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Introduction

Group Interactions are Everywherel

* A group Interaction (Gl) is an interaction involving two or more entities
e E.g. Functional groups of neurons associated with specific tasks
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Introduction

Group Interactions are Often Unobservable

* However, functional groups of neurons associated with specific tasks
cannot be directly observed
* Instead, only the spiking activities of individual neurons can be observed
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Introduction

Characteristics of Group Interactions

* A group interaction is empirically found as a pattern characterized by
correlated events among multiple entities in the observed sequence of events

e E.g. Functional groups of neurons exhibit temporally correlated spiking activities
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Introduction

Research Goal

* Goal: Given activities of individuals, to identify group interactions (Gls)
* Our approach: To find empirical patterns in the observed events of individual entities
e E.g. Functional groups of neurons exhibit temporally correlated spiking activities
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Introduction

Real-World Applications

* Precipitation at weather stations

» Target Gl: A series of regions experiencing consecutive rainfall events

* Traffic volume at intersections

* Target Gl: A network of roads experiencing successive congestion

* Prices of individual stocks

» Target Gl: A group of stocks exhibiting correlated price movements
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Background

Concepts: Temporal Sequential Pattern

* Temporal event sequence: A sequence of event instances ordered by time

* Temporal sequential pattern (TSP): A sequence of events and time gaps
* Temporally and sequentially correlated events can be represented as a TSP

Temporal event sequence An example of TSP
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Background

Occurrence and Support of a TSP

* An occurrence (or instance) of a TSP: An actual case in which the TSP occurs
e Support of a TSP: Number of occurrences of a TSP

An example of occurrence and support of a TSP
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Background

Leverage: Significance Measure of a TSP

* Leverage: Difference between a TSP’s actual and expected support
* Expected support is computed under the assumption of independent event occurrences

leverage(a) = support(a) — supporte,,(a)
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Background

Problem Formulation

* Given: A temporal event sequence
* Find: Group interactions
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Background

Problem Formulation

* Given: A temporal event sequence
* Find: Group interactions

Group interactions are not observable
but signaled by temporal correlation
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Background

Problem Formulation

* Given: A temporal event sequence
* Find: Group interactions

Group interactions are not observable
but signaled by temporal correlation

* Given: A temporal event sequence
* Find: Significant temporal sequential patterns

A:'I |I I : II I'I . . gn
Es—4—F : ] :: 7 Significant TSP
Ze———4—+ 1ms 2ms
o — B — & A——B——0D
012345678 91011121314
Time (ms)

RASP: Robust Mining of Frequent Temporal Sequential Patterns under Temporal Variations 12




Background

Challenge: Temporal Variations

* Temporal Variations: Time gaps in occurrences of a TSP
might not be consistent across various instances in real-world data

* E.g., Measurement errors or inherent system variability
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* Temporal variations present challenges for accurately discovering TSPs
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* However, previous methods do not explicitly consider temporal variations
e Our approach: Introduce relaxed TSP concepts to handle temporal variations
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Background

Final Problem Formulation

Given: A temporal event sequence with temporal variations

Find: Group interactions on the ground-truth temporal event sequence

Group interactions are not observable
but signaled by temporal correlation

Given: A temporal event sequence with temporal variations

Find: Significant temporal sequential patterns on the ground-truth temporal event sequence
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Proposed Method

Overview of RASP

* RASP — Robust and resource-Adaptive mining of temporal Sequential Patterns
* Given a temporal event sequence,
* Aims to return the most significant TSPs
e Key Idea
* Novel concept: Relaxed TSP
* Efficient search algorithm
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Proposed Method

Concepts: Relaxed TSP

* To improve robustness against temporal variations in the time gaps in a TSP,
a relaxed TSP allows for a predefined level of time gap deviations

* Relaxed TSP: A sequence of events and relaxed time gaps
* Relaxed time gaps: Intervals with a length of 2 X A
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Proposed Method

Potential Alternative: Data Binning

* Data Binning: Events are grouped into small intervals, called bins

An example of binning (bin size=2ms)
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Proposed Method

Search Algorithm

* Challenge: The number of TSPs is exponentially growing

* Key Idea: Beam search with resource-adaptive beam width

* To retain a sufficient number of TSPs but without exceeding storage capacity,
RASP automatically adjusts the threshold based on the resource-adaptive beam width

An example of beam search with resource-adaptive beam width
(Total resource: 4 x TSPs, Beam width: resource / 2 = 2)

RASP: Robust Mining of Frequent Temporal Sequential Patterns under Temporal Variations

