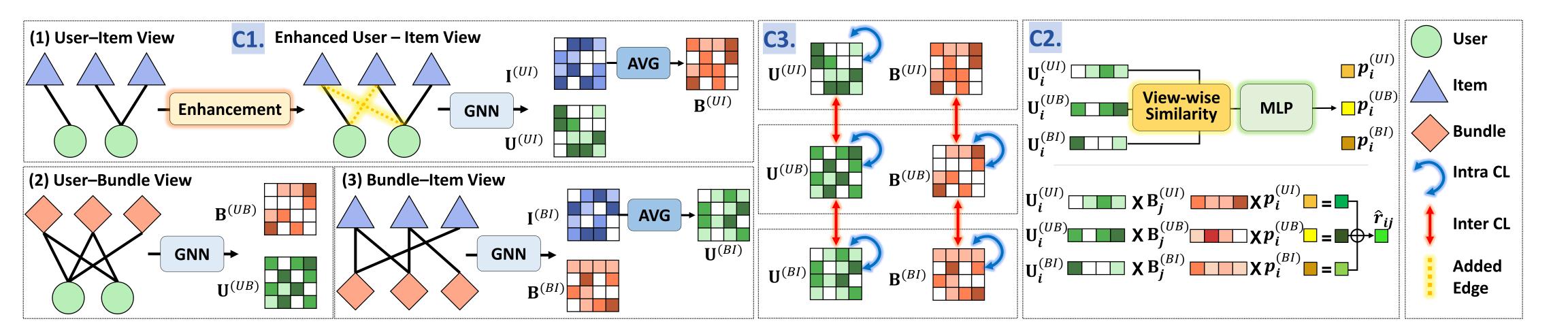


Towards Better Utilization of Multiple Views for Bundle Recommendation

Kyungho Kim, Sunwoo Kim, Geon Lee, and Kijung Shin KAIST {kkyungho, kswoo97, geonlee0325, kijungs}@kaist.ac.kr



Summary

- Goal: to recommend suitable bundles to users, leveraging three different types (i.e., user-bundle interaction, user-item interaction, bundle-item affiliation) of information (or views).
- Observations:

Proposed Method: PET

- **PET: Personalized view weighting with data Enhancement Two**pronged Contrast.
 - C1. U-I Enhanced view representation
 - **Goal:** To address the relative weakness of the U-I view (O2).
- The best input combination of the views varies across target users.
- The User-Item view is the least effective view as the input for message passing of GNN-based models.
- Proposed Method: PET
- A novel bundle recommendation model.
- Focus on the synergy of the three types of information through:
 (1) User-Item view enhancement
 (2) Personalized view weighting

(3) Two pronged contrastive learning

- Experiments
- PET outperforms the competitors up to 39.26% accuracy.

Background: Bundle Recommendation

- Bundle is a set of items.
- E.g., playlists in music streaming platforms, fashion outfits in online shopping, combo meals in food delivery services.
- Objective of bundle recommendation is to recommend suitable bundles to users.
- Bundle recommender systems typically use GNNs to learn user and bundle representations (embeddings) from the user-item($A^{(UI)}$), user-bundle($A^{(UB)}$), bundle-item($A^{(BI)}$) interactions.
- Key Concepts
- Main view is the one for which we learn embeddings by applying the GNN message passing on it.
- Sub view is used to pool the embeddings from the main view to obtain user or bundle embeddings, if necessary.
- Utilizing (U-I) as the main view, we utilize (B-I) view as the sub view to obtain bundle embeddings by pooling item embeddings.

Enhance it by integrating extra user-item interactions derived from other views.



- C2. Personalized view weighting
- **Goal:** To address "no single view is optimal for all users" (O1).
- Compute the importance of each view, personalized for each user.
- C3. Two-pronged contrastive learning
- Goal: To enhance user and bundle representations under limited number of interactions.
- Intra-CL: contrastive learning within each view.
- Inter-CL: contrastive learning between different views.

Experimental Results

•	RQ1. Accuracy	: PET	outperforms	SOTA	bundle	recommender	systems.
---	---------------	-------	-------------	------	--------	-------------	----------

