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Time

• Motivation
• To address 3 challenges (time delay in detection, dynamically changing states, lack of 

anomaly labels) that arise when detecting anomalies in real-world graphs.

• Proposed Method: SLADE
• We propose SLADE for rapid detection of dynamic anomalies in edge streams, 

without relying on labels.
• SLADE trains neural network models to perform two self-supervised tasks (temporal 

contrast, memory generation) that align with our assumed normal patterns.

• Contribution
• Unsupervised: SLADE can detect dynamic anomalies without label supervision.
• Effective: SLADE outperforms (supervised) baselines in dynamic anomaly detection.
• Constant Inference Speed: SLADE requires a constant inference time per edge.

•  Continuous Time Dynamic Graph
• Definition: A stream of temporal edges with timestamps  = ( ,  , … ), where 

each temporal edge  = ( , , ) arriving at time  is directional from the 
source node  to the destination node .

• Why CTDGs?: CTDG-based methods process each new edge, whenever it arrives, 
with minimal detection time delay, compared to static-graph or DTDG-based ones.

• Problem Description
• Goal: We aim to accurately classify the current dynamic status of actor node of 

each temporal edge in a CTDG, which is either normal or abnormal.
• Focuses: (a) instantly detecting anomalies as they occur, (b) adapting to dynamic 

changing states, and (c) handling the scarcity of dynamic anomaly labels.

• Challenges in Detecting Anomalies in Real-world Graphs
• Time Delay in Detection: Time delay in the detection of anomalies can increase harm 

to benign users.
• Dynamically Changing States: A user behave normally during one time period but 

abnormally during another time period.
• Lack of Anomaly Labels: Many neural network-based methods rely on label supervision 

for detecting complex anomalies, but labeled anomalies are often unavailable.
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• Normal Pattern Assumptions
• A1. Stable Long-term Interaction Patterns / A2. Predictability (Restorability) of Patterns

• Proposed Self-Supervised Tasks
• SLADE employs two self-supervised tasks to train its model (i.e., deep neural network)
• S1. Temporal Contrast: This aims to minimize drift in dynamic node representations over 

short-term periods (related to A1).
• S2. Memory Generation: This aims to accurately generate (restore) dynamic node 

representations based only on recent neighbors (related to A2).

• Core Modules of SLADE
• Memory Modules: The memory of each node represents its long-term interaction patterns.
• Memory Updater: This neural network captures evolving characteristics of nodes’ 

interaction patterns. It is employed to update the memory.
• Memory Generator: This neural network is used to generate the memory of a target node 

from its recent interactions after masking its memory to a zero vector.

• Anomaly Scoring
• In the test phase, SLADE measures how much each node deviates from A1 (by Temporal 

Contrast Score) and A2 (by Memory Generation Score) to identify anomalous states.
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• Training Objective
• SLADE assumes that training set nodes are normal and trains neural networks by minimizing 

Temporal Contrast Loss and Memory Generation Loss to perform well in S1 and S2.
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• Research Questions
• We review our experiments for answering the following main research questions: 

RQ1) Accuracy, RQ2) Speed RQ3) Type Analysis.

• RQ3) Type Analysis in the Absence of Anomaly Labels
• T1. Hijacked Anomalies (deviated from A1 and A2)
• T2. New or Rarely-Interacting Anomalies (deviated from A1 and A2)
• T3. Consistent Anomalies (deviated from A2)
• The first dataset involves using hijacked accounts to continuously send spam 

emails (T1, T3), while the second dataset involves using new accounts (T2, T3).
• SLADE can detect above mentioned anomaly types without relying on labels.

• RQ1) Accuracy
• SLADE outperforms other baselines, including those relying on label 

supervision, in dynamic anomaly detection on 4 real-world datasets.

Discussion and Analysis
• Time Complexity Analysis
• The detection time complexity in response to a query node in SLADE is O( + ), which is constant with respect to the graph size.
•  is the recent neighbor sample count, while  and  indicate the 

dimension of memory vectors and messages respectively.
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• RQ2) Speed in Action
• SLADE maintains a constant inference time per edge regardless of graph size 

and offers the best trade-off between performance and inference time.
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