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Summary

• Summary We utilize large language models (LLMs) for                    
time series event prediction focusing on three key purposes:
(1) Contextualization, (2) Augmentation, and (3) Prediction.

• Method We introduce TimeCAP, an effective framework for time 
series event prediction using LLMs agents through three key steps:

‒ Contextualize time series data into a textual summary;
‒ Augment raw time series data and prompts;
‒ Predict the outcome of future events.

• Experiments TimeCAP demonstrates outstanding performance with:
‒ Accurate: Achieves up to 28.75%↑ F1 score over SOTA methods;
‒ Effective: Employs LLMs beyond their typical roles as predictors;
‒ Interpretable: Provides clear rationales behind its predictions.

Time Series Event Prediction

• Real-world time series data often involves contextual information.
‒ e.g. 1, Hourly temperature is associated with geographical factors.
‒ e.g. 2, Daily stock prices are affected by market trends.
→ Contextual insights beyond raw time series data are crucial.

• Time series event prediction is crucial in various applications.
‒ Input: Time series data;
‒ Output: Predicted outcome of the future events.
‒ Goal: To provide accurate and interpretable predictions.

TimeCP: Contextualize & Predict

Experimental Results

LLMs as Time Series Predictors

• Large language models (LLMs) exhibit following strengths:
‒ Sophisticated reasoning and pattern recognition capabilities;
‒ Remarkable few-shot and zero-shot learning capabilities.

• As a result, LLMs have been used for time series analysis. 
‒ Approach 1: Prompt LLMs with time series data.
‒ Approach 2: Fine-tune LLMs using time series data.

• Existing approaches have focused on using LLMs as “predictors.”
‒ LLMs’ contextual understanding capabilities are not fully utilized.

• We present TimeCP, our preliminary method for time series event 
prediction by introducing two LLM agents:

‒ (1) A contextualizer generates a textual summary of input time series;
‒ (2) A predictor predicts future events based on the summary.
→ Contextual insights beyond raw time series data are incorporated.

• Accuracy TimeCAP outperforms its competitors (e.g., PatchTST, 
GPT4TS) under various training ratios.

• Effectiveness Three key steps of TimeCAP are effective.

• Interpretability TimeCAP provides implicit and explicit interpretations.

TimeCAP: Contextualize, Augment, and Predict

• We present TimeCAP, our advanced version of our framework.
‒ It employs a multi-modal encoder that synergizes with LLM agents.

‒ Input augmentation: The textual summaries generated by the LLM 
agent provide contextual insights to the multi-modal encoder.

‒ Prompt augmentation: The multi-modal encoder learns enhanced 
input representations to retrieve highly relevant in-context examples.

Stock Price Energy Consumption Weather

Input Time Series

Will it rain tomorrow?

Will the # of infected people increase in the next season?

Will the stock price increase tomorrow?

Prompt LLMs with Time Series
(e.g., LLMTime; NeurIPS’23)

Fine-tune LLMs using Time Series
(e.g., TimeLLM; ICLR’24)
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