

RASP: Robust Mining of Frequent Temporal Sequential Patterns under Temporal Variations

Kijung Shin

Gyuri Kim

Young-Gyu Yoon

Introduction Background Proposed Method E

Experiments

Conclusion

Group Interactions are **Everywhere**!

- A group Interaction (GI) is an interaction involving two or more entities
 - E.g. Functional groups of neurons associated with specific tasks

RASP: Robust Mining of Frequent Temporal Sequential Patterns under Temporal Variations

Introduction Background Proposed Method Experiments Conclusion

Characteristics of Group Interactions

- A group interaction is empirically found as a pattern characterized by correlated events among multiple entities in the observed sequence of events
 - E.g. Functional groups of neurons exhibit temporally correlated spiking activities

Correlated Spiking Activities

Background **Research Goal**

Introduction

- **Goal**: Given activities of individuals, to identify group interactions (GIs)
 - Our approach: To find empirical patterns in the observed events of individual entities

Proposed Method

Experiments

• E.g. Functional groups of neurons exhibit temporally correlated spiking activities

Conclusion

Real-World Applications

- Precipitation at weather stations
 - Target GI: A series of regions experiencing consecutive rainfall events
- Traffic volume at intersections
 - Target GI: A network of roads experiencing successive congestion
- Prices of individual stocks
 - Target GI: A group of stocks exhibiting correlated price movements

Conclusion

Concepts: Temporal Sequential Pattern

- Temporal event sequence: A sequence of event instances ordered by time
- Temporal sequential pattern (TSP): A sequence of events and time gaps
 - Temporally and sequentially correlated events can be represented as a TSP

Temporal event sequence

Occurrence and Support of a TSP

- An occurrence (or instance) of a TSP: An actual case in which the TSP occurs
- Support of a TSP: Number of occurrences of a TSP

An example of occurrence and support of a TSP

Introduction Background Proposed Method Experiments

Conclusion

Leverage: Significance Measure of a TSP

- Leverage: Difference between a TSP's actual and expected support
 - Expected support is computed under the assumption of independent event occurrences

$$leverage(\alpha) = support(\alpha) - support_{exp}(\alpha)$$

Introduction Background Proposed Method Experiments

Conclusion

Problem Formulation

- Given: A temporal event sequence
- Find: Group interactions

Introduction Background Proposed Method Experiments Conclusion
Problem Formulation

- Given: A temporal event sequence
- Find: Group interactions

Group interactions are not observable but signaled by temporal correlation

RASP: Robust Mining of Frequent Temporal Sequential Patterns under Temporal Variations

Introduction Background Proposed Method Challenge: Temporal Variations

- Temporal Variations: Time gaps in occurrences of a TSP might not be consistent across various instances in real-world data
 - E.g., Measurement errors or inherent system variability

Experiments

- Temporal variations present challenges for accurately discovering TSPs
 - However, previous methods do not explicitly consider temporal variations
 - Our approach: Introduce relaxed TSP concepts to handle temporal variations

Introduction Background Proposed Method

Experiments

Conclusion

Final Problem Formulation

- Given: A temporal event sequence with temporal variations
- Find: Group interactions on the ground-truth temporal event sequence

Group interactions are not observable, but signaled by temporal correlation

- Given: A temporal event sequence with temporal variations
- Find: Significant temporal sequential patterns on the ground-truth temporal event sequence

RASP: Robust Mining of Frequent Temporal Sequential Patterns under Temporal Variations

Overview of RASP

- RASP Robust and resource-Adaptive mining of temporal Sequential Patterns
 - Given a temporal event sequence,
 - Aims to return the most significant TSPs
 - Key Idea
 - Novel concept: Relaxed TSP
 - Efficient search algorithm

Concepts: Relaxed TSP

- To improve robustness against temporal variations in the time gaps in a TSP, a relaxed TSP allows for a predefined level of time gap deviations
- **Relaxed TSP**: A sequence of events and relaxed time gaps
 - Relaxed time gaps: Intervals with a length of $2 \times \Delta$

An example of relaxed TSP (Δ =2ms)

$$A \xrightarrow{2ms \pm \Delta} B \xrightarrow{2ms \pm \Delta} D$$

Occ. 1, 2, and 3 are all instances of the same relaxed TSP Introduction Background Proposed Method Exp

Experiments

Conclusion

Potential Alternative: Data **Binning**

• Data Binning: Events are grouped into small intervals, called bins

An example of binning (bin size=2ms)

Introduction Background Proposed Method Details Search Algorithm

- **Challenge**: The number of TSPs is exponentially growing
- Key Idea: Beam search with resource-adaptive beam width
 - To retain a sufficient number of TSPs but without exceeding storage capacity, RASP automatically adjusts the threshold based on the resource-adaptive beam width

Experiments

An example of beam search with resource-adaptive beam width (Total resource: $4 \times TSPs$, Beam width: resource / 2 = 2)

