VilLain: Self-Supervised Learning on Homogeneous Hypergraphs without Features via Virtual Label Propagation

<u>Geon Lee</u>, Soo Yong Lee, and Kijung Shin

KAIST {geonlee0325, syleetolow, kijungs}@kaist.ac.kr https://github.com/geon0325/VilLain

Summary

- **Goal:** to learn informative node embeddings in hypergraphs **without** any supervision (e.g., labels) or extra information (e.g., features)
- **Previous Work:**

KAIST

1971

- Requires external node features.
- Captures only structural information (no label information)
- **Proposed Method (VilLain):**
- Inspired by **higher-order label homogeneity** in real hypergraphs;
- Learns virtual labels (v-labels) to reproduce the observed pattern without relying on actual labels and input features;
- Generates embeddings from v-label probability assignment vectors — → Captures **potential structure-label relationships**
- Advantages:
- **Minimum Requirements:** Does not require any supervision (e.g., node labels) or external information (e.g., node features)
- **Versatility:** Generates general-purpose embeddings —
- **Accuracy:** Outperforms the competitors up to 72% \uparrow accuracy —

Proposed Method: VilLain

- VilLain learns versatile node embeddings for hypergraphs.
- Learns distributions of "virtual" labels (v-labels) w/o actual labels; —
- V-labels are propagated across the hypergraph; —
- Versatile node embeddings are generated from v-label probability assignment vectors.

- VilLain aims to reproduce the higher-order label homogeneity present in real-world hypergraphs by optimizing v-label distributions.
- Specifically, it aims to minimize the following self-supervised losses:

Background: Hypergraphs

- Hypergraphs model group interactions.
- Each hyperedge is a subset of any number of nodes

Hypergraph Representation Learning (HRL) learns node embeddings. Self-supervised HRL learns embeddings without external node labels.

Motivations

- Most HRL methods require external features.
- External features are **often missing** in real-world hypergraphs.
- **Existing HRL methods that** *do not require external features* consider only structural information.
- They do not consider **potential interplay with labels**.
- They can be **suboptimal** in some applications (e.g., node cls.).

- Structure

Local Loss

Capture the higher-order homogeneity of v-labels, motivated by the **observations** in real-world hypergraphs.

Make v-label distribution **distinctive** by inducing v-label clusters disjoint from each other.

> Make v-label distribution **balanced** to prevent any single v-label's dominance.

Experimental Results

Q1. Accuracy: VilLain outperforms graph and hypergraph

Method	DBLP	Trivago Amazon		Primary	High	Citeseer	Cora	Pubmed	Rank	
GCN	67.37 ± 1.45	38.06 ± 1.49	28.73 ± 4.73	75.63 ± 5.08	96.25 ± 2.55	60.64 ± 3.47	72.96 ± 1.82	77.56 ± 2.58	7.00 ± 2.91	
GAT	61.74 ± 1.97	51.52 ± 0.68	30.94 ± 2.13	66.79 ± 4.73	90.58 ± 2.76	49.57 ± 2.64	58.09 ± 2.14	73.67 ± 1.78	11.75 ± 3.83	
Deepwalk	29.03 ± 1.43	16.85 ± 0.45	25.43 ± 1.72	84.89 ± 3.67	99.31 ± 0.48	45.10 ± 3.18	56.58 ± 1.88	68.58 ± 2.60	11.62 ± 4.71	
Node2vec	29.21 ± 1.89	16.88 ± 0.44	25.27 ± 2.36	83.53 ± 3.09	99.38 ± 0.45	45.37 ± 3.17	59.15 ± 1.84	69.05 ± 3.00	11.00 ± 4.35	
DGI	62.37 ± 3.32	73.46 ± 1.22	31.80 ± 1.45	86.66 ± 4.51	92.49 ± 0.60	61.36 ± 2.91	71.23 ± 2.04	77.51 ± 1.38	7.25 ± 3.59	
GRACE	71.86 ± 2.51	OOM	OOM	63.78 ± 5.12	99.03 ± 0.30	61.16 ± 2.78	73.43 ± 1.81	77.70 ± 1.81	5.50 ± 4.75	
GMI	64.19 ± 1.63	OOM	OOM	80.10 ± 4.94	96.61 ± 2.63	58.67 ± 2.68	71.31 ± 1.69	75.51 ± 2.77	9.16 ± 1.57	
HGNN	66.60 ± 2.18	OOM	OOM	88.28 ± 5.02	92.19 ± 3.84	60.91 ± 2.32	72.90 ± 2.00	76.58 ± 2.86	7.50 ± 3.09	
HNHN	63.99 ± 2.21	59.52 ± 1.64	28.99 ± 2.63	91.31 ± 2.47	96.83 ± 1.25	59.02 ± 1.63	68.81 ± 1.26	75.33 ± 1.77	7.50 ± 2.39	
AllSet	63.67 ± 1.89	36.58 ± 0.93	21.75 ± 1.67	85.94 ± 3.02	95.70 ± 1.66	56.08 ± 1.95	67.73 ± 1.81	74.11 ± 2.04	10.75 ± 1.08	
UniGNN	67.16 ± 2.15	69.98 ± 1.60	33.77 ± 3.22	88.88 ± 3.58	95.12 ± 3.97	59.10 ± 2.76	71.44 ± 1.03	74.37 ± 2.10	7.12 ± 3.09	
HyperGCL	58.72 ± 1.54	74.99 ± 1.23	22.86 ± 2.01	74.07 ± 6.06	85.79 ± 8.92	57.54 ± 1.61	74.99 ± 1.33	78.44 ± 3.33	8.87 ± 5.18	
Hyper2vec	67.18 ± 1.78	75.82 ± 1.45	OOT	92.52 ± 2.45	96.34 ± 1.34	61.50 ± 2.60	71.79 ± 1.63	77.04 ± 1.51	4.85 ± 2.35	
LBSN	22.63 ± 2.20	47.99 ± 0.82	11.56 ± 0.90	86.71 ± 3.71	95.87 ± 2.28	45.43 ± 2.15	59.70 ± 1.31	54.89 ± 2.38	11.87 ± 3.21	
TriCL	68.18 ± 1.36	OOM	OOM	$\underline{92.67 \pm 2.50}$	98.10 ± 1.02	59.17 ± 3.35	72.35 ± 1.53	$\underline{78.57 \pm 1.88}$	4.16 ± 1.95	
VilLain	77.16 ± 1.26	79.43 ± 1.63	57.95 ± 2.47	93.66 ± 3.93	99.19 ± 0.41	61.53 ± 3.17	75.03 ± 1.38	78.82 ± 1.47	$ $ 1.25 \pm 0.66	

