
Roadmap: Targets -> Conditions -> Problems
• With the concrete targets, we (1) derive detailed formulae for various 

prevalent (i.e., commonly-involved) conditions, and (2) combine these  
formulae for different CO problems involving such conditions

Background: UL4CO
• Combinatorial optimization (CO) is naturally discrete
• The output of neural networks is typically continuous
Q: How to differentiably evaluate continuous outputs for discrete questions?
• Supervision learning is an option, but obtaining “ground-truth” optimal 

solutions is impractical for NP-hard CO problems or large instances

UL4CO: Unsupervised Learning for Combinatorial Optimization
• (1) Seeing each continuous output as a distribution of discrete solutions
• (2) Evaluating the expectation of objective on the distribution
• Unsupervised: Without the supervision of “ground-truth” solutions

Deriving Formulae for Conditions to Meet the Targets Combine the Conditions for Different Problems 

Concretizing Targets: What Do We Need?
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Q: What mathematical properties do we need to achieve for both steps?
• (1) Expectation evaluation: There are known good properties, but 

existing works do not tell us how to satisfy them
- Good properties: Differentiability, entry-wise concavity, etc.

Our Theorem: All You Need Is the Expectation of a Tight Upper Bound
• Tight: Have the same optimum with the original objective

• (2) Solution derandomization: Existing derandomization schemes are 
either random sampling or iterative rounding
- Random sampling: Sampling from the learnt distribution; it needs
many samples and good luck 

- Iterative rounding: Determining sub-solutions one by one; performance
may highly depend on the order of rounding

Our Proposed Scheme: Incremental Greedy Derandomization
• Greedy: Find the best sub-solution to derandomize at each step
• Incremental: Based on the incremental differences after each possible 

derandomization step, instead of evaluating the whole objective

We Show the Empirical Usefulness of Our Derivations
• Datasets: Both synthetic datasets and real-world datasets

- We consider inductive settings, i.e., the models are always trained on
synthetic datasets even when tested on real-world datasets

• Baselines: Simple baselines (random and greedy), integer-programming 
solvers (Gurobi and SCIP), ML methods (CardNN [ICLR’23] and RL)

The Proposed Method Achieves the Best Time-Performance Trade-off

Two Major Technical Steps and Corresponding Challenges of UL4CO
• (1) Expectation evaluation: Naively evaluating each possible discrete 

solutions is computationally prohibitive (specifically, exponential)
Q: How to efficiently and accurately evaluate expected objectives?
• (2) Solution derandomization: What we get is still continuous outputs (i.e., 

good solution distributions), not directly discrete solutions
Q: How to efficiently obtain good discrete solutions from learnt outputs?
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Target -> Conditions: What We Need to Do for Each Condition
• (1) Expectation evaluation: We first find a tight upper bound of the objective, 

and then derive the expectation of the tight upper bound
• (2) Solution derandomization: We derive its incremental differences, i.e., the 

change in the objective after each possible derandomization step

Original 
Distribution

Possible 
Derandomization

Steps

Incremental Difference 
Between Each Possible
Derandomization Step 

and Original Distribution

Condition: Cardinality Constraints
• Definition: The number of YES’s (i.e., 1’s) should be in a given range

- Example: At most three YES’s are allowed

• Expectation: The cardinality of a given distribution follows a Poisson binomial
distribution, and we adopt a method based on the discrete Fourier transform

• Incremental differences: We use the recursive formula of Poisson binomial

Condition: Minimum Within a Subset
• Definition: The minimum of a given function on positive sub-solutions

- Example: The function value of each sub-solution is written in the block

3 1 2 5 4 3 1 2 5 4 3 1 2 5 4 3 1 2 5 4

• Expectation: The minimum is achieved on a sub-solution if and only if 
- (1) the sub-solution is a YES and
- (2) any other sub-solution with a smaller function value is a NO

• Incremental differences: The change of a sub-solution only affects the sub-
solutions with higher function values

See the Main Paper for the Details of Other Conditions
• Covering, cliques, non-binary decisions, and uncertainty

Conditions -> Problems: What We Need to Do for Each Problem
• We first analyze what conditions are involved in the problem
• We then combine the formulae for those conditions

Problem: Facility Location
• Definition: Given a group of locations and a number 𝒌𝒌, we aim to find 𝒌𝒌

locations as “facilities” so that the summation of distances from each 
location to its closest facility is minimized

• Involved conditions: (1) Cardinality constraints (𝒌𝒌 locations should be 
chosen) and (2) minimum within a subset (the distance to the closest 
facility is counted for each location)
- Hence, we just combine the derivations for (1) cardinality constraints    
and (2) minimum within a subset for the facility location problem

See the Main Paper for the Details of Other Problems
• Maximum coverage: cardinality constraints + covering
• Robust coloring: cliques + uncertainty + non-binary decisions

ideal ideal
Facility Location: 800 locations Maximum Coverage: 1000 sets

See the Main Paper for the Full Results
• Results on real-world datasets
• Results on the robust coloring problem

Conclusion and Discussion
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Our Main Contributions in This Work
• We mathematically formulated and concretized the targets for UL4CO
• We derived formulae for various conditions to meet the targets
• We applied our derivations to different CO problems

Discussion
• Our targets can be used for guiding the derivations of other conditions 
• Our formulae can be used for other problems involving such conditions
• We will also explore such possibilities in the future

positivenegative
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