Introduction Background Proposed Method Details Search Algorithm

- Challenge: The number of TSPs is exponentially growing
- Key Idea: Beam search with resource-adaptive beam width
 - To retain a sufficient number of TSPs but without exceeding storage capacity, RASP automatically adjusts the threshold based on the resource-adaptive beam width

Experiments

An example of beam search with resource-adaptive beam width

(Total resource: $4 \times TSPs$, Beam width: resource / 2 = 2)

RASP: Robust Mining of Frequent Temporal Sequential Patterns under Temporal Variations

Introduction Background Proposed Method Details Search Algorithm

- Challenge: The number of TSPs is exponentially growing
- Key Idea: Beam search with resource-adaptive beam width
 - To retain a sufficient number of TSPs but without exceeding storage capacity, RASP automatically adjusts the threshold based on the resource-adaptive beam width

Experiments

An example of beam search with resource-adaptive beam width (Total resource: $4 \times TSPs$, Beam width: resource / 2 = 2)

RASP: Robust Mining of Frequent Temporal Sequential Patterns under Temporal Variations

Introduction Background Proposed Method Experiments Conclusion

Potential Alternative: Predefined Fixed Threshold

- Predefined fixed thresholds can be used to determine the number of TSPs
 - E.g., significance level: p-value < 0.05
 - The number of TSPs is often sensitive to these threshold values, resulting in either an excessive or insufficient number of TSPs
 - Finding suitable threshold values, which vary across datasets, requires extensive trial and error

Synthetic Datasets

- Neuron activity datasets generated by the CN2 simulator¹
 - Replicating real-world behaviors (e.g., temporal variations and probabilistic participation)
 - Each event: Spike of a specific neuron
 - Ground-truth group interaction: Functional groups of neurons

RASP: Robust Mining of Frequent Temporal Sequential Patterns under Temporal Variations

Temporal Variations

- Variation-Free: Without temporal variations
- Variations: With temporal variations
 - Zero-mean Gaussian noise with a predefined standard deviation to each time gap in the ground-truth TSP instances

Variation-Free

Variations

Experimental Settings

- Evaluation metric for accuracy: Normalized discounted cumulative gain (NDCG)
 - NDCG@n measures the quality of the top-n ranking by comparison with ground-truths
 - Ranges from 0 to 1, with higher values indicating better ranking quality
 - Note: The recall metric for accuracy produces similar results
- Competing methods
 - CAD [Russo et al., 2017]
 - **SPADE** [Torre et al., 2013, Quaglio et al., 2017]
 - MIPER [Ao et al., 2018]
 - These methods simply rely on data binning to handle temporal variations

Introduction Background Proposed Method **Experiments**

Q1. RASP is accurate

• RASP outperformed all its competitors in accuracy across all settings

Introduction Background Proposed Method **Experiments** Conclusion

Q2. RASP Gives a Better Speed-Accuracy Trade-off

• RASP provided clearly better trade-offs than the other methods across all time spans of data

Introduction Background Proposed Method **Experiments**

Conclusion

Q3. Relaxed TSP Contributes to Accuracy

• RASP tended to perform better compared to a variant without using the concept of relaxed TSPs

Q4. Evaluation on Real-World Dataset

- Indirect evaluation on real-world datasets without ground-truth TSPs
 - Precipitation
 - **Each event**: Precipitation of $\geq 1 \ mm$ accumulated over 15 min at each weather station
 - Indirect accuracy: % of reasonable TSPs (avg. distance $\leq 5 \ km$)
 - Traffic congestion
 - **Each event**: Traffic volume of ≥ 500 vehicles accumulated over 15 min recorded at each sensor
 - Indirect accuracy: % of reasonable TSPs where (sum. distance $\leq 4 \ km$)
 - Stock price fluctuation
 - **Each event**: Daily return rate of $\geq 5\%$ or $\leq -5\%$

Introduction Background Proposed Method **Experiments**

Conclusion

Q4. Evaluation on Real-World Dataset

• RASP consistently achieves the highest (indirect) accuracy

Introduction Background Proposed Method **Experiments**

Conclusion

Q4. Evaluation on Real-World Dataset

- RASP identified frequent TSPs with stock price fluctuation events, revealing:
 - 1. Sector-based patterns: Stocks from the same sector
 - Most frequent TSP: Engineering & Construction sector

• 2nd most frequent TSP: Shipbuilding & Offshore Engineering sector

- 2. Affiliate-based patterns: Stocks from the same corporate affiliates
 - 3rd most frequent TSP: Doosan group

Conclusion

- We proposed **RASP**, an algorithm for mining significant TSPs in a sequence of temporal events with temporal variations, which incorporates:
 - A novel concept of relaxed TSPs for handling temporal variations
 - Resource-adaptive automatic hyperparameter tuning for enhancing usability

Data Mining Approaches for Predicting the Presence, Persistence, and Emergence of Group Interactions (by Hyunjin Choo)

RASP: Robust Mining of Frequent Temporal Sequential Patterns under Temporal Variations

Kijung Shin

Gyuri Kim

Young-Gyu Yoon