Set2Box: Similarity Preserving Representation Learning of Sets

Geon Lee
Chanyoung Park
Kijung Shin
Similarity Between Sets is Used Everywhere

- **Similarity between sets** has been employed in many areas:
 - Recommendation
 - Graph compression
 - Medical analysis
 - Other examples include plagiarism detection and gene expression.

Do user A and user B have similar preferences?

Do node 3 and node 4 have similar sets of neighbors? Should we merge them as a supernode?

Do two MRI images have similar keypoints?
Similarity Between Sets is Used Everywhere

- **Similarity between sets** has been employed in many areas:
 - Recommendation
 - **Graph compression**
 - Medical analysis
 - Other examples include *plagiarism detection* and *gene expression*.

Introduction

- Do user A and user B have similar preferences?
 - User A
 - User B

- Do node 3 and node 4 have similar sets of neighbors? Should we merge them as a supernode?

- Do two MRI images have similar keypoints?
Similarity Between Sets is Used Everywhere

- **Similarity between sets** has been employed in many areas:
 - Recommendation
 - Graph compression
 - **Medical analysis**
 - Other examples include plagiarism detection and gene expression.

Do user A and user B have similar preferences?

Do node 3 and node 4 have similar sets of neighbors? Should we merge them as a supernode?

Do two MRI images have similar keypoints?
Why Do We Embed Sets?

• Sets **grow** in numbers and sizes.
 • **E.g., 1.** Millions of users rate tens of thousands of movies.
 • **E.g., 2.** Many nodes in graphs have thousands of neighbors.

→ Computation of **set similarity** requires substantial **storage** and **time**.

How can we represent sets **accurately**, **concisely**, and **fast**?
Similarity Preserving Set Embedding

- **Given:** (1) a set S of sets and (2) a budget b
- **Find:** a latent representation Z_S of each set $s \in S$
- **to Minimize:** $\|\text{sim}(s, s') - \hat{\text{sim}}(Z_s, Z_{s'})\|$ **Accuracy**
- **Subject to:** the total encoding cost $\text{Cost}(\{Z_s: s \in S\}) \leq b$ **Conciseness**
- **Desired to:** compute set similarity in a constant time **Speed**
Similarity Preserving Set Embedding (cont.)

• There are diverse set similarity measures.
 • It is desirable to be used for various similarity measures. **Versatility**

<table>
<thead>
<tr>
<th>Similarity of Pair ((A, B)) of Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaccard Index</td>
</tr>
<tr>
<td>(\frac{</td>
</tr>
<tr>
<td>Overlap Coefficient</td>
</tr>
<tr>
<td>(\frac{</td>
</tr>
<tr>
<td>Dice Index</td>
</tr>
<tr>
<td>(\frac{2 \cdot</td>
</tr>
<tr>
<td>Cosine Similarity</td>
</tr>
<tr>
<td>(\frac{</td>
</tr>
</tbody>
</table>
Roadmap

1. Concepts

2. Basic Method: Set2Box

3. Advanced Method: Set2Box+

4. Experimental Results

5. Conclusion
Box Embedding

- **Set2Box** is an accurate algorithm for similarity preserving set embedding.
 - We represent sets as **boxes (ranges)** instead of vectors (points).

Box Embedding (Set2Box)

Vector Embedding

Box B_X of set X

Box B_Y of set Y

Vector V_X of set X

Vector V_Y of set Y
Box Embedding (cont.)

A box B_X consists of two vectors:

- **Center** $c_X = (4,3)$
- **Offset** $f_X = (3,2)$

From c_X and r_X, we can obtain min/max vectors:

- **Min point** $m_X = c_X - f_X = (1,1)$
- **Max point** $M_X = c_X + f_X = (7,5)$

The **volume** of the box is computed by:

$$\forall(B_X) = \prod_{i=1}^{d}(M_X[i] - m_X[i]) = 6 \cdot 4 = 24$$
Box Embedding (cont.)

