
• RQ1. What Patterns Exist in Real-world Hypergraphs?
• Why It Matters: Recurring structural patterns show how group interactions 

typically form and evolve, and they define realism in hypergraphs.
• Our Answer: We discover eight power-law properties across eleven real-world 

hypergraphs.
• RQ2. What Mechanisms Underlie These Patterns?
• Why It Matters: Understanding what derives these patterns is a key to building 

realistic and generalizable generators.
• Our Answer: We propose HyRec, a hypergraph generator based on self-similar 

Kronecker structure.
• RQ3. How Can We Efficiently Fit HyRec to Real Data?
• Why It Matters: A well-fitted generator enables extrapolation, anonymization, data 

augmentation, and summarization.
• Our Answer: We develop SingFit, an efficient algorithm that scales to large real-

world hypergraphs.
• Extensive Experiments
• Accuracy: HyRec effectively fits and extrapolates real-world hypergraphs with 

minimal input parameters.
• Efficiency: HyRec achieves near-linear-time fitting and linear-time generation with 

the support of SingFit.

• Goal: Find the initiator matrix (𝜽 ∈ 0,1 𝑁×𝑀) that best captures key properties of the 
target hypergraph
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Discoveries: Patterns in real-world hypergraphs

Motivation & Summary

SingFit: An Efficient Algorithm for Fitting HyRec to Real-World Hypergraphs

Experimental Results

• Fitting to Real-World Hypergraphs
• HyRec effectively captures real-world hypergraph patterns with minimal input 

parameters, outperforming in matching all nine properties across eleven datasets.

• Studied 11 Real-World Hypergraphs from Six Domains:
• Emails, Contacts, Drugs (NDC), Tags, Threads, and Co-authorship

• Identified Three Key Discoveries (D1-D3):

• Inspired by observed power-law patterns in real-world hypergraphs and the 
Kronecker graph model, we present HyRec, which generates hypergraphs using the 
Kronecker product of incidence matrices.

HyRec: A Tractable and Realistic Hypergraph Generator

• Theoretical Characteristics of HyRec

• This tractability enables easier analysis and better insight into HyRec’s behavior.

Discovery (D1): Node pair degrees, intersection sizes, and singular values 
exhibit power-law distributions

Discovery (D2) : Node degrees and hyperedge sizes follow log-logistic 
distributions rather than perfect power laws

Discovery (D3) : Clustering coefficients, density, and overlapness in egonets
follow power-law patterns

Node Pair Degree Intersection Size Singular Value

Strong linear regression fitting on log-log scale
(R² scores near 1 ) confirms power-law behavior

Similar slopes 
within the same domains

𝒙 follows log-logistic

OddsRatio 𝒙 ≔
𝑪𝑫𝑭 𝒙

𝟏−𝑪𝑫𝑭(𝒙)

follows power-law 

Node Degree Hyperedge Size

Linear regression on a log-log scale of odds ratios yields 
high R²scores, confirming strong log-logistic characteristics

Clustering Coef. Density Overlapness

High R²values in log-log regression confirm power-law behavior

Given an initiator hypergraph 𝑮 and order 𝑲, HyRec(𝑮, 𝑲) generates a hypergraph with an 

incidence matrix 𝑰 𝑮 [𝑲], representing the 𝐾-th Kronecker power of 𝑰 𝑮
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[𝐒𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐚𝐥 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬] 𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟏 𝐚𝐧𝐝 𝟐. HyRec(𝑮, 𝑲) generates hypergraphs where key 
statistics follow multinomial distributions*: (1) degrees, (2) hyperedge sizes, (3) pair degrees,  

(4) intersection sizes, and (5) singular values

𝐄𝐯𝐨𝐥𝐮𝐭𝐢𝐨𝐧𝐚𝐫𝐲 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬 𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑ￚ𝟓. HyRec(𝑮, 𝑲) models hypergraph growth by 
simulating changes in (1) density and (2) (effective) diameter as the Kronecker power 

exponent 𝐾 increases, reflecting the evolution of hypergraphs over time.

• Challenges in Fitting HyRec

• Strategies for Overcoming Fitting Challenges with SingFit

C1. Computational Cost of 
Alignment

C2. Non-differentiability of 
Generation

C3. Density of Probability 
Matrix

Permutation-equivalent 
incidence matrices require 

exhaustive search for alignment.

The sampling process is non-
differentiable, impeding 

gradient-based optimization.

Full node-hyperedge 
processing causes heavy

computation and memory use.

.1 .3 .7 .3

.8 .6 .7 .4

.8 .7 .2 .4

.6 .3 .4 .6

0 0 1 0

1 1 1 0

1 1 0 1

0 0 0 1

Sampling

Back prop.

0 0 1 0

1 1 1 0

0 0 0 1

1 1 0 1

.6 .7 .4

.7 .2 .4

.3 .4 .6

.3 .6 ⋯ .3

.6 .1 ⋯ .4

⋮ ⋮ ⋱ ⋮

.1 .3 ⋯ .6

𝜽
𝜽[𝑲]

≈
|𝑽
|

≈ |𝑬|

𝜽[𝑲] 𝑹(𝜽[𝑲])

0 0 0 1

1 1 1 0

0 0 1 0

1 1 0 1

Are these matrices equivalent?

𝜽[𝑲/𝐋]

Initiator Matrix
𝜽 ∈ 𝟎, 𝟏 𝑵𝟏×𝑴𝟏

෡𝜽[𝑲/𝐋]

𝒈𝒃

=

𝛔 =

Descending-order 
singular values

⋮

⋮

෥𝝈 ෥𝝈[𝑳]

[𝑳]

⋮

⋮

𝝈 𝑰 𝓖𝑻𝒂𝒓𝒈𝒆𝒕

S1. Singular Value Matching

S2. Gumbel Softmax
Trick

S3. Significant Complexity 
Reduction: 

෡𝜽 𝑲/𝑳 ≪ ෡𝜽 𝑲 , 𝑳 ≥ 𝟐
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• S1. Singular Value Matching: Uses permutation-invariant singular values
• S2. Differentiable Sampling: Applies gumbel softmax trick
• S3. Kronecker-based Acceleration: Reduces cost via Kronecker-based decomposition

෡𝜽[𝑲/𝐋]

• Extrapolating Real-World Hypergraphs

• Step 1. Fit HyRec using only the hyperedges observed before 50% of the nodes 
appear

• Step 2. Expand via Kronecker power and compare it to the full original hypergraph
• HyRec extrapolates well, accurately predicting the evolution of nine hypergraph 

properties across eleven datasets while using significantly fewer input parameters.

Node Pair Degree Intersection Size Singular Value Clustering Coef. Density

* The best, second-best, and third-best performance are highlighted in blue, green, and yellow, respectively

Intersection Size Singular Value Clustering Coef. Density

* Multinomials closely resemble power-law and log-logistic distributions found in real-world hypergraphs
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• Efficiency in Fitting and Generating Large Hypergraphs
• SingFit achieves near-linear scalability in both fitting and generation, ensuring 

efficiency for large-scale hypergraphs.
• HyRec achieves the second-fastest generation time while requiring significantly 

fewer input parameters than the fastest method.
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Application: Hypergraph Extrapolation using HyRec

FIT


