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Introduction Background Proposed Method Experiments Conclusion

Group Interactions are Everywhere!
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• A group Interaction (GI) is an interaction involving two or more entities
• E.g. Functional groups of neurons associated with specific tasks
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Group Interactions are Often Unobservable

• However, functional groups of neurons associated with specific tasks
cannot be directly observed

• Instead, only the spiking activities of individual neurons can be observed
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Characteristics of Group Interactions

• A group interaction is empirically found as a pattern characterized by 
correlated events among multiple entities in the observed sequence of events

• E.g. Functional groups of neurons exhibit temporally correlated spiking activities
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Research Goal

• Goal: Given activities of individuals, to identify group interactions (GIs)
• Our approach: To find empirical patterns in the observed events of individual entities
• E.g. Functional groups of neurons exhibit temporally correlated spiking activities

RASP: Robust Mining of Frequent Temporal Sequential Patterns under Temporal Variations 5

Correlated Spiking Activities
(Empirical Patterns)

Functional Groups of Neurons 
(Group Interactions)

Resting Neuron Firing Neuron

N
e

u
ro

n

Time

1

2

3

N

⋯



Introduction Background Proposed Method Experiments Conclusion

Real-World Applications

• Precipitation at weather stations
• Target GI: A series of regions experiencing consecutive rainfall events

• Traffic volume at intersections
• Target GI: A network of roads experiencing successive congestion

• Prices of individual stocks
• Target GI: A group of stocks exhibiting correlated price movements

RASP: Robust Mining of Frequent Temporal Sequential Patterns under Temporal Variations 6

TrafficPrecipitation Stock



Introduction Background Proposed Method Experiments Conclusion

Concepts: Temporal Sequential Pattern

• Temporal event sequence: A sequence of event instances ordered by time
• Temporal sequential pattern (TSP): A sequence of events and time gaps

• Temporally and sequentially correlated events can be represented as a TSP
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Occurrence and Support of a TSP

• An occurrence (or instance) of a TSP: An actual case in which the TSP occurs
• Support of a TSP: Number of occurrences of a TSP
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Leverage: Significance Measure of a TSP

• Leverage: Difference between a TSP’s actual and expected support
• Expected support is computed under the assumption of independent event occurrences
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Problem Formulation

• Given: A temporal event sequence
• Find: Group interactions
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Problem Formulation

• Given: A temporal event sequence
• Find: Group interactions

Group interactions are not observable
but signaled by temporal correlation
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Problem Formulation

• Given: A temporal event sequence
• Find: Group interactions

• Given: A temporal event sequence
• Find: Significant temporal sequential patterns
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• Temporal Variations: Time gaps in occurrences of a TSP
might not be consistent across various instances in real-world data

• E.g., Measurement errors or inherent system variability

• Temporal variations present challenges for accurately discovering TSPs
• However, previous methods do not explicitly consider temporal variations
• Our approach: Introduce relaxed TSP concepts to handle temporal variations

Challenge: Temporal Variations
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• Given: A temporal event sequence with temporal variations
• Find: Group interactions on the ground-truth temporal event sequence
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Final Problem Formulation

• Given: A temporal event sequence with temporal variations
• Find: Significant temporal sequential patterns on the ground-truth temporal event sequence
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Overview of RASP

• RASP – Robust and resource-Adaptive mining of temporal Sequential Patterns
• Given a temporal event sequence,
• Aims to return the most significant TSPs
• Key Idea

• Novel concept: Relaxed TSP
• Efficient search algorithm
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Concepts: Relaxed TSP

• To improve robustness against temporal variations in the time gaps in a TSP,
a relaxed TSP allows for a predefined level of time gap deviations 

• Relaxed TSP: A sequence of events and relaxed time gaps
• Relaxed time gaps: Intervals with a length of 2 × ∆

RASP: Robust Mining of Frequent Temporal Sequential Patterns under Temporal Variations 16

Occ. 1, 2, and 3 are all instances
of the same relaxed TSP

An example of relaxed TSP (∆=2ms)
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• Data Binning: Events are grouped into small intervals, called bins

Potential Alternative: Data Binning
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Details Search Algorithm

• Challenge: The number of TSPs is exponentially growing
• Key Idea: Beam search with resource-adaptive beam width

• To retain a sufficient number of TSPs but without exceeding storage capacity,
RASP automatically adjusts the threshold based on the resource-adaptive beam width

