

Revisiting LightGCN: Unexpected Inflexibility, Inconsistency, and A Remedy Towards Improved Recommendation

Geon Lee, Kyungho Kim, and Kijung Shin (KAIST) {geonlee0325, kkyungho, kijungs}@kaist.ac.kr https://github.com/geon0325/LightGCNpp

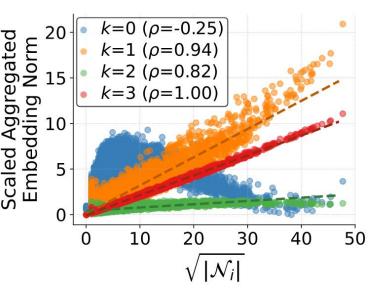
Summary

- Analyses We thoroughly examine the mechanisms of LightGCN:
 (1) scaling embeddings, (2) aggregating neighbors, and
 (3) pooling embeddings across layers.
- Observations We observe that LightGCN suffers from inflexibility and inconsistency when applied to real-world data.
- A Remedy We introduce LightGCN++, a remarkably simple remedy yet powerful that addresses the identified limitations of LightGCN.
- Flexible norm scaling and neighbor weighting
- Adjustable layer-wise embedding pooling
- Experiments LightGCN++ mitigates LightGCN's limitations and significantly improves the recommendation performance.
- Accurate: Up to 17.81%个 NDCG@20 compared to LightGCN
- Versatile: Improves the performance in various domains
- Fast & Scalable: Only 0.08% 5.29% slower; Same space complexity

Observations on LightGCN

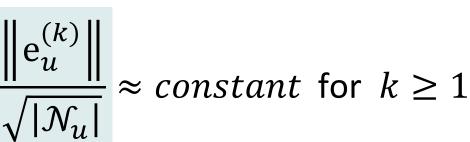
Q1. How does LightGCN scale embedding norms?

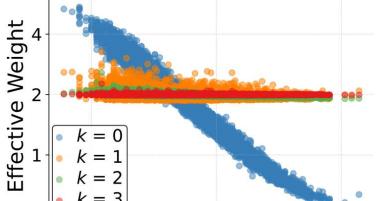
$$\left\| \mathbf{e}_{i}^{(k+1)} \right\| = \frac{1}{\sqrt{|\mathcal{N}_{i}|}} \left\| \sum_{u \in \mathcal{N}_{i}} \frac{1}{\sqrt{|\mathcal{N}_{u}|}} \mathbf{e}_{u}^{(k)} \right\|$$
$$\propto \frac{1}{\sqrt{|\mathcal{N}_{i}|}} \left| \mathcal{N}_{i} \right| = \sqrt{|\mathcal{N}_{i}|}$$



- Inflexibility in norm scaling at $k \ge 1$.
- Inconsistency in norm scaling between embeddings at $k = 0 \& k \ge 1$.
- Q2. How does LightGCN aggregate neighbors?
- Since $\left\| \mathbf{e}_{i}^{(k)} \right\| \propto \sqrt{|\mathcal{N}_{i}|}$ for $k \geq 1$, the **effective weight**

tends to be **uniform** across neighbors:





Background: LightGCN

- LightGCN (He, Xiangnan, et al; SIGIR 2020) is one of the most successful and widely used GNN-based recommendation models.
- Aggregation LightGCN adopts simple neighbor aggregation by removing feature transformation and non-linear activations.

$$\mathbf{e}_{i}^{(k+1)} = \sum_{u \in \mathcal{N}_{i}} \frac{1}{\sqrt{|\mathcal{N}_{i}||\mathcal{N}_{u}|}} \mathbf{e}_{u}^{(k)}$$

Pooling The intermediate embeddings from each layer are combined to construct the final user/item embeddings.