18




Proposed Method

Search Algorithm

* Challenge: The number of TSPs is exponentially growing

* Key Idea: Beam search with resource-adaptive beam width

* To retain a sufficient number of TSPs but without exceeding storage capacity,
RASP automatically adjusts the threshold based on the resource-adaptive beam width

An example of beam search with resource-adaptive beam width
(Total resource: 4 x TSPs, Beam width: resource / 2 = 2)
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Proposed Method

Search Algorithm

* Challenge: The number of TSPs is exponentially growing

* Key Idea: Beam search with resource-adaptive beam width

* To retain a sufficient number of TSPs but without exceeding storage capacity,
RASP automatically adjusts the threshold based on the resource-adaptive beam width

An example of beam search with resource-adaptive beam width
(Total resource: 4 x TSPs, Beam width: resource / 2 = 2)
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Proposed Method

Potential Alternative: Predefined Fixed Threshold

* Predefined fixed thresholds can be used to determine the number of TSPs
* E.g., significance level: p-value < 0.05

* The number of TSPs is often sensitive to these threshold values,
resulting in either an excessive or insufficient number of TSPs

* Finding suitable threshold values, which vary across datasets,
requires extensive trial and error

RASP: Robust Mining of Frequent Temporal Sequential Patterns under Temporal Variations 21
U0 mOmmAmOGOOORRDORmOOGOmGGGOOSSCOGSSSNGGGGGGGGGEEEE———



Experiments

Synthetic Datasets

* Neuron activity datasets generated by the CN2 simulatort
* Replicating real-world behaviors (e.g., temporal variations and probabilistic participation)
* Each event: Spike of a specific neuron
* Ground-truth group interaction: Functional groups of neurons
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Event

1. https://qgithub.com/NICALab/CN2-Simulator
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Experiments

Temporal Variations

 Variation-Free: Without temporal variations

 Variations: With temporal variations

e Zero-mean Gaussian noise with a predefined standard deviation
to each time gap in the ground-truth TSP instances
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Experiments

Experimental Settings

 Evaluation metric for accuracy: Normalized discounted cumulative gain (NDCG)
* NDCG@n measures the quality of the top-n ranking by comparison with ground-truths
* Ranges from 0 to 1, with higher values indicating better ranking quality
* Note: The recall metric for accuracy produces similar results

* Competing methods
e CAD [Russo et al., 2017]
 SPADE [Torre et al., 2013, Quaglio et al., 2017]
 MIPER [Ao et al., 2018]
* These methods simply rely on data binning to handle temporal variations
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Introduction Background Proposed Method Experiments Conclusion

Q1. RASP is accurate

 RASP outperformed all its competitors in accuracy across all settings
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time spans of data

Experiments

Q2. RASP Gives a Better Speed-Accuracy Trade-off

* RASP provided clearly better trade-offs than the other methods across all
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Experiments

Q3. Relaxed TSP Contributes to Accuracy

* RASP tended to perform better compared to a variant without using the

concept of relaxed TSPs
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Experiments

Q4. Evaluation on Real-World Dataset

* Indirect evaluation on real-world datasets without ground-truth TSPs

* Precipitation

* Each event: Precipitation of = 1 mm accumulated over 15 min at each weather station
* Indirect accuracy: % of reasonable TSPs (avg. distance < 5 km)

 Traffic congestion

* Each event: Traffic volume of = 500 vehicles accumulated over 15 min recorded at each sensor
* Indirect accuracy: % of reasonable TSPs where (sum. distance < 4 km)

 Stock price fluctuation
* Each event: Daily return rate of = 5% or < —5%
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Experiments

Q4. Evaluation on Real-World Dataset

e RASP consistently achieves the highest (indirect) accuracy
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Experiments

Q4. Evaluation on Real-World Dataset

* RASP identified frequent TSPs with stock price fluctuation events, revealing:

1. Sector-based patterns: Stocks from the same sector
* Most frequent TSP: Engineering & Construction sector
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e 2" most frequent TSP: Shipbuilding & Offshore Engineering sector
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2. Affiliate-based patterns: Stocks from the same corporate affiliates
* 39 most frequent TSP: Doosan group
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Conclusion

Conclusion

* We proposed RASP, an algorithm for mining significant TSPs in a sequence of
temporal events with temporal variations, which incorporates:
* A novel concept of relaxed TSPs for handling temporal variations
* Resource-adaptive automatic hyperparameter tuning for enhancing usability
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Source code and datasets are available at https://github.com/jin-choo/RASP
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