Classification of Edge-dependent Labels of Nodes in Hypergraphs
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B Summary

* Novel Problem: Classification of edge-dependent node labels

* Effective Model: A novel hypergraph neural network WHATSNET based on two ideas:

- WithInATT: An attention module where the edge-dependent embedding of each
node is computed by attending to the other nodes within each hyperedge

- WithinOrderPE: An edge-dependent positional encoding defined by the relative
order of node centrality within each hyperedge

Extensive Experiments:

- Superiority: WHATSNET performs significantly and consistently better than

ten competitors on six real-world hypergraphs

- Usefulness: WHATSNET is demonstrated useful in three applications:

(a) ranking aggregation, (b) node clustering, and (c) product return prediction

B Problem Definition: Edge-Dependent Node Classification

 Examples of Edge-Dependent Node Classification:
* (a) Co-Authorship

Authors (Nodes)
Y Bengio (YB) J Weston (JW)
J Louradour (JL) A Bordes (AB)
R Collobert (RC) S Bengio (SB)

Publications (Hyperedges)

E1l: Curriculum learning
Y Bengio, J Louradour, R Collobert, J Weston — ICML 09

E2: Learning structured embeddings of knowledge bases

A Bordes, ) Weston, R Collobert, Y Bengio —AAAI'1l1| Labels: First, Last, or Others

based on the positions in the

. A parallel mixture of SVMs for very large scale

R Collobert, S Bengio, Y Bengio —NIps’01 | author list of each publication
* (b) Email
People (Nodes)
Joan@enron.com (JO) arnold@enron.com (AR)

(HA) ben@enron.com (BE)
eric@enron.com (ER)

harry@enron.com
robert@enron.com (RO)

Emails (Hyperedges)

Joan@enron.com arnold@enron.com

CC harry@enron.com, CC
robert@enron.com

Joan@enron.com

From | ben@enron.com

TITLE : Project Issue

From |arnold@enron.com

TITLE : Today’s meeting

To robert@enron.com

Labels: To, From, or CCs
based on the roles (senders,
receivers, and the CCed)

in each email

CC eric@enron.com

From | joan@enron.com

TITLE : Discussion

* Formal Problem Definition:
- Given: (a) A hypergraph G = (V, £): a node set V and a hyperedge set £
(b) Edge-dependent node labels in some hyperedges €' C &:
Vve VUV Ee,Ve € E’
(c) (Optionally) a node feature matrix X
- Aim to: accurately predict the unknown edge-dependent node labels in E\E':
Vve VUV E e,Ve € E\E'

* Desirable Properties as a Benchmark Task for Hypergraph Neural Networks
- It evaluates the capability of capturing properties unique to hypergraphs

- Existing hypergraph neural networks exhibit limited performance in this task
- The predictive outputs can directly be applied to various applications

Minyoung Choel, Sunwoo Kim?, Jaemin Yoo?, and Kijung Shin*
Yminyoung.choe, kswoo97, kijungs}@kaist.ac.kr, jaeminyoo@cmu.edu
Code and Data: https://github.com/young917/EdgeDependentNodelLabel

. WithlnATT: Attention to Other Nodes Within Hyperedges

* Motivation: The edge-dependent label of each node is shaped by its relation to the
other nodes within the same hyperedge.
* Details: WithInATT computes the edge-dependent embedding of each node by

attending to the other nodes within each hyperedge
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. WithinOrderPE: Using Centrality for Positional Encoding

* Motivation: The edge-dependent label of each node is closely related to its relative
centrality (e.g., degree centrality) within each hyperedge

* Details: WithinOrderPE provides the edge-dependent positional encoding of each
node based on its centrality order within each hyperedge

# Papers = Degree Centrality

Paper (Hyperedge)

=58 2 B

2-

Grown-up
Researcher
J (Node A)

(" The author with the highest
centrality is more likely to be the
corresponding author!

Student

(Node B) (Node C)

&

. PrOpOSEd Model: WHATSNET (Within-Hyperedge Attention Transformer Network)

* TWo message passing steps in each layer:
- (1) Updating hyperedge embeddings by aggregating embeddings of incident nodes
- (2) Updating node embeddings by aggregating embeddings of incident hyperedges
* In each step:
- (1) Input embeddings of nodes (or hyperedges) are augmented by WithinOrderPE
- (2) WithinATT generates hyperedge-dependent node (or node-dependent
hyperedge) embeddings
- (3) They are aggregated into hyperedge (or node) embeddings
* Predict edge-dependent node labels:
- A single-layer perceptron classifier takes the concatenated node and hyperedge
embeddings from the last layer of WHATSNET and produce estimated labels
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B Experimental Results

* Q1: Does WHATsNet accurately predict the edge-dependent labels of nodes?
* WHATSNET consistently outperforms 10 competitors in classifying edge-dependent
node labels across all 6 datasets
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* Q2: Does WHATsNet classify the same node differently depending on hyperedges?
* We investigate the distribution of edge-dependent labels of each node
* The outputs of WHATsNet preserve well the distribution
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* Q3: Does each component | o
B w/o WithInATT w/o WithinOrderPE B WHATsSNET

contribute to the performance?
* Both WithinATT and WithinOrderPE
lead to better performance
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°* Q4: Is WHATsNet useful in downstream tasks?

* Edge-dependent labels produced by WHATsNet consistently enhance the
performance in three downstream tasks, compared to using no labels
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(a) Ranking Aggregation (b) Clustering (c) Product Return Prediction
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