
Proposed Method: HYPERALIGN

• Novel Problem: Alignment of hypergraphs in an unsupervised setting

• Proposed Method: HYPERALIGN – an alignment method based on three novel 
components: structural feature extraction, contrastive learning as a pseudo task, 
and topological augmentation to resolve scale disparity

• Extensive Experiments:

- Superiority: HYPERALIGN consistently outperforms eight competitors on 
twelve real-world hypergraphs in alignment prediction accuracy

- Ablation: each component of HYPERALIGN contributes to its performance
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Problem Definition

Basic Concepts

[Unsupervised Alignment of Hypergraphs]
• Given: two hypergraphs 𝐺1 and 𝐺2,
• Find: the alignment of nodes (or node correspondences) across 𝐺1 and 𝐺2
• Objective: to correctly identifies nodes with the same identity

• No (partial) ground-truth alignment is given
• No node attributes are given

• Group Interactions are Everywhere: 
▪ Co-authors of a research paper
▪ Sender & recipients of an email
▪ Participants of an online Q/A Session

• Hypergraph 𝑮 = 𝑽, 𝑬 : 
▪ 𝑽: set of nodes (representing people or objects)
▪ 𝑬: set of hyperedges (representing group interactions)
▪ Each hyperedge contains an arbitrary number of nodes

• Hypergraph Alignment (Our Focus):
▪ The problem of identifying the “same nodes” in two given hypergraphs

• Competitors: extensions of (bipartite) 
graph alignment methods 

Experiments
• HYPERALIGN is implementation in • Code and Datasets:
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• Step 1. HYPERFEAT: extract node features 
from the hypergraph topology

▪ Build a Corpus: random walk w/ restart 
(RWR) on node-similarity graphs

▪ Learn Features: skip-gram w/ negative 
sampling (SGNS)
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• EXP 2. Scale Disparity Ratio of Two Input Hypergraphs:
▪ We vary the scale difference ratio between the two input hypergraphs
▪ HYPERALIGN is consistently the most accurate method in predicting alignment

• EXP 1. Performance:
▪ We compare HYPERALIGN with the competitors in terms of alignment accuracy
▪ HYPERALIGN outperforms the competitors in all datasets

• EXP 3. Ablation Studies:
▪ We create variants of HYPERALIGN by removing/simplifying one or more its modules 
▪ The full-fledged version significantly outperforms the simplified variants, 

indicating the contribution of each key module of HYPERALIGN

Overview: HYPERALIGN generates node embeddings used to predict alignments

• Step 2. HYPERCL: contrastive learning 
between two views from each hypergraph 
to pretrain the encoder.
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• Step 3. HYPERAUG: adversarial learning 
framework w/ topological augmentation.
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▪ Adversarial Learning: encoder as generator 
G & a MLP as Wasserstein Discriminator D
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▪ Augmentation: For each node, find the most 
similar node & construct virtual hyperedges

• Step 4. Prediction: finding the matched 
node of the most similar embeddings

▪ Compute cosine similarities of node 
embeddings across the two hypergraphs

▪ Predict each node to correspond with 
the most similar counterpart node
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Application Scenarios 
• User Matching in Social Messaging Platforms (e.g., WhatsApp): 

▪ Goal: to identify the same users in different platforms
▪ Hypergraph: group chats (hyperedges) among users (nodes)
▪ Applications: cross-platform marketing, social behavior analysis, & cybersecurity

• Object Matching in Images:
▪ Goal: to match features (or pixels) corresponding to the same objects
▪ Hypergraph: similar groups (e.g., in terms of colors) of features (or pixels)
▪ Applications: medical imaging, image reconstruction, & surveillance
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• Challenge 1: Absence of Node Attributes
▪ Privacy-protection regulations may prevent 

disclosure of the information of nodes (users)
▪ We must rely only on the hypergraph topology

• Challenge 2: Unsupervised Setting
▪ No (partial) ground-truth alignment is available 

to guide the alignment of the remaining nodes
▪ We must infer correspondences for all nodes

• Challenge 3: Scale Disparity
▪ Two hypergraphs might be substantially 

different in sizes 
▪ For example, one social messaging platform 

(hypergraph) may have much more group 
interactions (hyperedges) than the other
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