

Datasets, Tasks, and Training Methods for Large-scale Hypergraph Learning

Sunwoo Kim¹*, Dongjin Lee²*, Yul Kim³, Jungho Park³, Taeho Hwang³, Kijung Shin^{1,2} ¹Kim Jaechul Graduate School of AI, ² School of Electrical Engineering, KAIST, South Korea ³Samsung Research, South Korea

Code and Data: <u>https://github.com/kswoo97/pcl</u>

SAMSUNG Research

Summary

- **Goal:** to find high-quality node representations on large-scale hypergraphs **Previous Work:**
- **Limited downstream tasks**: A few single-entity level downstream tasks have been used to evaluate the hypergraph neural network models.
- **Small-scale benchmark datasets**: The evaluation of current hypergraph neural network models has been limited to small datasets (10k-scale).
- **Underdeveloped training strategy for large-scale hypergraphs**: Most of the current hypergraph learning approaches are not scalable.

Contributions:

- We present **two new pair-level prediction tasks**.
- We construct and publicly release **two large-scale hypergraph datasets**.
- We propose <u>PCL</u> (Partitioning-based Contrastive Learning), <u>a scalable</u> **<u>contrastive learning method</u>** for hypergraph neural networks (HNNs).

Proposed Learning Method: PCL

- **Challenge 1:** Large hypergraphs cannot be entirely loaded into GPU memory.
- **Solution**: we use hypergraph partitioning to divide the large hypergraph into smaller partitions.
- **Challenge 2**: Information loss (e.g., split hyperedges) can be caused by partitioning.
 - **Solution**: we use contrastive learning and propose two additional techniques.

We propose PCL (Partitioning-based Contrastive Learning)

- We first divide input hypergraphs into several partitions.
- Then, we train the HNN encoder via contrastive learning, by regarding each partition as a mini-batch of CL.

Background: Hypergraph & Contrastive Learning

- **Hypergraph:** A set of hyperedges that allow containing any number of nodes
- **Examples:** Collaborations of researchers, joint interactions of proteins, co-purchases of items
- **Properties:** A hypergraph naturally models group interactions.

Collaborations of researchers

- **Contrastive learning** aims to maximize the agreement between differently augmented views of the same input.
- Previous research on hypergraph contrastive learning has a scalability issue when dealing with large-scale hypergraphs.

Proposed Tasks

- Task1: Hyperedge Disambiguation
- **Setting**: every hyperedge is split into two hyperedges
- **Goal**: To predict whether given two hyperedges are split from one or not

We propose two additional tools for PCL to mitigate information loss.

P-IOS

- **P-IOS**: Partitioning-technique that recovers lost topological information.
- **PINS**: CL-technique that encourages the encoder to learn inter-partition dissimilarity.