Q2. Versatility: VilLain performs best in various downstream

Mathad	Hyperedge Prediction (Acc.)							Node Clustering (NMI)								Node Retrieval (MAP)											
Method	DB	TV	AZ	PR	HG	CS	CR	PM	Rank	DB	TV	AZ	PR	HG	CS	CR	РМ	Rank	DB	TV	AZ	PR	HG	CS	CR	PM	Rank
Deepwalk	63.9	61.3	69.4	<u>83.8</u>	85.9	69.6	67.2	65.9	6.25	0.7	16.7	7.8	85.2	100.0	14.6	23.9	34.4	5.00	21.3	7.5	27.7	81.6	98.7	27.6	29.2	49.0	6.37
Node2vec	64.2	61.4	69.3	83.2	85.4	70.4	66.9	65.8	6.62	0.9	17.0	7.7	83.5	100.0	14.5	23.8	32.8	5.87	21.6	7.1	27.8	81.1	98.6	27.3	29.4	49.4	6.50
DGI	86.1	83.8	<u>90.8</u>	79.1	84.4	79.2	76.3	80.9	3.75	16.6	44.5	<u>13.0</u>	84.4	73.9	29.1	32.1	31.3	5.62	36.1	37.3	31.1	89.7	97.8	<u>43.8</u>	50.6	61.7	3.25
GRACE	85.4	OOM	OOM	80.3	87.4	77.9	74.5	79.1	4.00	43.0	OOM	OOM	67.6	98.2	33.0	46.0	31.6	5.00	50.2	OOM	OOM	61.4	99.5	41.1	54.2	60.9	4.00
GMI	75.6	OOM	OOM	82.4	85.9	74.4	69.4	72.3	5.50	27.8	OOM	OOM	84.1	93.1	25.3	42.6	18.7	6.50	34.6	OOM	OOM	80.0	97.8	35.9	41.6	55.1	6.33
Hyper2vec	71.2	72.4	OOT	76.4	79.6	78.1	71.7	71.5	6.14	43.4	<u>66.3</u>	OOT	92.5	99.3	34.3	45.5	33.6	2.27	35.5	<u>43.1</u>	OOT	85.7	90.7	41.2	46.7	55.6	4.85
LBSN	48.7	<u>89.1</u>	63.7	79.4	87.1	74.3	69.6	66.1	5.87	1.1	39.4	2.7	85.5	97.8	12.1	29.0	4.6	6.50	21.0	19.1	29.1	81.3	93.2	30.6	40.1	43.5	6.62
TriCL	77.4	OOM	OOM	84.0	<u>87.8</u>	<u>82.0</u>	76.7	80.5	2.33	38.0	OOM	OOM	<u>87.8</u>	98.7	<u>34.4</u>	44.8	<u>33.7</u>	3.00	45.1	OOM	OOM	<u>89.9</u>	97.6	42.4	<u>55.0</u>	<u>61.9</u>	<u>3.16</u>
VilLain	81.6	95.1	94.9	83.2	87.8	82.1	79.0	82.8	1.50	46.6	69.4	35.2	85.7	98.7	34.5	50.4	32.7	2.25	60.2	67.2	53.6	91.3	<u>99.0</u>	46.4	58.0	64.4	1.12

Global Loss

Observations

- **Obs 1. Label homogeneity** in real-world hyperedges
- Hyperedges tend to contain the same labeled nodes.
- **Obs 2. Higher-order label homogeneity** in real-world hyperedges
- Label homogeneity is maintained strong even when labels are propagated for multiple steps.

Q3. Scalability: VilLain scales linearly with hypergraph size and #steps.

Q4. Generalizability: VilLain performs well on unobserved nodes.

