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SPLASH: Simple yet Effective Node Property Prediction 
on Edge Streams under Distribution Shifts

Summary

• Motivation
• To address two limitations (performance degradation when node features are absent & 

complex model architecture) of Temporal Graph Neural Networks (TGNNs) in node 
property prediction under distribution shifts, which are common in real-world scenarios.

• Proposed Method: SPLASH
• We propose SPLASH for efficient and effective prediction of node properties in edge 

streams under distribution shifts.
• SPLASH introduces (1) node feature augmentation processes on edge streams, (2) a task-

specific feature selection scheme, and (3) SLIM, a simple TGNN model that leverages them.

• Contribution

• Fast & Lightweight: SPLASH uses only MLP layers, enabling fast inference.

• Effective: SPLASH outperforms baselines in node property prediction.
• Robust: SPLASH shows the smallest performance drop as the distribution shift intensifies.

Introduction

• Node Property Prediction in Real-world Applications
• What are node properties?: Various characteristics of entities are often represented as 

node properties, and predicting missing properties has many real-world applications.
• Challenge: node properties can change dynamically in real-world networks.
• Subtasks: Depending on the target property—user class, anomalous state, or short-term 

item preference—the task can be divided into the following subtasks.
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• Temporal Graph Neural Networks (TGNNs)
• Definition: TGNNs are neural networks designed for evolving graphs (edge streams) 

by incrementally updating node embeddings that capture temporal and structural 
patterns over time, enabling predictions on dynamically changing node properties.
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• Limitations of TGNNs in Node Property Prediction
• Limitation 1: TGNNs are less effective when node features are absent. However, in real-

world graphs, it is often difficult to obtain additional external node features.
• Limitation 2: TGNNs are vulnerable to distribution shifts, common in dynamic real-

world graphs, due to their complex architectures such as RNNs and attention modules.
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Proposed Method: SPLASH

• Overview of SPLASH
• SPLASH is composed of node feature augmentation, node feature selection, and the SLIM model.

• Node Feature Augmentation – Feature Augmentation (Training Phase)
• Random Feature Augmentation (process R) - To encode absolute positions of seen nodes.
• Positional Feature Augmentation (process P) - To encode relative positions of seen nodes.
• Structural Feature Augmentation (process S) - To encode structural patterns of seen nodes.

• SLIM Model (Both Training and Test Phases)
• The SLIM model is our proposed TGNN model to efficiently and effectively predict node 

properties using a simple MLP-based model with augmented node features.

• Node Feature Selection (Training Phase)
• Feature Selection is performed in the training phase using linear layers to efficiently identify 

a feature augmentation process that is effective for node property prediction. 
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• Node Feature Augmentation – Feature Propagation (Test Phase)
• Random and Positional Feature Propagation: We obtain the node features of unseen nodes 

using a simple linear interpolation of neighboring nodes’ features.
• Structural Feature Propagation: We apply the same process S to unseen nodes.
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Experimental Results

• Research Questions
• We review our experiments for answering the following research questions: 
   1) Accuracy & Generalization, 2) Efficiency & Scalability, 3) Qualitative Analysis.

• RQ3) Qualitative Analysis 
• In the Email-EU dataset, which has static class properties, SPLASH generates the most 

distinct clusters for each class, compared to baselines.

• RQ1) Accuracy & Generalization
• SPLASH outperforms all baselines in node property prediction, including TGNNs without node 

features and TGNNs using random features.

• SPLASH shows the least performance drop as the distribution shift increases, demonstrating 
better generalization capabilities compared to baselines.

• RQ2) Efficiency & Scalability
• SPLASH maintains a constant inference time per property query and offers the best 

trade-off between performance and inference speed.
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