
• Novel Problem: Classification of edge-dependent node labels
• Effective Model: A novel hypergraph neural network WHATsNET based on two ideas:
   - WithInATT: An attention module where the edge-dependent embedding of each 

node is computed by attending to the other nodes within each hyperedge
- WithinOrderPE: An edge-dependent positional encoding defined by the relative 
order of node centrality within each hyperedge

• Extensive Experiments: 
- Superiority: WHATsNET performs significantly and consistently better than 
ten competitors on six real-world hypergraphs
- Usefulness: WHATsNET is demonstrated useful in three applications: 
(a) ranking aggregation, (b) node clustering, and (c) product return prediction

• Two message passing steps in each layer: 
- (1) Updating hyperedge embeddings by aggregating embeddings of incident nodes
- (2) Updating node embeddings by aggregating embeddings of incident hyperedges

• In each step: 
- (1) Input embeddings of nodes (or hyperedges) are augmented by WithinOrderPE
- (2) WithinATT generates hyperedge-dependent node (or node-dependent 

hyperedge) embeddings
- (3) They are aggregated into hyperedge (or node) embeddings

• Examples of Edge-Dependent Node Classification:
• (a) Co-Authorship

• Formal Problem Definition:
- Given: (a) A hypergraph 𝒢 = 𝒱, ℰ : a node set 𝒱 and a hyperedge set ℰ

(b) Edge-dependent node labels in some hyperedges ℰ′ ⊂ ℰ:
𝑦𝑣,𝑒 , ∀𝑣 ∈ 𝑒 , ∀𝑒 ∈ ℰ′

(c) (Optionally) a node feature matrix 𝑋
- Aim to: accurately predict the unknown edge-dependent node labels in ℰ\ℰ′:

𝑦𝑣,𝑒 , ∀𝑣 ∈ 𝑒, ∀𝑒 ∈ ℰ\ℰ′
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Problem Definition: Edge-Dependent Node Classification

Summary

Proposed Model: WHATsNET (Within-Hyperedge Attention Transformer Network)

Experimental Results

• Q1: Does WHATsNet accurately predict the edge-dependent labels of nodes? 
• WHATsNET consistently outperforms 10 competitors in classifying edge-dependent 

node labels across all 6 datasets
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• Desirable Properties as a Benchmark Task for Hypergraph Neural Networks
- It evaluates the capability of capturing properties unique to hypergraphs
- Existing hypergraph neural networks exhibit limited performance in this task
- The predictive outputs can directly be applied to various applications
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• Q4: Is WHATsNet useful in downstream tasks?

• Edge-dependent labels produced by WHATsNet consistently enhance the 
performance in three downstream tasks, compared to using no labels

𝒗𝟐 𝒗𝟒𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓

• Predict edge-dependent node labels:
- A single-layer perceptron classifier takes the concatenated node and hyperedge 
embeddings from the last layer of WHATsNET and produce estimated labels

• Q2: Does WHATsNet classify the same node differently depending on hyperedges? 
• We investigate the distribution of edge-dependent labels of each node
• The outputs of WHATsNet preserve well the distribution

• Q3: Does each component 
contribute to the performance?

• Both WithinATT and WithinOrderPE
lead to better performance

• Motivation: The edge-dependent label of each node is shaped by its relation to the 
other nodes within the same hyperedge.

• Details: WithInATT computes the edge-dependent embedding of each node by 
attending to the other nodes within each hyperedge

WithInATT: Attention to Other Nodes Within Hyperedges

• Motivation: The edge-dependent label of each node is closely related to its relative 
centrality (e.g., degree centrality) within each hyperedge

• Details: WithinOrderPE provides the edge-dependent positional encoding of each 
node based on its centrality order within each hyperedge

WithinOrderPE: Using Centrality for Positional Encoding
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