The min/max vectors of box B_X are:

- Min point $m_X = c_X - f_X = (1,4)$
- Max point $M_X = c_X + f_X = (5,6)$

The min/max vectors of box B_Y are:

- Min point $m_Y = c_Y - f_Y = (2,1)$
- Max point $M_Y = c_Y + f_Y = (6,5)$

The min/max vectors of box $B_X \cap B_Y$ are:

- Min point $m_{X\cap Y} = \max(m_X, m_Y) = (2,4)$
- Max point $M_{X\cap Y} = \min(M_X, M_Y) = (5,5)$
Box Embedding (cont.)

- Several **set operations** hold in box embedding.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Transitivity Law</td>
<td>(A \subset B, B \subset C \rightarrow A \subset C)</td>
</tr>
</tbody>
</table>
| 2. Idempotent Law | \(A \cup A = A \)
\(A \cap A = A \) |
| 3. Commutative Law | \(A \cup B = B \cup A \)
\(A \cap B = B \cap A \) |
| 4. Associative Law | \(A \cup (B \cup C) = (A \cup B) \cup C \)
\(A \cap (B \cap C) = (A \cap B) \cap C \) |
| 5. Absorption Law | \(A \cup (A \cap B) = A \)
\(A \cap (A \cup B) = A \) |
| 6. Distributive Law | \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \)
\(A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \) |
Roadmap

1. Concepts

2. Basic Method: Set2Box

3. Advanced Method: Set2Box+

4. Experimental Results

5. Conclusion
Set2Box: Representing Sets as Boxes

- We learn a pair of embedding matrices of entities \mathcal{E}:
 - $Q^c \in \mathbb{R}^{|\mathcal{E}| \times d}$: centers of entities
 - $Q^f \in \mathbb{R}^{|\mathcal{E}| \times d}$: offsets of entities
- We aggregate (i.e., pool) entities’ embeddings to obtain the box B_s of the set s.

![Diagram](image)
Set2Box: Representing Sets as Boxes (cont.)

- We aim to preserve relations among triple \(\{ s_1, s_2, s_3 \} \) of sets.
 - Preserve the **cardinalities of the subsets** by the **volumes of the boxes**.
Set2Box: Representing Sets as Boxes (cont.)

- We aim to preserve relations among triple \(\{ s_1, s_2, s_3 \} \) of sets.
 - Learn the relative sizes of the following seven subsets:
 \[
 |s_1|, \quad |s_2|, \quad |s_3|, \quad |s_1 \cap s_2|, \quad |s_2 \cap s_3|, \quad |s_3 \cap s_1|, \text{ and } |s_1 \cap s_2 \cap s_3|
 \]
 - Singlewise overlaps
 - Pairwise overlaps
 - Triplewise overlap

- The objective is to preserve the sizes by the box volumes:
 \[
 \begin{align*}
 |s_1| & \propto V(B_{s_1}) & |s_1 \cap s_2| & \propto V(B_{s_1} \cap B_{s_2}) \\
 |s_2| & \propto V(B_{s_2}) & |s_2 \cap s_3| & \propto V(B_{s_2} \cap B_{s_3}) \\
 |s_3| & \propto V(B_{s_3}) & |s_3 \cap s_1| & \propto V(B_{s_3} \cap B_{s_1}) \\
 |s_1 \cap s_2 \cap s_3| & \propto V(B_{s_1} \cap B_{s_2} \cap B_{s_3})
 \end{align*}
 \]

\[\Rightarrow\] MSE Loss
Roadmap

1. Concepts
2. Basic Method: Set2Box
3. Advanced Method: Set2Box$^+$
4. Experimental Results
5. Conclusion
Set2Box$^+$: Even More Concise & Accurate

- We propose Set2Box$^+$ to derive better conciseness and accuracy.
 - Set2Box$^+$ consists of two effective schemes:
 - **Box quantization** makes boxes more concise.
 - **Joint training** improves the accuracy.
Set2Box+: Even More Concise & Accurate (cont.)

