

Spear and Shield: Adversarial Attacks and Defense Methods for Model-based Link Prediction on Continuous-Time Dynamic Graphs Dongjin Lee¹, Juho Lee², Kijung Shin^{1,2} ¹School of Electrical Engineering, ²Kim Jaechul Graduate School of AI, KAIST, South Korea

Code and Data: <u>https://github.com/wooner49/T-spear-shield</u>

{dongjin.lee, juholee, kijungs}@kaist.ac.kr

Summary

Goal:

- 1. To explore the weakness of temporal graph neural networks (TGNNs) by proposing an adversarial attack for link prediction on continuous-time dynamic graphs (CTDGs)
- 2. To enhance the robustness of TGNNs against perturbations and alleviate performance degradation
- **Proposed Algorithms:**
- **T-SPEAR:** a gray-box and poisoning attack for link prediction on CTDGs
- **T-SHIELD:** a robust training method for TGNNs
- **Contributions**:
- We formulate adversarial attacks on CTDGs under 4 realistic constraints regarding unnoticeability.
- Our attack can significantly degrade TGNNs' performances in link prediction.

Proposed Defense: T-SHIELD

- We proposed a robust training method for TGNNs, called <u>T-SHIELD</u>.
- Knowledge:
 - No information about the attacker
 - Not even know that the dynamic graph has been corrupted.
- **Goal**: to <u>alleviate performance degradation</u> caused by adversarial attacks
- **1.** Edge filtering: To identify and eliminate potential adversarial edges

 γ if $\hat{y}_{uvt} \ge \tau$, then (u, v, t) is a <u>legitimate edge</u>

 $\hat{y}_{uvt} < \tau$, then (u, v, t) is a *potential adversarial edge* (\hat{e})

\star Two issues arise when filtering with fixed threshold τ .

• We use cosine annealing scheduler to gradually increase the threshold from τ_s to τ_e .

Our defense can accurately classify the adversarial edges and mitigate performance degradation.

TGNNs for Link Prediction

- TGNNs are commonly trained using temporal interactions as supervision. **Given**: two nodes *u* and *v* at time *t*
- **TGNN's goal**: to learn time-aware node embeddings $h_{\mu}(t)$ and $h_{\nu}(t)$

Challenges

t_2 t_3 t_4 t_5 t_6 t_7 t_8

Proposed Attack: T-SPEAR

- We proposed an effective adversarial attack method, called <u>T-SPEAR</u>.
 - **Constraints**: adhering to the <u>four constraints</u> (C1-C4) for unnoticeability
 - **How**: by <u>injecting adversarial edges</u> into the original edge sequence
 - **Goal**: to <u>degrade the link prediction performance</u> of TGNN

For unnoticeability (see details in the paper)

- **C1**) Perturbation budget
- **C2**) Distribution of time
- **C3**) Endpoints of adversarial edges

C4) Number of perturbations per node

- **Step 1**: Train the surrogate model (TGN)
- **Step 2**: Sample the timestamp where the adversarial edges are inserted
- **Step 3**: Choose the endpoints which compose the adversarial edges
 - We propose Hungarian selection to select adversarial edges that are harmful and have minimal overlapping endpoints at the same time.

Bitcoin	TGN JODIE TGAT DySAT	$\begin{array}{c} 34.6\pm0.7\\ 21.8\pm0.4\end{array}$	$\begin{array}{c} 31.4\pm0.5\\ 18.6\pm0.3 \end{array}$	30.3 ± 0.6	$\begin{array}{c} 32.1\pm0.6\\ 18.5\pm0.4 \end{array}$	$\begin{array}{c} 29.2\pm0.8\\ 17.1\pm0.4\end{array}$	$\begin{array}{c} \underline{46.2 \pm 0.7} \\ \mathbf{\overline{27.9 \pm 0.9}} \\ \mathbf{16.6 \pm 0.6} \\ 79.0 \pm 0.2 \end{array}$	$\underline{28.9\pm0.7}$	
A.P.D.↓		-	-14.7%	-14.9%	-7.5%	-16.3%	<u>-16.4%</u>	-18.9%	
*JACCARD cannot be applied to bipartite graphs.									

 43.0 ± 0.5

 21.9 ± 0.2

 14.9 ± 0.2

 65.3 ± 0.5

 29.3 ± 3.9

 10.0 ± 0.1

 14.5 ± 0.3

 44.2 ± 0.9

 14.7 ± 0.1

MRR (Mean Reciprocal Rank) as Perturbation Rate Increases

 23.8 ± 0.6

 10.2 ± 0.2

 14.5 ± 0.1

 42.5 ± 0.3

 15.5 ± 0.3

DYSAT 71.3 \pm 0.9 65.3 \pm 0.7 65.3 \pm 0.3

 21.9 ± 0.5 22.3 ± 0.4

JODIE

DYSAT

JODIE

TGAT

TGAT

TGN

MOOC

UCI

 37.4 ± 2.0

 11.8 ± 0.1

 18.4 ± 0.1

 44.2 ± 0.4

 24.9 ± 0.4

 16.3 ± 0.3

		letric : AUR erturbatio) : 0.3
Attack	Model	Wikipedia	MOOC	UC]
	TGN-COSINE	0.605	0.633	0.49
RANDOM	T-SHIELD-F	0.848	0.697	0.53
	T-SHIELD	0.850	0.709	0.53
	TGN-COSINE	0.474	0.556	0.51
T-Spear	T-SHIELD-F	<u>0.858</u>	0.679	0.60
	T-SHIELD	0.864	0.674	0.62

