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Background: UL4CO

 Combinatorial optimization (CO) is naturally discrete .:-:I

* The output of neural networks is typically continuous _:I

Q: How to differentiably evaluate continuous outputs for discrete questions?

* Supervision learning is an option, but obtaining “ground-truth” optimal
solutions is impractical for NP-hard CO problems or large instances

UL4CO: Unsupervised Learning for Combinatorial Optimization

* (1) Seeing each continuous output as a distribution of discrete solutions
* (2) Evaluating the expectation of objective on the distribution
 Unsupervised: Without the supervision of “ground-truth” solutions
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Evaluate Discrete Solutions
and Take Expectation

Distribution of
Discrete Solutions

Gradient flows! It is differentiable!

Two Major Technical Steps and Corresponding Challenges of UL4CO

* (1) Expectation evaluation: Naively evaluating each possible discrete
solutions is computationally prohibitive (specifically, exponential)

Q: How to efficiently and accurately evaluate expected objectives?

* (2) Solution derandomization: What we get is still continuous outputs (i.e.,
good solution distributions), not directly discrete solutions

Q: How to efficiently obtain good discrete solutions from learnt outputs?

Concretizing Targets: What Do We Need?

Q: What mathematical properties do we need to achieve for both steps?
* (1) Expectation evaluation: There are known good properties, but
existing works do not tell us how to satisfy them
- Good properties: Differentiability, entry-wise concavity, etc.

Our Theorem: All You Need Is the Expectation of a Tight Upper Bound
* Tight: Have the same optimum with the original objective

* (2) Solution derandomization: Existing derandomization schemes are
either random sampling or iterative rounding
- Random sampling: Sampling from the learnt distribution; it needs
many samples and good luck *
- lterative rounding: Determining sub-solutions one by one; performance
may highly depend on the order of rounding

Our Proposed Scheme: Incremental Greedy Derandomization

* Greedy: Find the best sub-solution to derandomize at each step

* Incremental: Based on the incremental differences after each possible
derandomization step, instead of evaluating the whole objective

Deriving Formulae for Conditions to Meet the Targets

Roadmap: Targets -> Conditions -> Problems

* With the concrete targets, we (1) derive detailed formulae for various
prevalent (i.e., commonly-involved) conditions, and (2) combine these
formulae for different CO problems involving such conditions

Applications
for different
problems:
facility location,
max covering,
& robust coloring

Derivations
for various
conditions:
cardinality,
minimum,
covering, etc.

Target -> Conditions: What We Need to Do for Each Condition

* (1) Expectation evaluation: We first find a tight upper bound of the objective,

and then derive the expectation of the tight upper bound

* (2) Solution derandomization: We derive its incremental differences, i.e., the

change in the objective after each possible derandomization step
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* Definition: The number of YES’s (i.e., 1’s) should be in a given range
- Example: At most three YES’s are allowed
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 Expectation: The cardinality of a given distribution follows a Poisson binomial
distribution, and we adopt a method based on the discrete Fourier transform

* Incremental differences: We use the recursive formula of Poisson binomial

* Definition: The minimum of a given function on positive sub-solutions
- Example: The function value of each sub-solution is written in the block
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Expectation: The minimum is achieved on a sub-solution if and only if
- (1) the sub-solution is a YES and
- (2) any other sub-solution with a smaller function value is a NO
* Incremental differences: The change of a sub-solution only affects the sub-
solutions with higher function values

* Covering, cliques, non-binary decisions, and uncertainty

Combine the Conditions for Different Problems

Conditions -> Problems: What We Need to Do for Each Problem
* We first analyze what conditions are involved in the problem
e We then combine the formulae for those conditions

* Definition: Given a group of locations and a number k, we aim to find k
locations as “facilities” so that the summation of distances from each
location to its closest facility is minimized

* |nvolved conditions: (1) Cardinality constraints (k locations should be
chosen) and (2) minimum within a subset (the distance to the closest
facility is counted for each location)

- Hence, we just combine the derivations for (1) cardinality constraints
and (2) minimum within a subset for the facility location problem

* Maximum coverage: cardinality constraints + covering
* Robust coloring: cliques + uncertainty + non-binary decisions

Experimental Results

We Show the Empirical Usefulness of Our Derivations
 Datasets: Both synthetic datasets and real-world datasets
- We consider inductive settings, i.e., the models are always trained on
synthetic datasets even when tested on real-world datasets
* Baselines: Simple baselines (random and greedy), integer-programming
solvers (Gurobi and SCIP), ML methods (CardNN [ICLR’23] and RL)

The Proposed Method Achieves the Best Time-Performance Trade-off
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* Results on real-world datasets
* Results on the robust coloring problem

Conclusion and Discussion

Our Main Contributions in This Work

* We mathematically formulated and concretized the targets for UL4CO
* We derived formulae for various conditions to meet the targets

* We applied our derivations to different CO problems

Discussion

* Qur targets can be used for guiding the derivations of other conditions
 Our formulae can be used for other problems involving such conditions
* We will also explore such possibilities in the future
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