- **Box quantization (BQ)** compresses boxes.
 - Divide the box $B \in \mathbb{R}^d$ into D subspaces where each dimension is $\mathbb{R}^{d/D}$.
 - In each subspace, there are K key boxes.

\[
B = \begin{array}{c}
\text{d-dimensional original box}
\end{array}
\]

\[
2 \cdot 32 \cdot d \text{ bits}
\]

\[
\begin{array}{c}
\text{Subspace 1 (}\mathbb{R}^{d/D}\text{)}
\end{array}
\]

\[
\begin{array}{c}
K_1^{(1)}
\end{array}
\]

\[
\begin{array}{c}
K_3^{(1)}
\end{array}
\]

\[
\begin{array}{c}
B^{(1)}
\end{array}
\]

\[
\begin{array}{c}
K_2^{(1)}
\end{array}
\]

\[
\begin{array}{c}
2 \cdot D \cdot K \cdot 32 \cdot d \text{ bits}
\end{array}
\]

\[
\begin{array}{c}
\text{Subspace 2 (}\mathbb{R}^{d/D}\text{)}
\end{array}
\]

\[
\begin{array}{c}
K_1^{(2)}
\end{array}
\]

\[
\begin{array}{c}
K_3^{(2)}
\end{array}
\]

\[
\begin{array}{c}
B^{(2)}
\end{array}
\]

\[
\begin{array}{c}
K_2^{(2)}
\end{array}
\]

\[
\begin{array}{c}
\text{Subspace 3 (}\mathbb{R}^{d/D}\text{)}
\end{array}
\]

\[
\begin{array}{c}
K_1^{(3)}
\end{array}
\]

\[
\begin{array}{c}
K_3^{(3)}
\end{array}
\]

\[
\begin{array}{c}
B^{(3)}
\end{array}
\]

\[
\begin{array}{c}
K_2^{(3)}
\end{array}
\]

\[
\begin{array}{c}
\text{Subspace 4 (}\mathbb{R}^{d/D}\text{)}
\end{array}
\]

\[
\begin{array}{c}
K_1^{(4)}
\end{array}
\]

\[
\begin{array}{c}
K_3^{(4)}
\end{array}
\]

\[
\begin{array}{c}
B^{(4)}
\end{array}
\]

\[
\begin{array}{c}
K_2^{(4)}
\end{array}
\]

\[
\begin{array}{c}
\text{D-dimensional discrete vector}
\end{array}
\]

\[
b = \begin{array}{c}
2 \ 3 \ 1 \ 3
\end{array}
\]

\[
\begin{array}{c}
\text{n} \cdot D \cdot \log_2 K \text{ bits}
\end{array}
\]

\[
\begin{array}{c}
\text{d-dimensional reconstructed box}
\end{array}
\]

\[
\tilde{B} = \begin{array}{c}
\end{array}
\]
Set2Box+: Even More Concise & Accurate (cont.)

- **Box quantization (BQ)** compresses boxes.
 - To encode \(n \) number of \(d \)-dimensional boxes:
 - (Original) \(64nd \) bits \(\gg \) (BQ) \(64DKd + nD \log_2 K \) bits

\[
B = \begin{pmatrix}
K_1^{(1)} & K_2^{(1)} & K_3^{(1)} \\
B^{(1)} & K_2^{(1)} & 0
\end{pmatrix}
\]

\(d \)-dimensional original box

\(2 \cdot 32 \cdot d \) bits

\[
\tilde{B} = \begin{pmatrix}
K_1^{(4)} & K_2^{(4)} & K_3^{(4)} \\
K_1^{(3)} & K_2^{(3)} & K_3^{(3)}
\end{pmatrix}
\]

\(d \)-dimensional reconstructed box

\(b = [2 \ 3 \ 1 \ 3] \)

\(D \)-dimensional discrete vector

\(2 \cdot D \cdot K \cdot 32 \cdot d \) bits
Set2Box+: Even More Concise & Accurate (cont.)

- How does box quantization find the closest key box?

To compute box similarities, we define Box Overlap Ratio:

$$\text{BOR}(B_X, B_Y) = \frac{1}{2} \left(\frac{\mathbb{V}(B_X \cap B_Y)}{\mathbb{V}(B_X)} + \frac{\mathbb{V}(B_X \cap B_Y)}{\mathbb{V}(B_Y)} \right)$$

$$2 = \arg \max_i \text{BOR}(x^{(2)}, K_i^{(2)})$$
Set2Box+: Even More Concise & Accurate (cont.)