Training done

in this partition

For the next

partition

Experiments

Accuracy of PCL on Task1 and Task2

bold: best, <u>underline</u>: second-best

 $\overline{\mathcal{O}}$

6

Concept of PINS

Push each other

		DB	LP	Triv	ago	OGBN	-MAG	AM	iner	MA	AG	Avg
Data Type	Methods	AP	AUROC	AP	AUROC	AP	AUROC	AP	AUROC	AP	AUROC	Rank
Only X	MLP	65.2 ± 3.4	62.2 ± 3.4	60.2 ± 1.6	60.7 ± 2.5	73.1 ± 2.6	71.9 ± 2.8	91.7 ± 0.3	$\underline{92.9\pm0.3}$	$\underline{91.2\pm0.6}$	92.6 ± 0.6	9.8
Full Hypergraph	HGNN	77.3 ± 2.5	80.0 ± 3.1	72.1 ± 5.1	76.6 ± 1.4	91.2 ± 0.7	92.9 ± 0.6	OOM	OOM	OOM	OOM	7.7
	UniGCNII	78.1 ± 3.4	77.1 ± 3.9	71.8 ± 1.5	75.6 ± 2.3	86.9 ± 5.6	88.3 ± 6.7	OOM	OOM	OOM	OOM	8.7
	ALLSET	53.1 ± 1.2	55.8 ± 2.2	53.7 ± 1.2	56.8 ± 2.2	65.3 ± 1.4	73.4 ± 1.6	OOM	OOM	OOM	OOM	13.1
	HCL	$\textbf{91.0} \pm \textbf{1.7}$	$\textbf{92.6}\pm\textbf{2.1}$	73.7 ± 0.7	78.8 ± 1.1	$\textbf{94.2}\pm\textbf{0.4}$	$\textbf{95.5} \pm \textbf{0.3}$	OOM	OOM	OOM	OOM	4.5
Partitioned Graph	GCN	84.5 ± 1.6	85.9 ± 1.6	65.9 ± 1.9	66.7 ± 2.0	82.3 ± 2.6	83.4 ± 2.8	81.2 ± 0.6	81.5 ± 0.6	OOM	OOM	7.9
	GAT	84.7 ± 1.3	86.4 ± 1.2	62.2 ± 3.1	62.5 ± 4.6	78.0 ± 1.8	79.6 ± 1.8	81.3 ± 0.5	81.0 ± 0.6	OOM	OOM	8.2
	BGRL	85.8 ± 1.7	85.6 ± 1.7	82.4 ± 2.2	83.5 ± 2.1	91.4 ± 0.5	92.8 ± 0.5	90.1 ± 0.8	90.9 ± 0.8	89.7 ± 0.7	90.8 ± 0.9	$\underline{3.9}$
	GGD	80.1 ± 2.4	80.8 ± 2.3	76.9 ± 1.6	78.3 ± 1.5	88.7 ± 1.0	90.2 ± 0.9	82.5 ± 1.2	83.6 ± 1.5	80.1 ± 1.3	81.2 ± 1.4	6.2
Partitioned Hypergraph	HGNN	84.1 ± 2.0	86.2 ± 1.8	71.8 ± 0.8	75.8 ± 1.0	85.9 ± 1.1	88.1 ± 1.0	91.3 ± 0.3	92.5 ± 0.3	89.2 ± 0.7	91.6 ± 0.5	5.4
	UniGCNII	79.9 ± 1.8	80.0 ± 1.8	71.5 ± 2.6	74.2 ± 3.5	77.4 ± 0.9	75.7 ± 1.2	91.8 ± 0.5	92.1 ± 0.5	90.4 ± 0.4	91.9 ± 0.1	7.9
	ALLSET	54.2 ± 1.6	57.6 ± 2.7	53.6 ± 1.2	56.7 ± 2.0	59.3 ± 1.6	65.6 ± 2.4	$\overline{61.5\pm1.8}$	68.6 ± 2.5	OOM	OOM	13.2

Application: researcher disambiguation, user identification

Task2: Local Clustering

- **Setting**: Each node is involved in one (or more) clusters
- **Goal**: To predict whether given two nodes belong to the same cluster or not
- **Application**: sub-field detection, household matching

Advantages over formulating these tasks as an entity classification task:

- Does not require the number of labels (split hyperedges or number of clusters).
- Does not need to retrain a model whenever the number of labels changes.

Proposed Datasets

Two 10M-scale co-authorship hypergraph datasets: MAG & AMiner Embeddings of corpus (title, keywords)

Dataset	# of Nodes (Publications)	# of Hyperedges (Authors)	Node Feature Dimension	# of Classes (Research Field)
AMiner	13,262,573	22,552,647	300	257
MAG	27,320,375	30,175,013	300	247
	a non			