RASP: Robust Mining of Frequent Temporal Sequential Patterns under Temporal Variations 18

An example of beam search with resource-adaptive beam width
(Total resource: 4 × TSPs, Beam width: resource / 2 = 2)
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Details Search Algorithm
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An example of beam search with resource-adaptive beam width
(Total resource: 4 × TSPs, Beam width: resource / 2 = 2)

AB 1

AC 3

AD 1

CA 2

CB 1

CD 1

A

C

Root

A 5

B 1

C 3

D 1



Introduction Background Proposed Method Experiments Conclusion
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• Challenge: The number of TSPs is exponentially growing
• Key Idea: Beam search with resource-adaptive beam width

• To retain a sufficient number of TSPs but without exceeding storage capacity,
RASP automatically adjusts the threshold based on the resource-adaptive beam width

Details Search Algorithm
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An example of beam search with resource-adaptive beam width
(Total resource: 4 × TSPs, Beam width: resource / 2 = 2)
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Potential Alternative: Predefined Fixed Threshold

• Predefined fixed thresholds can be used to determine the number of TSPs
• E.g., significance level: p-value < 0.05
• The number of TSPs is often sensitive to these threshold values,

resulting in either an excessive or insufficient number of TSPs
• Finding suitable threshold values, which vary across datasets,

requires extensive trial and error
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• Neuron activity datasets generated by the CN2 simulator1

• Replicating real-world behaviors (e.g., temporal variations and probabilistic participation)
• Each event: Spike of a specific neuron
• Ground-truth group interaction: Functional groups of neurons

Synthetic Datasets
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1. https://github.com/NICALab/CN2-Simulator
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• Variation-Free: Without temporal variations
• Variations: With temporal variations

• Zero-mean Gaussian noise with a predefined standard deviation
to each time gap in the ground-truth TSP instances
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Experimental Settings

• Evaluation metric for accuracy: Normalized discounted cumulative gain (NDCG)
• NDCG@n measures the quality of the top-n ranking by comparison with ground-truths
• Ranges from 0 to 1, with higher values indicating better ranking quality
• Note: The recall metric for accuracy produces similar results

• Competing methods
• CAD [Russo et al., 2017]
• SPADE [Torre et al., 2013, Quaglio et al., 2017]
• MIPER [Ao et al., 2018]
• These methods simply rely on data binning to handle temporal variations
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Q1. RASP is accurate

• RASP outperformed all its competitors in accuracy across all settings
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Q2. RASP Gives a Better Speed-Accuracy Trade-off

• RASP provided clearly better trade-offs than the other methods across all 
time spans of data
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• RASP tended to perform better compared to a variant without using the 
concept of relaxed TSPs

Q3. Relaxed TSP Contributes to Accuracy
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• Indirect evaluation on real-world datasets without ground-truth TSPs
• Precipitation

• Each event: Precipitation of ≥ 1 𝑚𝑚𝑚𝑚 accumulated over 15 min at each weather station
• Indirect accuracy: % of reasonable TSPs (avg. distance ≤ 5 𝑘𝑘𝑘𝑘)

• Traffic congestion
• Each event: Traffic volume of ≥ 500 vehicles accumulated over 15 min recorded at each sensor
• Indirect accuracy: % of reasonable TSPs where (sum. distance ≤ 4 𝑘𝑘𝑘𝑘)

• Stock price fluctuation
• Each event: Daily return rate of ≥ 5% or ≤ −5%

Q4. Evaluation on Real-World Dataset
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• RASP consistently achieves the highest (indirect) accuracy

Q4. Evaluation on Real-World Dataset
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• RASP identified frequent TSPs with stock price fluctuation events, revealing:
1. Sector-based patterns: Stocks from the same sector

• Most frequent TSP: Engineering & Construction sector

• 2nd most frequent TSP: Shipbuilding & Offshore Engineering sector

2. Affiliate-based patterns: Stocks from the same corporate affiliates
• 3rd most frequent TSP: Doosan group

Q4. Evaluation on Real-World Dataset
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Conclusion

• We proposed RASP, an algorithm for mining significant TSPs in a sequence of 
temporal events with temporal variations, which incorporates:

• A novel concept of relaxed TSPs for handling temporal variations
• Resource-adaptive automatic hyperparameter tuning for enhancing usability
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Accurate and Robust Speed-Accuracy Trade-Off

Source code and datasets are available at https://github.com/jin-choo/RASP

https://github.com/jin-choo/RASP
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