

Summary

- Novel Problem: Classification of edge-dependent node labels
- Effective Model: A novel hypergraph neural network WHATsNET based on two ideas: - WithInATT: An attention module where the edge-dependent embedding of each node is computed by attending to the other nodes within each hyperedge - WithinOrderPE: An edge-dependent positional encoding defined by the relative order of node centrality within each hyperedge
- Extensive Experiments: - Superiority: WHATsNET performs significantly and consistently better than ten competitors on six real-world hypergraphs - Usefulness: WHATsNET is demonstrated useful in three applications: (a) ranking aggregation, (b) node clustering, and (c) product return prediction

Problem Definition: Edge-Dependent Node Classification

• Examples of Edge-Dependent Node Classification:

• (a) Co-Authorship

	<u>Autho</u>	rs (Nodes)	
Y Bengio	(YB)	J Weston	(JW)
J Louradour	(JL)	A Bordes	(AB)
R Collobert	(RC)	S Bengio	(SB)

Publications (Hyperedges)

E1: Curriculum learning

- Y Bengio, J Louradour, R Collobert, J Weston ICML'09
- E2: Learning structured embeddings of knowledge bases A Bordes, J Weston, R Collobert, Y Bengio – AAAI'11
- **3**: A parallel mixture of SVMs for very large scale – NIPS'01 R Collobert, S Bengio, Y Bengio

• (b) Email

People (Nodes)

oan@enron.com	(JO)	arnold@enron.com	(AR)
narry@enron.com	(HA)	ben@enron.com	(BE)
obert@enron.com	(RO)	eric@enron.com	(ER)

Emails (Hyperedges)

To John To	oan@enron.com harry@enron.com, obert@enron.com arnold@enron.com	To CC From	arnold@enron.com Joan@enron.com ben@enron.com	
CC h	narry@enron.com, obert@enron.com arnold@enron.com	CC From	Joan@enron.com ben@enron.com	
From a	robert@enron.com arnold@enron.com	From	ben@enron.com	
From a	arnold@enron.com			
		TITLE : Project Issue		
TITLE : Today's meeting		Email		
		То	robert@enron.com	
		СС	eric@enron.com	
		From	joan@enron.com	
		TITLE : Discussion		

in each email

• Formal Problem Definition:

- **Given:** (a) A hypergraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$: a node set \mathcal{V} and a hyperedge set \mathcal{E} (b) Edge-dependent node labels in some hyperedges $\mathcal{E}' \subset \mathcal{E}$:
 - $y_{v.e}, \forall v \in e, \forall e \in \mathcal{E}'$
 - (c) (Optionally) a node feature matrix X
- Aim to: accurately predict the unknown edge-dependent node labels in $\mathcal{E} \setminus \mathcal{E}'$: $y_{v,e}, \forall v \in e, \forall e \in \mathcal{E} \setminus \mathcal{E}'$

 Desirable Properties as a Benchmark Task for Hypergraph Neural Networks - It evaluates the capability of capturing properties unique to hypergraphs - Existing hypergraph neural networks exhibit limited performance in this task - The predictive outputs can directly be applied to various applications

Classification of Edge-dependent Labels of Nodes in Hypergraphs

<u>Minyoung Choe¹</u>, Sunwoo Kim¹, Jaemin Yoo², and Kijung Shin¹

¹{minyoung.choe, kswoo97, kijungs}@kaist.ac.kr, ²jaeminyoo@cmu.edu Code and Data: https://github.com/young917/EdgeDependentNodeLabel

Kim Jaechul Graduate School

University