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Preliminaries

▪ [Main task] Graph-level anomaly detection (GLAD).
▪ [Goal] Identifying anomalous graphs (graph-level task).
▪ [Application] Brain diagnosis, drug discovery, to name a few.

Detector

This is an 
anomaly.

Tell me more details!

▪ [What is GLAD?] GLAD aims to find graphs with anomalous node 
features and/or topology compared to most graphs in the population.
▪ [Note] Real-world graphs exhibit much diverse patterns, and GLAD 

primarily aims to detect anomalies in such general scenarios.
▪ [What is an adjacency matrix?] An adjacency matrix 𝐀 ∈ 0,1 𝑛×𝑛, 

where 𝑛 denotes the number of nodes, represents the edge 
connection of a graph. If nodes 𝑖 and 𝑗 are linked by an edge, then 
𝐀𝑖𝑗 = 1 holds; otherwise, 𝐀𝑖𝑗 = 0.

▪ [How does GraphAE reconstruct 𝐀?] Typically, GraphAE first uses a 
graph neural network to generate node embeddings 𝐙 (i.e., 𝐙 = 
GNN(𝐗,𝐀)). The reconstructed adjacency matrix ෡𝐀 is then computed 

as ෡𝐀 = 𝜎 𝐀𝐀𝐓 , where 𝜎 is the sigmoid function.

▪ [What is mean reconstruction error?] The mean reconstruction error 
is the mean of errors from all node pairs. For a graph 𝒢 = 𝐗,𝐀 , its 

mean reconstruction error is equal to A𝑖𝑗 − ෡A𝑖𝑗
2
/𝑛2.

Let’s move on!
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Contribution 1: Limitations of GraphAEs in GLAD

▪ [Limitation 1] GraphAEs may better reconstruct an anomaly.
▪ [Detail] Anomaly mean error < Normal graph mean error.

Tell me more details!

▪ [What happens in Limitation 1?] Our first observation is that an 
unseen graph may have a lower mean error than the training graphs.
▪ [Implication in GLAD] This implies that an anomaly can have a 

lower mean error than the normal graphs, making GraphAE-
based GLAD methods fail to detect them. 

▪ [Why this happens?] One of the reasons is that an anomaly 
shares the same graph pattern with normal graphs, but with 
stronger strength. Detailed theoretical and empirical analysis is 
provided in the main paper.

▪ [What happens in Limitation 2?] Our second observation is that 
two graphs with distinct graph structures may exhibit similar mean 
reconstruction errors. 
▪ [Implication in GLAD] This implies that an anomaly can have a 

mean error similar to that of normal graphs, again making 
GraphAE-based GLAD methods fail to detect them. 

Let’s move on!

▪ [Limitation 2] Mean error alone may not distinguish distinct graphs.
▪ [Detail] Anomaly mean error ≈ Normal graph mean error

Training graphs (normal graphs)

Error: 0.706 Error: 0.709 Error: 0.710 Error: 0.676
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Contribution 2: MUSE, our new GLAD method

▪ [Key idea]  We propose a new GLAD method, MUSE (MUltifaceted Summaries 
of Reconstruction Errors), mitigating Limitations 1 and 2.
▪ [K1] Use reconstruction errors as graph features (remedy of Limitation 1).
▪ [K2] Use multifaceted (various) summary statistics, not just mean alone 

(remedy of Limitation 2).

▪ [Representative GLAD method] Graph autoencoders (GraphAEs).
▪ [Training] Reconstructing the given graph’s topology.
▪ [Detection] High mean reconstruction error → Anomaly.

Reconstruction error distributions

The detector regards an anomaly as normal.

The detector fails to distinguish which graph is an anomaly!

▪ [What are multifaceted summaries?] They are summary statistics that 
capture diverse aspects of error distributions, such as the mean, and 
standard deviation combined.

▪ [How does MUSE obtain error distributions?] MUSE first obtains node 
embeddings using a GIN [1] encoder. It then reconstructs the adjacency 
matrix and computes the error for each entry in the matrix using binary 
cross-entropy. 

▪ [How does MUSE get multifaceted summaries?] MUSE summarizes the 
reconstruction error values by calculating the mean and standard deviation 
of the values.

▪ [How does MUSE finally detect anomalies?] After obtaining multifaceted 
summaries, which serve as graph features, MUSE applies a one-class 
classifier—an MLP-based autoencoder in this case—to these features. 
Graphs with a high mean reconstruction error from the MLP autoencoder 
are classified as anomalies.

Experiments

▪ [Datasets] Graph classification benchmark datasets, where one class is 
designated as normal graphs, and all other classes are treated as 
anomalous graphs.

▪ [Baselines] State-of-the-art GLAD methods [2, 3] and graph self-
supervised learning methods.

▪ [Result 1] MUSE is accurate.

▪ [Result 3] MUSE well separates anomalies from normal graphs.

[1] Xu et al., How Powerful Are Graph Neural Networks, ICLR 2019.
[2] Qiu et al., Raising the Bar in Graph-level Anomaly Detection, IJCAI 2022.
[3] Zhao et al., Graph Anomaly Detection with Unsupervised GNNs, ICDM 2022.
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▪ [MUSE Overview]
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Tell me more details! Let’s move on!

▪ [Result 2] MUSE is robust against training set contamination.
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