Partitioned Basic PCL $87.1 \pm 1.9 \quad 88.3 \pm 2.0 \quad 88.2 \pm 0.9 \quad 88.9 \pm 0.7 \quad 94.1 \pm 0.4 \quad 95.1 \pm 0.3 \quad 95.5 \pm 0.7 \quad 96.0 \pm 0.8 \quad 96.2 \pm 0.3 \quad 96.9 \pm 0.3 \quad 1.4 \pm 0.4 \quad 95.1 \pm 0.3 \quad 95.5 \pm 0.7 \quad 96.0 \pm 0.8 \quad 96.2 \pm 0.3 \quad 96.9 \pm 0.3 \quad 1.4 \pm 0.4 \quad 95.1 \pm 0.3 \quad 95.5 \pm 0.7 \quad 96.0 \pm 0.8 \quad 96.2 \pm 0.3 \quad 96.9 \pm 0.3 \quad 1.4 \pm 0.4 \quad 95.1 \pm 0.3 \quad 95.5 \pm 0.7 \quad 96.0 \pm 0.8 \quad 96.2 \pm 0.3 \quad 96.9 \pm 0.3 \quad 1.4 \pm 0.4 \quad 95.1 \pm 0.3 \quad 95.5 \pm 0.7 \quad 96.0 \pm 0.8 \quad 96.2 \pm 0.3 \quad 96.9 \pm 0.3 \quad 1.4 \pm 0.4 \quad 95.1 \pm 0.3 \quad 95.5 \pm 0.7 \quad 96.0 \pm 0.8 \quad 96.2 \pm 0.3 \quad 96.9 \pm 0$ Hypergraph (proposed)

		DB	LP	Triv	vago	OGBN	-MAG	AM	iner	MA	AG	Avg.
Data Type	Methods	AP	AUROC	AP	AUROC	AP	AUROC	AP	AUROC	AP	AUROC	Rank
Only X	MLP	52.2 ± 2.3	51.3 ± 3.5	50.6 ± 0.4	50.9 ± 0.7	72.1 ± 1.0	73.9 ± 0.8	$\underline{70.5\pm0.9}$	$\underline{72.9 \pm 0.8}$	$\underline{76.2 \pm 1.3}$	$\underline{79.4\pm0.9}$	7.1
	HGNN	56.9 ± 5.3	54.9 ± 6.3	54.8 ± 3.7	54.8 ± 3.6	78.2 ± 1.0	80.1 ± 0.7	OOM	OOM	OOM	OOM	6.3
Full	UniGCNII	55.2 ± 4.6	52.9 ± 4.5	51.6 ± 1.0	51.1 ± 0.9	$\overline{76.7 \pm 1.2}$	79.0 ± 1.1	OOM	OOM	OOM	OOM	7.8
Hypergraph	ALLSET	54.2 ± 4.1	56.1 ± 5.4	51.0 ± 0.7	51.7 ± 0.7	60.0 ± 2.2	61.8 ± 2.5	OOM	OOM	OOM	OOM	8.6
	HCL	$\underline{63.6\pm6.9}$	61.4 ± 7.9	58.6 ± 2.6	58.8 ± 4.2	$\textbf{78.5} \pm \textbf{1.0}$	$\textbf{80.9} \pm \textbf{0.7}$	OOM	OOM	OOM	OOM	4.8
Partitioned Graph	GCN	51.9 ± 0.4	52.2 ± 0.4	50.1 ± 0.0	50.1 ± 0.0	51.6 ± 0.4	51.7 ± 0.4	54.9 ± 0.7	54.3 ± 0.7	OOM	OOM	12.7
	GAT	52.4 ± 0.6	53.1 ± 0.6	50.4 ± 0.7	50.5 ± 1.0	54.1 ± 0.7	54.3 ± 0.8	55.2 ± 0.4	54.6 ± 0.4	OOM	OOM	10.3
	BGRL	58.8 ± 7.7	56.8 ± 5.6	$\textbf{61.2} \pm \textbf{3.9}$	61.4 ± 3.9	65.6 ± 1.0	66.4 ± 0.8	65.8 ± 0.5	67.1 ± 0.6	71.0 ± 1.0	72.7 ± 0.9	3.6
	GGD	$\textbf{67.7} \pm \textbf{12.7}$	$\textbf{67.2} \pm \textbf{13.3}$	$\underline{59.4\pm3.8}$	$\underline{59.4\pm3.5}$	64.8 ± 1.0	65.5 ± 0.6	62.8 ± 0.8	64.3 ± 0.8	68.5 ± 0.9	70.5 ± 0.9	3.8
Partitioned Hypergraph	HGNN	55.2 ± 6.5	55.2 ± 7.3	52.0 ± 1.0	52.4 ± 2.0	68.8 ± 1.3	69.9 ± 1.6	57.6 ± 1.6	57.5 ± 2.1	62.8 ± 3.0	62.5 ± 3.6	6.6
	UniGCNII	52.6 ± 1.7	52.3 ± 0.9	50.4 ± 0.3	50.1 ± 0.2	54.9 ± 0.6	54.6 ± 0.5	59.9 ± 1.2	59.6 ± 1.3	65.9 ± 2.2	66.0 ± 2.2	9.8
	ALLSET	53.2 ± 1.6	54.6 ± 2.1	51.5 ± 0.3	52.5 ± 0.5	57.5 ± 1.9	59.2 ± 2.8	58.1 ± 1.1	60.9 ± 1.4	OOM	OOM	8.2

