

Hypercore Decomposition for Non-Fragile Hyperedges

Fanchen Bu, Geon Lee, and Kijung Shin {boqvezen97, geonlee0325, kijungs}@kaist.ac.kr Code and Data: bit.ly/hypercore_code (or scan the QR code)

Summary

- Novel concepts: Generalized k-cores in hypergraphs with non-fragile hyperedges
- Computational algorithms: The proposed concept can be computed efficiently
- Various observations: Insights into hypergraphs analysis
- Within-domain similarity: Real-world hypergraphs in the same domain (i.e., collected from similar scenarios) share similar patterns w.r.t the proposed concepts
- Universal statistical patterns: Real-world hypergraphs across different domains exhibit specific statistical patterns w.r.t the proposed concepts
- **Extensive applications:** Practical usefulness of the proposed concepts
- Influential-node identification, dense substructure discovery, and hypergraph vulnerability detection

Background: Group interactions and hypergraphs

- Real-world group interactions are everywhere
- Ex 1) Co-authorship: Collaboration among researchers

Hypercore decomposition for non-fragile hyperedges: concepts, algorithms, observations, and applications

and generators

Fanchen Bu¹ · Geon Lee² · Kijung Shin^{1,2}

Improving the core resilience of real-world hypergraphs

Manh Tuan Do¹ · Kijung Shin^{1,2}

Datasets, tasks, and training methods for large-scale hypergraph learning

Sunwoo Kim¹ · Dongjin Lee² · Yul Kim³ · Jungho Park³ · Taeho Hwang³ · Kijung Shin^{1,2}

• Ex 2) Online group chats: Communication

amor	ıg ı	us	ers		
•					¢
3:48 PM	Q	:		ull FB 奈 〈 Back	a Elizabet
nara 12:55 PM	270.1/00/	٦			We shou They wo

		• —	
100%	all 🔻	21:05	76%
k club!	BRITISH	Digital team	५ ७ :
ideas.			

Reciprocity in directed hypergraphs: measures, findings,

Interplay between topology and edge weights in real-world

Sunwoo Kim¹ · Minyoung Choe¹ · Jaemin Yoo³ · Kijung Shin^{1,2}

graphs: concepts, patterns, and an algorithm

Fanchen Bu¹ · Shinhwan Kang² · Kijung Shin^{1,2}

Real-world hypergraph datasets

- Datasets: 14 real-world hypergraphs from 6 different domains - **# nodes:** 143 – 2.3M
- # hyperedges: 1,047 8.6M

Dataset	V	E	max./avg. $d(v)$	max./avg. $ e $
coauth-DBLP	1,831,126	2,169,663	846 / 4.06	25 / 3.42
coauth-Geology	1,087,111	908,516	716 / 3.21	25 / 3.84
NDC-classes NDC-substances	$1,149 \\ 3,438$	$1,047 \\ 6,264$	221 / 5.57 578 / 14.51	24 / 6.11 25 / 7.96
contact-high	327	7,818	148 / 55.63	5 / 2.33
contact-primary	242	12,704	261 / 126.98	5 / 2.42
email-Enron	143	1,457	116 / 31.43	18 / 3.09
email-Eu	979	24,399	910 / 86.93	25 / 3.49
tags-ubuntu	3,021	145,053	12,930 / 164.56	5 / 3.43
tags-math	1,627	169,259	13,949 / 363.80	5 / 3.50
tags-SO	49,945	5,517,054	520,468 / 427.77	5 / 3.87
threads-ubuntu	90,054	115,987	2,170 / 2.97	14 / 2.31
threads-math	153,806	535,323	11,358 / 9.08	21 / 2.61
threads-SO	2,321,751	8,589,420	34,925 / 9.75	25 / 2.64

KAIST

Domain	Nodes	Hyperedges
coauth	Researchers	Publications
NDC	Classes/Substances	Drugs
contact	People	Communications
email	Senders/Receivers	Emails
tags	Tags	Questions
threads	Users	Threads

Observation 1: Domain-based patterns of hypercore sizes

• Observation: Real-world hypergraphs in the same domain have similar patterns of hypercore sizes

- Color of each pixel: The (k, t)-hypercore sizes
- x-Axis: the value of k; y-Axis: the value of t
- Visual similarity with each domain
- Different patterns in different domains