- An overview of **box quantization (BQ)**.
 - \mathcal{L}: Similarity preserving MSE loss

Box Quantization

- **center** \mathbf{c}_s
- **offset** \mathbf{f}_s

Set2Box

- Introduction
- Concepts
- Basic Method
- Advanced Method
- Experimental Results
- Conclusion
Speed of Set2Box+

- **Set2Box**+ computes estimated set similarity sets in a **constant** time.

Lemma (Time Complexity of Similarity Estimation)

Given a pair of sets s and s' and their boxes B_s and $B_{s'}$, respectively, it takes $O(d)$ time to compute the estimated similarity $\hat{\text{sim}}(B_s, B_{s'})$, where d is a user-defined **constant** that does not depend on the sizes of s and s'.

Advanced Method

Introduction

Concepts

Basic Method

Experimental Results

Conclusion
Other Details

- In the paper, you can find:
 - ✓ Set context pooling
 - ✓ End-to-end discrete code learning
 - ✓ Joint training original and reconstructed boxes
 - ✓ Box smoothing for effective learning
Roadmap

1. Concepts

2. Basic Method: Set2Box

3. Advanced Method: Set2Box^*

4. Experimental Results

5. Conclusion
Accuracy & Conciseness of Set2Box⁺

- Set2Box⁺ preserves set similarities most accurately compared to baselines.
- Set2Box⁺ gives up to 40.8X smaller estimation error while requiring about 60% fewer bits to encode sets.

Experimental Results

Conclusion
Accuracy & Conciseness of Set2Box\(^+\) (cont.)

- For example, Set2Box\(^+\) preserves the Overlap Coefficient between sets more accurately with smaller encoding cost.

![Comparison of methods](image)

(a) Random Hashing
MSE = 0.0884
Cost = 77.312 KB

(b) Vector Embedding
MSE = 0.0495
Cost = 77.312 KB

(c) Set2Box\(^+\)
MSE = 0.0125
Cost = 15.695 KB
Effects of Box Quantization & Joint Training

- We compare following variants:
 - **Set2Box-PQ**: Product quantization for center & offset
 - **Set2Box-BQ**: Box quantization without joint training
 - **Set2Box^+**: The proposed method with box quantization and joint training

<table>
<thead>
<tr>
<th>Method</th>
<th>OC</th>
<th>CS</th>
<th>JI</th>
<th>DI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set2Box-PQ</td>
<td>0.0129</td>
<td>0.0028</td>
<td>0.0012</td>
<td>0.0023</td>
</tr>
<tr>
<td>Set2Box-BQ</td>
<td>0.0106 (-17%)</td>
<td>0.0023 (-17%)</td>
<td>0.0009 (-26%)</td>
<td>0.0019 (-17%)</td>
</tr>
<tr>
<td>Set2Box^+</td>
<td>0.0077 (-40%)</td>
<td>0.0016 (-44%)</td>
<td>0.0007 (-41%)</td>
<td>0.0013 (-42%)</td>
</tr>
</tbody>
</table>

Box quantization and **joint training** of **Set2Box^+** incrementally improves the accuracy (in terms of MSE) averaged over all datasets.
Roadmap

1. Concepts
2. Basic Method: Set2Box
3. Advanced Method: Set2Box+
4. Experimental Results
5. Conclusion
Conclusion

- We propose Set2Box\(^+\), an effective and efficient representation learning method for preserving similarities between sets.

Set2Box\(^+\) is:

- **Accurate**: yields smaller estimation error while requiring smaller encoding cost.
- **Concise**: requires smaller encoding cost to achieve the same performance.
- **Fast**: computes set similarities in a constant time.
- **Versatile**: estimates various set similarity measures with a single set embedding.

Code & datasets: https://github.com/geon0325/Set2Box
Set2Box: Similarity Preserving Representation Learning of Sets

Geon Lee
Chanyoung Park
Kijung Shin