Partitioned **PCL+PINS**

 $\pm 0.8 \quad 79.8 \pm 0.6 \quad 80.2 \pm 1.7 \ 81.6 \pm 0.8 \ 83.1 \pm 1.4 \ 86.1 \pm 1.5 \quad 2.1$ 63.2 ± 10.6 64.0 ± 11.5 58.6 ± 1.0 59.2Hypergraph (proposed)

Effectiveness of P-IOS

Metric PCL w/o P-IOS PCL+P-IOS Task Data AP 87.1 ± 1.9 $\textbf{90.8} \pm \textbf{1.8}$ DBLP 88.3 ± 2.0 AUROC $\textbf{92.9} \pm \textbf{1.2}$

Task-I	Trivago	AP	88.2 ± 0.9	$\textbf{89.4} \pm \textbf{1.2}$
1a5K-1	Invago	AUROC	$\underline{88.9\pm0.7}$	89.5 ± 0.9
	OGBN-MAG	AP	94.1 ± 0.4	$\textbf{94.8}\pm\textbf{0.4}$
	OGDN-MAG	AUROC	95.1 ± 0.2	$\textbf{96.2}\pm\textbf{0.2}$
	DBLP	AP	62.4 ± 11.5	64.7 ± 11.5
	DDLF	AUROC	$\underline{61.1 \pm 9.9}$	$\textbf{62.3} \pm \textbf{12.3}$
Task-II	Trivago	AP	58.6 ± 1.0	$\textbf{59.2} \pm \textbf{1.0}$
	IIIvago	AUROC	$\underline{58.7 \pm 1.0}$	$\textbf{59.3} \pm \textbf{1.0}$
	OGBN-MAG	AP	$\underline{77.3 \pm 0.7}$	$\textbf{78.8} \pm \textbf{0.9}$
	OGDIV-MAG	AUROC	$\underline{79.6\pm0.3}$	$\textbf{80.9} \pm \textbf{0.7}$

Effectiveness of PINS on Task2

Data	Metric	PCL w/o PINS	PCL+PINS
DBLP	AP AUROC	$\frac{62.4 \pm 11.5}{61.1 \pm 9.9}$	$\begin{array}{c} {\bf 63.2\pm10.6}\\ {\bf 64.0\pm11.5}\end{array}$
Trivago	AP AUROC	$\frac{{\bf 58.6} \pm {\bf 1.0}}{58.7 \pm 1.0}$	${\begin{array}{c} {\bf 58.6\pm1.0}\\ {\bf 59.2\pm1.3}\end{array}}$
OGBN-MAG	AP AUROC	$\frac{77.3 \pm 0.7}{79.6 \pm 0.3}$	$\begin{array}{c} {\bf 77.6} \pm {\bf 0.8} \\ {\bf 79.8} \pm {\bf 0.6} \end{array}$
AMiner	AP AUROC	$\frac{78.6 \pm 1.3}{81.3 \pm 1.2}$	$\begin{array}{c} {\bf 80.2\pm1.7}\\ {\bf 81.6\pm0.8}\end{array}$
MAG	AP AUROC	$\begin{array}{c} {\bf 83.3\pm1.1}\\ {\bf 86.3\pm0.7}\end{array}$	$\frac{83.1 \pm 1.4}{86.1 \pm 1.5}$

Time & space req. of PINS

OGBN-MAG AMiner

