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| Summary . Proposed Method: HYPERALIGN

e Novel Problem: Alignment of hypergraphs in an unsupervised setting Overview: HYPERALIGN generates hode embeddings used to predict alignments

e Proposed Method: HYPERALIGN — an alignment method based on three novel o
. . . YPERFEAT
components: structural feature extraction, contrastive learning as a pseudo task, »
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and topological augmentation to resolve scale disparity

e Extensive Experiments: (G1,X1) Shared Embeddings
- Superiority: HYPERALIGN consistently outperforms eight competitors on Parameters [/ Used to
| | Id h hs in ali dicti -/‘ Predict
twelve real-world hypergraphs in alignment prediction accuracy \ Alignment
- Ablation: each component of HYPERALIGN contributes to its performance - # ‘
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| Basic Concepts G (G2, X>) (G2,Z3)
¢ Group Interactions are Everywhere: e Step 1. HyperFeAT: extract node features e Step 2. HyperCL: contrastive learning
= Co-authors of a research paper ./ from the hypergraph topology between two views from each hypergraph
= Sender & recipients of an email (e.g., author) = Build a Corpus: random walk w/ restart to pretrain the encoder. y |
T embership
= Participants of an online Q/A Session (RWR) on node-similarity graphs Masking
= Learn Features: skip-gram w/ negative W Feature
® Hypergraph G = (V, E) sampling (SGNS) i Masking
= V:set of nodes (representing people or objects) £ @
= FE:set of hyperedges (representing group interactions) Hyperedge Contrast

= Each hyperedge contains an arbitrary number of nodes (e.g., collaboration)

e Hypergraph Alignment (Our Focus): Node-similarity
" The problem of identifying the “same nodes” in two given hypergraphs graph from G
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. Application Scenarios e Step 3. HYPERAUG: adyersarlal Iearmr\g e Step 4. PrEdICtIOI.\: fmcmg the matched
— - . framework w/ topological augmentation. node of the most similar embeddings
* User MatCh_mg ":‘ Social Messaglng Ploatforms (e.g., WhatsApp): = Adversarial Learning: encoder as generator = Compute cosine similarities of node
" Goal: to identify the same users in different platforms G & a MLP as Wasserstein Discriminator D embeddings across the two hypergraphs
- Hype.rgrc.auph: group chats (hyperedggs) amopg users .(nodes) | | \ x® G O, e e
= Applications: cross-platform marketing, social behavior analysis, & cybersecurity WS AW ® .
. . . .6,@0‘* :
¢ Object Matching in Images: J O Cosine .

" Goal: to match features (or pixels) corresponding to the same objects
» Hypergraph: similar groups (e.g., in terms of colors) of features (or pixels)
= Applications: medical imaging, image reconstruction, & surveillance
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" Augmentation: For each node, find the most " Predict each node to correspond with
similar node & construct virtual hyperedges the most similar counterpart node
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. Problem Definition ¢ T T =
[Unsupervised Alignment of Hypergraphs] .m

¢ Given: two hypergraphs G; and G-, ?
e Find: the alighment of nodes (or node correspondences) across G{ and G, e HYPERALIGN is implementation in * Code and Datasets:

® Objective: to correctly identifies nodes with the same identity e Competitors: extensions of (bipartite)
* No (partial) ground-truth alignment is given graph alighment methods ‘ @ @,8 """" Orog
* No node attributes are given e EXP 1. Performance: %, ‘aga' =

= We compare HYPerALIGN with the competitors in terms of alignment accuracy
= HyrerALIGN outperforms the competitors in all datasets
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. Cha||enge5 e EXP 2. Scale Disparity Ratio of Two Input Hypergraphs:

" We vary the scale difference ratio between the two input hypergraphs

* Challenge 1: Absence of Node Attributes = HypPerALIGN is consistently the most accurate method in predicting alignment

" Privacy-protection regulations may prevent
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* Challenge 2: Unsupervised Setting Alice \ S N Y S 53 3 1 3 5 4
= No (partial) ground-truth alignment is available 2 82 et Ratio Ratio Ratio
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to guide the alignment of the remaining nodes o Bob o EXP 3. Ablation Studies: R |
: = We create variants of HyperALIGN by removing/simplifying one or more its modules
" We must infer correspondences for all nodes David . g D .
&, o, " The full-fledged version significantly outperforms the simplified variants,
e Challenge 3: Scale Disparity indicating the contribution of each key module of HYPERALIGN
" Two hypergraphs might be substantially Facebook “e HyperAlign >~ HyperAlignWC  -m- HyperAlign-WA HyperAlign-WAC Walign
diffe rent |n S|ZeS Messenger | (no HYPERCL)- (no HyperAuUG) (no HyperCL or HYPERAUG) (none)
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