 26.6 ± 1.6

 9.6 ± 0.1

 14.4 ± 0.2

 42.9 ± 0.8

 $\textbf{21.4} \pm \textbf{0.5}$

 15.7 ± 0.4

 65.3 ± 0.6

 10.7 ± 0.2

 14.5 ± 0.2

 42.5 ± 0.5

 21.8 ± 0.6

 14.7 ± 0.2

 65.4 ± 0.3

 $\textbf{22.8} \pm \textbf{1.9}$

 $\textbf{9.3} \pm \textbf{0.2}$

 $\textbf{14.3} \pm \textbf{0.2}$

 $\textbf{41.6} \pm \textbf{0.3}$

 21.7 ± 0.2

 14.6 ± 0.2

 $\textbf{64.7} \pm \textbf{0.4}$

> T-SHIELD-F: use only edge filtering

Defense Performance

Under Random attack

M - 1-1	Wikipedia (Clean: 80.5 ± 0.5)			MOOC (Clean: 61.8 ± 2.1)			UCI (Clean: 44.2 ± 0.4)			
Model	p = 0.1	p = 0.2	p = 0.3	p = 0.1	p = 0.2	p = 0.3	p = 0.1	p = 0.2	p = 0.3	A.P.G.↑
TGN	73.2 ± 1.1	68.3 ± 0.9	66.0 ± 0.6	58.7 ± 1.0	57.8 ± 0.9	55.4 ± 1.7	44.5 ± 0.3	43.5 ± 0.7	42.5 ± 0.3	-
TGN-SVD	65.3 ± 1.1	63.9 ± 1.2	60.6 ± 0.9	58.8 ± 0.3	58.0 ± 1.4	55.0 ± 1.1	$\textbf{44.5} \pm \textbf{0.7}$	$\textbf{44.3} \pm \textbf{0.5}$	$\textbf{44.7} \pm \textbf{0.7}$	-2.1%
TGN-COSINE	75.8 ± 0.5	71.6 ± 0.7	68.8 ± 0.4	53.7 ± 2.7	52.8 ± 4.1	54.0 ± 3.2	43.2 ± 0.6	43.0 ± 0.6	43.8 ± 0.4	-0.9%
T-SHIELD-F	$\textbf{77.4} \pm \textbf{0.5}$	$\textbf{77.4} \pm \textbf{0.2}$	76.0 ± 0.3	59.2 ± 1.0	$\textbf{58.8} \pm \textbf{1.3}$	58.0 ± 0.6	44.1 ± 0.2	44.2 ± 0.6	44.2 ± 0.7	+5.1%
T-SHIELD	$\underline{77.3\pm0.5}$	$\underline{77.0\pm0.3}$	$\overline{\textbf{76.5}\pm\textbf{0.5}}$	$\overline{\textbf{59.4}\pm\textbf{1.2}}$	$\underline{58.4 \pm 1.1}$	$\overline{\textbf{58.4}\pm\textbf{0.6}}$	$\overline{43.9\pm0.6}$	$\underline{44.3\pm0.7}$	$\underline{44.6\pm0.8}$	+5.3%

Clean: MRR when attack is not applied.

Under T-SPEAR attack

	Wikipedia (Clean: 80.5 ± 0.5)	MOOC (Clean: 61.8 ± 2.1)	UCI (Clean: 44.2 ± 0.4)	
36 1 1				

more inconspicuous and balanced perturbations

Model A.P.G.² p = 0.2p = 0.3p = 0.1 p = 0.2 p = 0.3p = 0.1 p = 0.2 p = 0.3p = 0.1 $71.0 \pm 2.0 \quad 63.7 \pm 2.6 \quad 60.0 \pm 1.6 \quad 55.2 \pm 0.6 \quad 52.4 \pm 0.4 \quad 48.2 \pm 1.3 \quad 43.6 \pm 1.0 \quad 41.7 \pm 0.5 \quad 41.6 \pm 0.3$ TGN 67.6 ± 0.9 61.2 ± 1.4 58.1 ± 1.8 55.7 ± 1.3 50.6 ± 2.6 50.1 ± 2.1 **46.0** \pm **0.5** 45.5 ± 0.4 **46.5** \pm **0.4** +1.8% TGN-SVD TGN-COSINE $72.3 \pm 0.8 \quad 62.9 \pm 2.0 \quad 59.6 \pm 2.1 \quad 53.5 \pm 3.1 \quad 47.6 \pm 1.7 \quad 45.2 \pm 2.1 \quad 43.7 \pm 0.4 \quad \overline{44.1 \pm 0.3} \quad 43.2 \pm 1.3 \quad -1.0\%$ **T-SHIELD-F** 77.3 \pm 0.5 76.8 \pm 0.3 75.3 \pm 0.4 58.5 \pm 0.5 55.7 \pm 0.9 54.5 \pm 0.9 44.4 \pm 0.8 45.5 \pm 0.3 44.7 \pm 0.4 \pm 11.0% 77.1 ± 0.2 76.9 ± 0.3 76.1 ± 0.3 76.1 {\pm 0.3 76.1 ± 0.3 76.1 {\pm 0.3 76.1 **T-Shield**