. Advanced Method: Set2Box+

4. Experimental Results

5. Conclusion

ConclusionExperimental ResultsAdvanced MethodConcepts Basic MethodIntroduction



Simple Epidemic Models with Segmentation Can Be Better than Complex OnesI 2021 37ICDM 2022 Set2Box: Similarity Preserving Representation Learning of Sets

Conclusion

• We propose Set2Box+, an effective and efficient representation learning method 

for preserving similarities between sets.

Code & datasets: https://github.com/geon0325/Set2Box

Set2Box+ is:

✓ Accurate: yields smaller estimation error while requiring smaller encoding cost.

✓ Concise: requires smaller encoding cost to achieve the same performance.

✓ Fast: computes set similarities in a constant time.

✓ Versatile: estimates various set similarity measures with a single set embedding.

ConclusionExperimental ResultsAdvanced MethodConcepts Basic MethodIntroduction
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