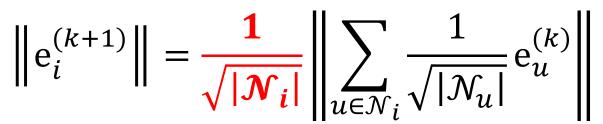
$$\mathbf{e}_u = \sum_{k=0}^{K} \omega_k \mathbf{e}_u^{(k)}$$
, where $\omega_k = \frac{1}{K+1}$

Analyses of LightGCN

 Dual Effects of Normalization The aggregation rule of LightGCN can be written as follows:

$$\mathbf{e}_{i}^{(k+1)} = \sum_{u \in \mathcal{N}_{i}} \frac{1}{\sqrt{|\mathcal{N}_{i}||\mathcal{N}_{u}|}} \mathbf{e}_{u}^{(k)} = \frac{1}{\sqrt{|\mathcal{N}_{i}|}} \sum_{u \in \mathcal{N}_{i}} \frac{1}{\sqrt{|\mathcal{N}_{u}|}} \mathbf{e}_{u}^{(k)}$$

The left term scales the norm of the aggregated embedding.



- Inflexibility in neighbor weighting at $k \ge 1$.

- **Q3.** How does LightGCN **pool embeddings**?
- Despite the inconsistent norm scaling at k = 0 and $k \ge 1$, LightGCN applies identical weights to embeddings across layers.

$$\mathbf{e}_{u} = \frac{1}{K+1} \mathbf{e}_{u}^{(0)} + \frac{1}{K+1} \mathbf{e}_{u}^{(1)} + \dots + \frac{1}{K+1} \mathbf{e}_{u}^{(K)}$$

Proposed Remedy: LightGCN++

LightGCN++ addresses the inflexibility and inconsistency of LightGCN.

Aggregation LightGCN++ introduces hyperparameters $\alpha \& \beta$:

$$\mathbf{e}_{i}^{(k+1)} = \frac{1}{|\mathcal{N}_{i}|^{\alpha}} \sum_{u \in \mathcal{N}_{i}} \frac{1}{|\mathcal{N}_{u}|^{\beta}} \frac{\mathbf{e}_{u}^{(k)}}{\left\|\mathbf{e}_{u}^{(k)}\right\|}$$

- $1/|\mathcal{N}_i|^{\alpha}$ offers flexibility in norm scaling. - $1/|\mathcal{N}_u|^{\beta}$ (= effective weight) offers flexibility in neighbor weighting.
- **Pooling** LightGCN++ introduces a hyperparameter γ :

$$\mathbf{e}_u = \boldsymbol{\gamma} \mathbf{e}_u^{(0)} + (\mathbf{1} - \boldsymbol{\gamma}) \frac{1}{K} \sum_{k=1}^K \mathbf{e}_u^{(k)}$$

- γ enables adaptive weighting between embeddings with inconsistent norm scaling properties.

Experimental Results

- Accuracy LightGCN++ consistently outperforms LightGCN.
- Furthermore, SOTA methods enhanced with LightGCN++ outperform
- The right term explicitly determines the "influence" of each neighbor.
 The norm of the neighbor embedding implicitly affects the influence.

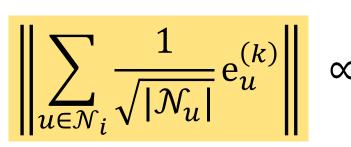
$$\mathbf{e}_{i}^{(k+1)} = \frac{1}{\sqrt{|\mathcal{N}_{i}|}} \sum_{u \in \mathcal{N}_{i}} \frac{\left\| \mathbf{e}_{u}^{(k)} \right\|}{\sqrt{|\mathcal{N}_{u}|}} \frac{\mathbf{e}_{u}^{(k)}}{\left\| \mathbf{e}_{u}^{(k)} \right\|}$$

Effective weight

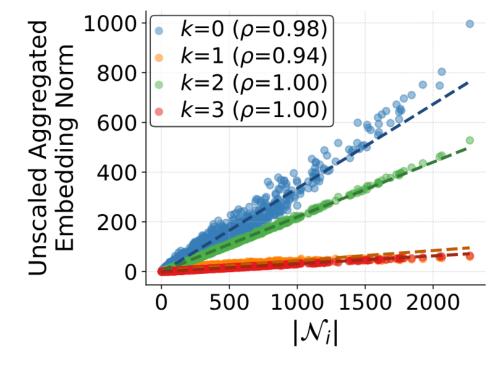
Essentially, the **effective weight** of the neighbor accurately describes the actual weight of the neighbor.

