
Unsupervised�baselines

SLADE: Detecting Dynamic Anomalies in Edge Streams without Labels via Self-Supervised Learning

Summary

Experimental Results

Proposed Method: SLADE

Introduction

Kijung Shin
KAIST AI

kijungs@kaist.ac.kr

Sunwoo Kim
KAIST AI

kswoo97@kaist.ac.kr

Jongha Lee
KAIST AI

jhsk777@kaist.ac.kr

Time

• Motivation
• To address 3 challenges (time delay in detection, dynamically changing states, lack of

anomaly labels) that arise when detecting anomalies in real-world graphs.

• Proposed Method: SLADE
• We propose SLADE for rapid detection of dynamic anomalies in edge streams,

without relying on labels.
• SLADE trains neural network models to perform two self-supervised tasks (temporal

contrast, memory generation) that align with our assumed normal patterns.

• Contribution
• Unsupervised: SLADE can detect dynamic anomalies without label supervision.
• Effective: SLADE outperforms (supervised) baselines in dynamic anomaly detection.
• Constant Inference Speed: SLADE requires a constant inference time per edge.

• Continuous Time Dynamic Graph
• Definition: A stream of temporal edges with timestamps  = ( ,  , …), where

each temporal edge  = ( , , ) arriving at time  is directional from the
source node  to the destination node .

• Why CTDGs?: CTDG-based methods process each new edge, whenever it arrives,
with minimal detection time delay, compared to static-graph or DTDG-based ones.

• Problem Description
• Goal: We aim to accurately classify the current dynamic status of actor node of

each temporal edge in a CTDG, which is either normal or abnormal.
• Focuses: (a) instantly detecting anomalies as they occur, (b) adapting to dynamic

changing states, and (c) handling the scarcity of dynamic anomaly labels.

• Challenges in Detecting Anomalies in Real-world Graphs
• Time Delay in Detection: Time delay in the detection of anomalies can increase harm

to benign users.
• Dynamically Changing States: A user behave normally during one time period but

abnormally during another time period.
• Lack of Anomaly Labels: Many neural network-based methods rely on label supervision

for detecting complex anomalies, but labeled anomalies are often unavailable.

Observable LabelsGround Truth Labels

t-1 t

• Normal Pattern Assumptions
• A1. Stable Long-term Interaction Patterns / A2. Predictability (Restorability) of Patterns

• Proposed Self-Supervised Tasks
• SLADE employs two self-supervised tasks to train its model (i.e., deep neural network)
• S1. Temporal Contrast: This aims to minimize drift in dynamic node representations over

short-term periods (related to A1).
• S2. Memory Generation: This aims to accurately generate (restore) dynamic node

representations based only on recent neighbors (related to A2).

• Core Modules of SLADE
• Memory Modules: The memory of each node represents its long-term interaction patterns.
• Memory Updater: This neural network captures evolving characteristics of nodes’

interaction patterns. It is employed to update the memory.
• Memory Generator: This neural network is used to generate the memory of a target node

from its recent interactions after masking its memory to a zero vector.

• Anomaly Scoring
• In the test phase, SLADE measures how much each node deviates from A1 (by Temporal

Contrast Score) and A2 (by Memory Generation Score) to identify anomalous states.

Previous memory ’
Message 

Current memory 
Memory Updater

Raw message  
Interaction

 …  
Memory module

MLP

GRU

Generated memory 
Recent neighbors aggregation

TGAT

Memory Generator




  
Memory masking 



Temporal Contrast Score Memory Generation Score

Previous memory ’ Current memory  Generated memory  Anomaly score(, )


Query at time t

Cos Sim Cos Sim

• Training Objective
• SLADE assumes that training set nodes are normal and trains neural networks by minimizing

Temporal Contrast Loss and Memory Generation Loss to perform well in S1 and S2.

Time   

Temporal Contrast Loss Memory Generation Loss

Previous memory ’ Current memory 
Current memory 


Training node

  
Other memories

…

Generated memory 
  

Other memories

…

Positive Pair

Positive Pair

Negative Pairs

Negative Pairs

• Research Questions
• We review our experiments for answering the following main research questions:

RQ1) Accuracy, RQ2) Speed RQ3) Type Analysis.

• RQ3) Type Analysis in the Absence of Anomaly Labels
• T1. Hijacked Anomalies (deviated from A1 and A2)
• T2. New or Rarely-Interacting Anomalies (deviated from A1 and A2)
• T3. Consistent Anomalies (deviated from A2)
• The first dataset involves using hijacked accounts to continuously send spam

emails (T1, T3), while the second dataset involves using new accounts (T2, T3).
• SLADE can detect above mentioned anomaly types without relying on labels.

• RQ1) Accuracy
• SLADE outperforms other baselines, including those relying on label

supervision, in dynamic anomaly detection on 4 real-world datasets.

Discussion and Analysis
• Time Complexity Analysis
• The detection time complexity in response to a query node in SLADE is O( + ), which is constant with respect to the graph size.
•  is the recent neighbor sample count, while  and  indicate the

dimension of memory vectors and messages respectively.

Supervised�baselines
SLADE�(with�fixed�hyperparameters)
SLADE�(with�optimal�hyperparameters�in�validation)

• RQ2) Speed in Action
• SLADE maintains a constant inference time per edge regardless of graph size

and offers the best trade-off between performance and inference time.
Better

