Compact Decomposition of Irregular Tensors for Data Compression: KAIST
o From Sparse to Dense to High-order Tensors
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Summary Proposed method: Light-IT and Light-IT**
* Goal: We developed new decompositions for irregular tensors | | « Improved conciseness (Light-IT): Use a single shared factor matrix instead of multiple different 15t mode factor matrices.
that are specialized in lossy compression. Each row of each 15t mode factor matrix corresponds to one of the rows in the shared matrix.
* Advantage 1) Compact Compression: The compressed outputs | | « Improved approximation (Light-IT**): Incorporate a core tensor for better approximation as in the Tucker model [3].
of our methods are up to 37x smaller than those of the most The core tensor is trained to capture relationships between different latent features.
concise baseline.
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* Irregular tensor: A (3-order) irregular tensor is a collection of

matrices with varying row counts. * Sparse design: Exploit sparsity of sparse input tensors for speed by computing the loss for all zero entries efficiently in a closed form.

amazon User-item @ =\ Electronic * Higher-order design: Applied to input tensors of any order by matricizing the input irregular tensor and its approximation.
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UA : Patient A _ f - 1 Lioht T+ ’ * Scalability: Our methods scale near-linearly with the
af [% @ =T} o Compression per ormance: Light-IT and Light-IT™* are compact and accurate.| = . . ¢ (non-zero) entries of a (sparse) tensor.
P Vo * Datasets: 6 real-world irregular tensors (e.g., EHR and stock data),
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including sparse and dense tensors of order 3 and 4.
* Baselines: 8 state-of-the-art methods for irregular tensor decomposition.
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Examples of real-world irregular tensors
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* Research question: How can we accurately and compactly 2 2 0.16- o> & orea s | I & * Efficiency in sparse tensors: For sparse irregular
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compress irregular tensors of any order and density: 3-order) 0.12- B . tensors, the sparse versions of our methods are faster
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* PARAFAC2 [1]: A compression method for irregular tensors.
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