Primary Observation

We observe a **near-linear relationship** between **the norms of the unscaled aggregated neighbor embeddings** and **the number of neighbors**, for all layers $k \ge 0$.



Norm of the aggregated Number of neighbor embeddings neighbors



their counterparts with LightGCN.

Dataset Metric		stFM NDCG@20		ieLens NDCG@20		walla NDCG@20		elp NDCG@20		azon NDCG@20
LightGCN [7] LightGCN++ Improvement	0.2523 0.2715** 7.60%	0.2427 0.2624** 8.11%	$\begin{array}{c c} 0.2392 \\ \underline{0.2616}^{**} \\ 9.36\% \end{array}$	0.3010 0.3275** 8.80%	$\begin{array}{c c} 0.1683 \\ \underline{0.1739}^{**} \\ 3.32\% \end{array}$	$\frac{0.1426}{0.1469}^{**}$	0.0553 0.0650** 17.54%	0.0449 0.0529** 17.81%	0.0367 0.0394** 7.35%	0.0274 0.0294** 7.29%
NCL [14] NCL++ Improvement	0.2548 0.2721** 6.78%	$\frac{0.2453}{0.2632}^{**}_{7.29\%}$	0.2401 0.2621** 9.16%	0.3027 0.3285 ** 8.52%	0.1704 0.1759** 1.87%	0.1430 0.1478** 1.81%	0.0584 0.0678** 16.09%	0.0475 0.0553** 16.42%	0.0393 0.0424** 7.88%	0.0293 0.0315** 7.50%
SimGCL [31] SimGCL++ Improvement	$\begin{array}{c c} 0.2602 \\ \underline{0.2723}^{**} \\ 4.65\% \end{array}$	0.2494 0.2617** 4.93%	0.2584 0.2615** 1.19%	$\frac{0.3217}{0.3276}^{**}$ 1.83%	0.1703 0.1704 0.05%	$0.1424 \\ 0.1431 \\ 0.49\%$	0.0650 0.0657** 1.07%	0.0528 0.0536** 1.70%	$\begin{array}{c c} 0.0415 \\ \underline{0.0444}^{**} \\ \hline 6.98\% \end{array}$	$\frac{0.0314}{0.0334}$ ** 6.36%
XSimGCL [28] XSimGCL++ Improvement	0.2614 0.2738** 4.74%	0.2508 0.2638** 5.18%	0.2600 0.2613 0.50%	0.3245 0.3270* 0.77%	0.1678 0.1705** 1.60%	0.1400 0.1432** 2.28%	$\begin{array}{c c} 0.0651 \\ \underline{0.0674}^{**} \\ \hline 3.53\% \end{array}$	$\frac{0.0528}{0.0549}^{**}$	0.0397 0.0454** 14.35%	0.0298 0.0342** 14.76%

Versatility LightGCN++ enhances the accuracy across various domains.

Multimedia Rec.

0.030

0 020

Dataset	Youshu	NetEase	iFashion	Dataset
CrossCBR [16]	0.1584	0.0359	0.0778	LATTICE [
CrossCBR++	0.1625**	0.0361	0.0847**	LATTICE+
Improv.	2.58%	0.55%	8.88%	Improv.

 Clothing
 Sports
 Baby

 2]
 0.0316
 0.0428
 0.0364

 0.0322
 0.0463**
 0.0402**

 1.90%
 8.18%
 10.44%

Yelp Dataset Amazon MIND KGCL [27] 0.0470 0.0519 0.0737 KGCL++ 0.0475 0.0782** 0.0551** 1.06%6.11% Improv. 6.17%

Bundle Rec.

0.10

Knowled

Knowledge Graph Rec.

Recall@20

NDCG@20

• **Effectiveness** Optimal α , β , and γ depend on the dataset.

MovieLens

Speed LightGCN++ is marginally slower than LightGCN.

Amazon						
Dataset	LightGCN	LightGCN++	Increase			
LastFM	0.9137	0.9345	2.27 %			
MovieLens	10.0144	10.0232	0.08 %			
Gowalla	13.2507	13.3094	0.44 %			
Yelp	21.2809	22.0242	3.49 %			
Amazon	46.2871	48.7372	5.29 %			

Left term Right term