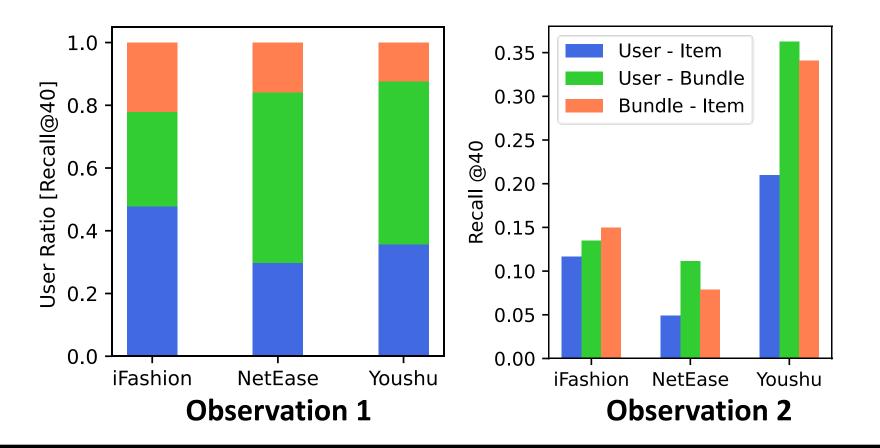
Datasets	iFashion		NetEase		Youshu	
Metrics	Recall@20	NDCG@20	Recall@20	NDCG@20	Recall@20	NDCG@20
BPRMF	0.0882	0.0647	0.0677	0.0363	0.2660	0.1532
LightGCN	0.0957	0.0707	0.0751	0.0397	0.2750	0.1622
MIDGN	0.0694	0.0500	0.0680	0.0358	0.2688	0.1562
BundleGT	0.0981	0.0726	0.0913	0.0481	0.2927	0.1745
CrossCBR	0.1308	0.1004	0.0901	0.0485	0.2831	0.1689
MultiCBR	0.1863	0.1569	0.0928	0.0509	0.2932	0.1732
PET	0.2532	0.2185	0.0978	0.0528	0.3052	0.1804
Improvement	35.91%	39.26%	5.39%	3.73%	4.09%	3.38%
1						
Datasets		hion	Net	Ease	You	ıshu
*	iFas	hion NDCG@40				
Datasets	iFas					
Datasets Metrics	iFas Recall@40	NDCG@40	Recall@40	NDCG@40	Recall@40	NDCG@40
Datasets Metrics BPRMF	iFas Recall@40 0.1347	NDCG@40 0.0612	Recall@40	NDCG@40 0.0469	Recall@40 0.3691	NDCG@40 0.1835
Datasets Metrics BPRMF LightGCN	iFas Recall@40 0.1347 0.1439	NDCG@40 0.0612 0.0876	Recall@40 0.1082 0.1184	NDCG@40 0.0469 0.0508	Recall@40 0.3691 0.3757	NDCG@40 0.1835 0.1859
Datasets Metrics BPRMF LightGCN MIDGN	iFas Recall@40 0.1347 0.1439 0.1091	NDCG@40 0.0612 0.0876 0.0640	Recall@40 0.1082 0.1184 0.1075	NDCG@40 0.0469 0.0508 0.0460	Recall@40 0.3691 0.3757 0.3696	NDCG@40 0.1835 0.1859 0.1836
Datasets Metrics BPRMF LightGCN MIDGN BundleGT	iFas Recall@40 0.1347 0.1439 0.1091 0.1471	NDCG@40 0.0612 0.0876 0.0640 0.0898	Recall@40 0.1082 0.1184 0.1075 0.1394	NDCG@40 0.0469 0.0508 0.0460 0.0607	Recall@40	NDCG@40 0.1835 0.1859 0.1836 0.2028
Datasets Metrics BPRMF LightGCN MIDGN BundleGT CrossCBR	iFas Recall@40 0.1347 0.1439 0.1091 0.1471 0.1888	NDCG@40 0.0612 0.0876 0.0640 0.0898 0.1209	Recall@40 0.1082 0.1184 0.1075 <u>0.1394</u> 0.1372	NDCG@40 0.0469 0.0508 0.0460 0.0607 0.0609	Recall@40 0.3691 0.3757 0.3696 0.3964 0.3843	NDCG@40 0.1835 0.1859 0.1836 <u>0.2028</u> 0.1968

 Utilizing (B-I) as the main view, we utilize (U-I) view as the sub view to obtain user embeddings by pooling item embeddings.

Observations

•

- [Observation 1] One size does not fit all.
- The best input combination of the views for bundle recommendation varies across target users.
- [Observation 2] User-Item view is least effective as the main view .
 - Message passing on user-item interactions results in the lowest performance across all datasets.



• **RQ2. Ablation study**: All key components of **PET** are effective.

Datasets	iFashion		Net	Ease	Youshu	
Metrics	R@40	N@40	R@40	N@40	R@40	N@40
РЕТ-Е.	0.3161	0.2420	0.1413	0.0638	0.4081	0.2092
PET-P.	0.3215	0.2427	0.1406	0.0636	0.4011	0.2030
PET-I.	0.2917	0.2209	0.1393	0.0629	0.4028	0.2056
PET	0.3220	0.2429	0.1459	0.0655	0.4103	0.2090

• RQ3. Effect of personalization: View weights are indeed personalized.

