KGMEL: Knowledge Graph-Enhanced Multimodal Entity Linking

Stage 1. Generation

Mention m

Relations

The Lions versus

the Packers

(2007)

Text t_m

Image v_m

Juyeon Kim KAIST juyeonkim@kaist.ac.kr

Geon Lee KAIST geonlee0325@kaist.ac.kr

 \mathbf{W}_T

Cross

Taeuk Kim **Hanyang University** kimtaeuk@hanyang.ac.kr

Kijung Shin **KAIST** kijungs@kaist.ac.kr

GitHub: https://github.com/juyeonnn/KGMEL

CLIP

Stage 2. Retrieval **Contrastive Candidate Entities** Learning C(m)Mention Embedding **Detroit Lions** <sport>
American football \oplus **Gated Fusion** Q271880

Entity

Embedding

Entity's KG Triples \mathcal{T}_e

Detroit Lions 💎

Q271880

Summary

VLM

- MEL aims at aligning mentions with their corresponding entities in a knowledge base using both visual and textual information from mentions.
- **Key Observations**: KG triples show significant potential for MEL.
- O1. Abundance of KG triples: Entities are usually associated with lots of KG triples, often richer than their text descriptions.
- O2. Triples as semantic bridges: Triples help disambiguate between entities, that are otherwise indistinguishable from text and image alone.
- **Challenges**
- C1. Structured KG data is provided for entities, but not for mentions.
- C2. Too many irrelevant KG triples: Only a few are useful for linking.
- **Proposed Method: KGMEL**
- A novel three-stage **generate-retrieve-rerank** framework.
- Effectively leverages **KG triples** to enhance MEL.
- **Experiments**: KGMEL achieves **SOTA performance** across all benchmarks, outperforming the best competitor by up to 19.13% in terms of H@1.

Background: MEL (Multimodal Entity Linking)

- **Task**: Identify the ground-truth entity $e_m \in \mathcal{E}$ that best matches mention m.
- **Entity:** Given a set of entities \mathcal{E} , each **entity** $e \in \mathcal{E}$ is represented as **textual** information t_e , visual information v_e , and KG triples T_e .
- Mention: A mention m is represented as textual information t_m and visual information v_m .

Data Analysis: Triples in Knowledge Base

- [Observation 1] Abundance of KG triples
- Entities are typically associated with numerous structured KG triples that are often **semantically richer** than concise textual descriptions.
- [Observation 2] Triples as semantic bridges
- KG triples provide contextual information that helps disambiguate between entities that look similar in text or image.

Proposed Method: KGMEL

- [Stage 1] Triple Generation of Mentions
- Use VLMs to generate structured triples from mention's text and image.
- [Stage 2] Candidate Entity Retrieval
- **Encoding**: Obtain embeddings of **text**, **image**, and **triples**.
- **Fusion**: Combine embeddings using **gated fusion** mechanism.

Q271880

- **Learning Objective:** Train with three **contrastive learning losses**.
- [Stage 3] Entity Reranking
- **Triple Filtering:** Filter **entity triples** to retain only those related to mention triples, allowing LLMs to focus on the most relevant information.
- **Zero-Shot Reranking:** Use LLMs to identify best matching entity.

Experimental Results

- [RQ1] Accuracy
- KGMEL achieves SOTA performance across all three benchmarks.
- **KGMEL** outperforms the best competitor by up to 19.13% in terms of H@1.

	WikiDiverse	RichpediaMEL	WikiMEL
CLIP [23]	61.21	67.78	83.23
ViLT [9]	34.39	45.85	72.64
ALBEF [10]	60.59	65.17	78.64
METER [7]	53.14	63.96	72.46
DZMNED [20]	56.90	68.16	78.82
JMEL [1]	37.38	48.82	64.65
VELML [34]	54.56	67.71	76.62
GHMFC [28]	60.27	72.92	76.55
MIMIC [17]	63.51	81.02	87.98
OT-MEL [33]	66.07	83.30	88.97
MELOV [26]	67.32	84.14	88.91
$M^3EL[8]$	74.06	82.82	88.84
IIER [19]	69.47	84.63	88.93
GPT-3.5-turbo [21]	r -	: - -	73.80
LLaVA-13B [13]	~	<u>=</u>	76.10
GEMEL [24]	s =	: -	82.60
GELR [15]	35 <u>2</u> 4		84.80
KGMEL (retrieval)	82.12 ± 0.21	76.40 ± 0.30	87.29 ± 0.08
KGMEL (+ rerank)	88.23 ± 0.29	85.21 ± 0.24	90.58 ± 0.25

- [RQ2] Effectiveness
- Ablation study shows that all KGMEL components are effective.

	WikiDiverse	RichpediaMEL	WikiMEL	ΔAvg
KGMEL (retrieval)	82.12	76.40	87.29	97 <u>44</u>
w/o Image V	81.02	67.19	80.99	-5.54
w/o Triple Z	81.61	73.40	85.95	-1.62
w/o GateLayer g _*	<u>81.73</u>	74.38	85.84	-1.29

- [RQ3] Case Study
- KGMEL successfully extracts and leverages relevant triples from textual and visual information to identify the correct entity.

