

Interplay between Topology and Edge Weights in Real-World Graphs KAIST

Fanchen Bu, Shinhwan Kang, and Kijung Shin {boqvezen97, shinhwan.kang, kijungs}@kaist.ac.kr Code and Data: *bit.ly/edge_weight_code* (or scan the QR code)

Summary

- Novel concepts: Useful tools and concepts for analyzing weighted graphs
- Various patterns: Insights into the interplay between topology and edge weights
- Practical algorithm: Integrating all the patterns to generate realistic edge weights
- Extensive evaluation: Showing the effectiveness of the proposed algorithm

GRAPHS

GRAPHS EVERYWHERE

Background: Interplay between topology and edge weights

- A graph G = (V, E, W) consists of a node set V, an edge set E, and edge weights W - Each edge joins a pair of nodes
- Graphs naturally representing relations between real-world objectives

- Transportation Systems
- Social Communication
- Networks
- Systems
- Even in the same graph, edges are **not all the same**
- We can use edge weights to describe the heterogeneity of edges - Each edge e has its edge weight, which is a **positive integer** W(e)
- **Example:** Online social networks

- In many cases, we can infer edge weights from topology (connections)
- Q: Which person is more likely my close friend with strong connection?
- A: The person with more common friends (indirect connections)

Real-world weighted graph datasets

- Datasets: 11 real-world weighted graphs from 5 different domains
- # nodes: 897 2.6M
- # edges: 15,645 28.2M

dataset	V	$ E = E_1 $	$ E_2 $	$ E_3 $	$ E_4 $
OF	897	71,380	47,266 (66.2%)	35,456 (49.7%)	28,546 (40.0%)
FL	2,905	15,645	4,608 (29.5%)	1,507 (9.6%)	564 (3.6%)
th-UB	82,075	182,648	7,297 (4.0%)	2,090 (1.1%)	965 (0.5%)
th-MA	152,702	1,088,735	128,400 (11.8%)	48,605 (4.5%)	26,121 (2.4%)
th-SO	2,301,070	20,989,078	1,168,210 (5.6%)	350,871 (1.7%)	170,618 (0.8%)
sx-UB	152,599	453,221	135,948 (30.0%)	56,115 (12.4%)	28,029 (6.2%)
sx-MA	24,668	187,939	74,493 (39.6%)	36,604 (19.5%)	21,364 (11.4%)
sx-SO	2,572,345	28,177,464	9,871,784 (35.0%)	4,137,454 (14.7%)	2,055,034 (7.3%)
sx-SU	189,191	712,870	216,296 (30.3%)	82,475 (11.6%)	37,655 (5.3%)
co-DB	1,654,109	7,713,116	2,269,679 (29.4%)	1,085,489 (14.1%)	654,182 (8.5%)
co-GE	898,648	4,891,112	1,055,077 (21.6%)	446,833 (9.1%)	246,944 (5.1%)

- OF: communication in a blog post
- FL: flights between airports
- th: interactions within threads
- sx: Q&A interactions
- co: co-authorship

Pattern 1: Linear growth of FoWE

- Pattern: In each layer-*i*, the fraction of weighty edge (FoWE) $f_{c:i}$ grows nearly linearly with c (the
- number of common neighbors), and **saturates** after some point
- We plot the fraction of weighty edges in each layer
- x-Axis: The number of common neighbors; y-Axis: The fraction of weighty edges

Research questions

• Q: What are some realistic properties on the interplay between topology and edge weights? • Q: How can we assign realistic edge weights to given graph topology based on realistic properties?

• Real-world application: Edge weight anonymization

- Due to privacy issues, connection can be publicized but NOT edge weights - Assign fake yet realistic edge weights to generate weighted benchmarks

• Real-world application: Community detection

- Edge weights provide additional information that are helpful for community detection - Assign realistic edge weights to enhance the performance of community detection

Proposed concepts: Layers and weighty edges

• The layer-*i* of a graph G = (V, E, W) consists of the edges with edge weights $\geq i$ - The layer-*i* of G is denoted by $G_i = (V_i, E_i, W_i)$ - From layer-*i*, we can obtain layer-(i + 1) by removing the edges with weight *i*

Pattern 2: Similarity between adjacency and weightiness

• Pattern: In each layer-*i*, the fraction of weighty edge f_{ci} and the fraction of adjacent pairs \tilde{f}_{ci} have high correlations (similar trends), and have similar saturation points

We plot the two fractions in each layer

- x-Axis: The number of common neighbors; y-Axis: The two types of fractions

Pattern 3: A power law across layers

• Pattern: Across layers, the $f_{overall;i}$'s and the $f_{0;i}$'s exhibit a strong power law - $f_{0:i}$: the fraction of weighty edges among those without common neighbors • For each dataset, we plot the two quantities in different layers in a log-log scale • **x-Axis:** $f_{overall:i}$; **y-Axis:** $f_{0:i}$; Each point represents a different layer-*i*

- The weighty edges in the layer-*i* are those with weight > *i* (i.e., E_{i+1}) • The overall fraction of weighty edges in the layer-*i* is $f_{overall:i}(G) = |E_{i+1}|/|E_i|$
- Let $E_{c:i} \subseteq E_i$ be the set of the edges in E_i whose two endpoints share exactly c common neighbors
- The (local) fraction of weighty edges (FoWE) is $f_{c;i} = |E_{c;i} \cap E_{i+1}|/|E_{i+1}|$
- The fraction of adjacent pairs $\tilde{f}_{c;i} = |E_{c;i}|/|R_{c;i}|$, where $R_{c;i}$ is the set of pairs sharing exactly c common neighbors in the layer-*i*
- Both adjacent and non-adjacent pairs are counted in $R_{c:i}$

Algorithm and experimental results

- Algorithm: The proposed algorithm **PEAR** integrates the three patterns
- Only two parameters are used in the algorithm
- Compared with baseline methods with additional information

• **Results:** With **fewest parameters** and **least information**, the proposed algorithm PAER performs best

- The cases where PEAR performs best are indicated with asterisks (*)

Detailed distributions of degrees and the number of common neighbors

