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Time

• Motivation
• To address 3 challenges (time delay in detection, dynamically changing states, lack of 

anomaly labels) that arise when detecting anomalies in real-world graphs.

• Proposed Method: SLADE
• We propose SLADE for rapid detection of dynamic anomalies in edge streams, 

without relying on labels.
• SLADE trains neural network models to perform two self-supervised tasks (temporal 

contrast, memory generation) that align with our assumed normal patterns.

• Contribution
• Unsupervised: SLADE can detect dynamic anomalies without label supervision.
• Effective: SLADE outperforms (supervised) baselines in dynamic anomaly detection.
• Constant Inference Speed: SLADE requires a constant inference time per edge.

•  Continuous Time Dynamic Graph
• Definition: A stream of temporal edges with timestamps  = ( ,  , … ), where 

each temporal edge  = ( , , ) arriving at time  is directional from the 
source node  to the destination node .

• Why CTDGs?: CTDG-based methods process each new edge, whenever it arrives, 
with minimal detection time delay, compared to static-graph or DTDG-based ones.

• Problem Description
• Goal: We aim to accurately classify the current dynamic status of actor node of 

each temporal edge in a CTDG, which is either normal or abnormal.
• Focuses: (a) instantly detecting anomalies as they occur, (b) adapting to dynamic 

changing states, and (c) handling the scarcity of dynamic anomaly labels.

• Challenges in Detecting Anomalies in Real-world Graphs
• Time Delay in Detection: Time delay in the detection of anomalies can increase harm 

to benign users.
• Dynamically Changing States: A user behave normally during one time period but 

abnormally during another time period.
• Lack of Anomaly Labels: Many neural network-based methods rely on label supervision 

for detecting complex anomalies, but labeled anomalies are often unavailable.
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• Normal Pattern Assumptions
• A1. Stable Long-term Interaction Patterns / A2. Predictability (Restorability) of Patterns

• Proposed Self-Supervised Tasks
• SLADE employs two self-supervised tasks to train its model (i.e., deep neural network)
• S1. Temporal Contrast: This aims to minimize drift in dynamic node representations over 

short-term periods (related to A1).
• S2. Memory Generation: This aims to accurately generate (restore) dynamic node 

representations based only on recent neighbors (related to A2).

• Core Modules of SLADE
• Memory Modules: The memory of each node represents its long-term interaction patterns.
• Memory Updater: This neural network captures evolving characteristics of nodes’ 

interaction patterns. It is employed to update the memory.
• Memory Generator: This neural network is used to generate the memory of a target node 

from its recent interactions after masking its memory to a zero vector.

• Anomaly Scoring
• In the test phase, SLADE measures how much each node deviates from A1 (by Temporal 

Contrast Score) and A2 (by Memory Generation Score) to identify anomalous states.
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• Training Objective
• SLADE assumes that training set nodes are normal and trains neural networks by minimizing 

Temporal Contrast Loss and Memory Generation Loss to perform well in S1 and S2.

Time   

Temporal Contrast Loss Memory Generation Loss

Previous memory ’ Current memory 
Current memory 


Training node

  
Other memories

…

Generated memory 
  

Other memories

…

Positive Pair

Positive Pair

Negative Pairs

Negative Pairs

• Research Questions
• We review our experiments for answering the following main research questions: 

RQ1) Accuracy, RQ2) Speed RQ3) Type Analysis.

• RQ3) Type Analysis in the Absence of Anomaly Labels
• T1. Hijacked Anomalies (deviated from A1 and A2)
• T2. New or Rarely-Interacting Anomalies (deviated from A1 and A2)
• T3. Consistent Anomalies (deviated from A2)
• The first dataset involves using hijacked accounts to continuously send spam 

emails (T1, T3), while the second dataset involves using new accounts (T2, T3).
• SLADE can detect above mentioned anomaly types without relying on labels.

• RQ1) Accuracy
• SLADE outperforms other baselines, including those relying on label 

supervision, in dynamic anomaly detection on 4 real-world datasets.

Discussion and Analysis
• Time Complexity Analysis
• The detection time complexity in response to a query node in SLADE is O( + ), which is constant with respect to the graph size.
•  is the recent neighbor sample count, while  and  indicate the 

dimension of memory vectors and messages respectively.
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• RQ2) Speed in Action
• SLADE maintains a constant inference time per edge regardless of graph size 

and offers the best trade-off between performance and inference time.
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