SPLASH: Simple yet Effective Node Property Prediction
on Edge Streams under Distribution Shifts
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Summary Proposed Method: SPLASH

* Motivation * Overview of SPLASH
* To address two limitations (performance degradation when node features are absent &  SPLASH is composed of node feature augmentation, node feature selection, and the SLIM model.
complex model architecture) of Temporal Graph Neural Networks (TGNNs) in node Training  ( Traming Node Feature Augmentation Node Feature Selection SLIM Model
property prediction under distribution shifts, which are common in real-world scenarios. Phase |_CTDG ) ~ |reature Augmentation [~ | Feature Selection |~ | Model Training
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o Proposed Method: SPLASH Phase . CTDG Feature Propagation Model Inference

* We propose SPLASH for efficient and effective prediction of node properties in edge

streams under distribution shifts.
* SPLASH introduces (1) node feature augmentation processes on edge streams, (2) a task-
specific feature selection scheme, and (3) SLIM, a simple TGNN model that leverages them.

* Node Feature Augmentation — Feature Augmentation (Training Phase)
 Random Feature Augmentation (process R) - To encode absolute positions of seen nodes.
* Positional Feature Augmentation (process P) - To encode relative positions of seen nodes.
e Structural Feature Augmentation (process S) - To encode structural patterns of seen nodes.

e Contribution

* Fast & Lightweight: SPLASH uses only MLP layers, enabling fast inference.

 Effective: SPLASH outperforms baselines in node property prediction.
* Robust: SPLASH shows the smallest performance drop as the distribution shift intensifies.

Introduction
* Node Property Prediction in Real-world Applications * Node Feature Augmentation — Feature Propagation (Test Phase)
« What are node properties?: Various characteristics of entities are often represented as * Random and Positional Feature Propagation: We obtain the node features of unseen nodes
node properties, and predicting missing properties has many real-world applications. using a simple linear interpolation of neighboring nodes’ features.
* Challenge: node properties can change dynamically in real-world networks. | | * Structural Feature Propagation: We apply the same process S to unseennodes.
* Subtasks: Depending on the target property—user class, anomalous state, or short-term Seen Nodes Unseen Nédjs @ Degree Query  {ruscicd
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* Node Feature Selection (Training Phase)
* Temporal Graph Neural Networks (TGNNs) * Feature Selection is performed in the training phase using linear layers to efficiently identify
* Definition: TGNNs are neural networks designed for evolving graphs (edge streams) a feature augmentation process that is effective for node property prediction.
by incrementally updating node embeddings that capture temporal and structural Node Encoding  Training Input (before t,,;, = t©®) " Validation Input (after £, = t©)
patterns over time, enabling predictions on dynamically changing node properties. Cmg‘t"’/fﬂceﬁs £ @tm @t@ t(a) t(7) @Stm @tm)
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° Limitations Of TGNNs in NOde Property Prediction Encoding with Augmented Features Fitting with Node Encodings Augmentation Process Selection
* Limitation 1: TGNNs are less effective when node features are absent. However, in real- * SLIM Model (Both Training and Test Phases)
world graphs, it is often difficult to obtain additional external node features. * The SLIM model is our proposed TGNN model to efficiently and effectively predict node
e Limitation 2: TGNNSs are vulnerable to distribution shifts, common in dynamic real- properties using a simple MLP-based model with augmented node features.
world graphs, due to their complex architectures such as RNNs and attention modules. [ |
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Experimental Results
» Research Questions * RQ2) Efficiency & Scalability

e SPLASH maintains a constant inference time per property query and offers the best

* We review our experiments for answering the following research questions:

1) Accuracy & Generalization, 2) Efficiency & Scalability, 3) Qualitative Analysis. trade-off between performance and inference speed.
. . Better «¢umm
* RQ1) Accuracy & Generalization - o™® o
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* RQ3) Qualitative Analysis

* In the Email-EU dataset, which has static class properties, SPLASH generates the most
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T pataser o T pataser distinct clusters for each class, compared to baselines.
Dynamic anomaly detection Dynamic node classification Node affinity prediction
* SPLASH shows the least performance drop as the distribution shift increases, demonstrating Node Representations Node Representations  Node Representations
better generalization capabilities compared to baselines. In Email-EU (SPLASH) In Email-EU (TGAT+RF) In Email-EU (TGN+RF)
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