- Color of each block: The distance between a pair of datasets w.r.t hypercore sizes
- The distance within the same domain is small
- Numerically support the visual observation

• Hypergraphs model group interactions among individuals or objects

- Each hyperedge is a subset of any number of nodes

- Each hyperedge indicates a group interaction among its members

Generalizing *k*-cores in hypergraphs

- The k-core $C_k(G)$ is the maximum subgraph of G such that each node in $C_k(G)$ is incident to $\geq k$ edges
- Obtain a k-core by keeping **removing nodes violating the conditions**
- Whenever a node is removed, all its incident edges are removed too
- A naïve generalization: The k-hypercore $C_k(H)$ of a hypergraph H is the maximum subhypergraph of G such that (1) each node in $C_k(H)$ is **incident** to $\geq k$ hyeredges, and (2) each remaining hyperedge contains all its original constituent nodes
- Whenever a node is removed, all its incident hyperedges are removed too
- Fragile hyperedges are assumed: NOT realistic and less meaningful structures

Proposed concepts: Hypercores with non-fragile hyperedges

Motivation: Group interactions can still be valid when some members leave

t > 5/7

1

Observation 2: Heavy-tailed hypercoreness distributions

• Observation: In real-world hypergraphs, t-hypercoreness follows heavy-tailed distributions regardless of t

• Statistical tests on the *t*-hypercoreness distributions • Red: High likelihood of a heavy-tailed distribution

• In some datasets, we observe a strong **power law** • Red: Reference power-law fitting lines

Application 1: Influential-node identification

• Summary: t-Hypercoreness with a proper t value identifies influential nodes well

- Set-up: We use a widely-used epidemic model, the SIR model
- A **single** initially infected node

- Infected nodes can infect susceptible nodes in the same hyperedge

- Infected nodes have some probability to recover and become immune • Influence: The influence of a node v is the **# ever-infected nodes** when v is the initially infected node • Metric: For each considered measure, we compute the Pearson's r between the values of the measure and

the influences of the nodes

Application 2: Dense substructure discovery

• Summary: The proposed concepts can be used to find dense substructures in real-world hypergraphs

- Group chats are not dismissed when some users leave the group
- Online shopping carts are not emptied when some items are deleted
- Given a hypergraph H = (V, E), a positive integer k, and $t \in [0, 1]$
- The (k, t)-hypercore $C_{k,t}(H)$ of H, is the maximum subhypergraph of H such that - Each **node** in $C_{k,t}(H)$ is incident to $\geq k$ hyperedges
- Each hyperedge in $C_{k,t}(H)$ contains $\geq t$ proportion of the original constituent nodes
- The *t*-hypercoreness $c_t(v)$ of a node v is the maximum k^* such that $v \in C_{k^*,t}(H)$ • The *k***-fraction** $f_k(v)$ of a node v is the maximum t^* such that $v \in C_{k,t^*}(H)$
- Example: Different (*k*,*t*)-hypercore structures with different *t* values

- **Computation:** Compute a (*k*,*t*)-hypercore similarly to how we compute a *k*-core - Keep removing nodes and hyperedges violating the conditions
- Whenever a node is removed, we check each of it incident hyperedge: if the proportion of remaining constituent nodes falls below *t*, we remove the hyperedge
- **Time complexity:** Linear to the total size of the input hypergraph ($O(\sum_{e \in E} |e|)$)

- Set-up: We consider a vertex cover problem
- **Given:** A hypergraph H, # nodes to choose k_c , and the cover threshold t_c
- Aim to: Choose k_c nodes to maximize # covered hyperedges
- A hyperedge is **covered** if $\geq t_c$ proportion of its constituent nodes are chosen
- Considered methods:
- t_c -Hypercoreness: The k_c nodes with the highest t_c -hypercoreness
- **Degree:** The k_c nodes with the highest degree
- Greedy: Greedily increases the number of covered hyperedges
- **Results:** Overall, *t_c*-hypercoreness outperforms the other two methods, i.e., covers more hyperedges

• Some observations and applications are not presented here due to space limit

• Observation: t-Hypercoreness is statistically different from other existing centrality measures

- t-Hypercoreness can provide unique insights of a hypergraph

• Observation: With varying t values, the t-hypercoreness can be statistically different from each other

- Using different t values can provide us different insights

Application: The concept of (k, t)-hypercores can be used to detect vulnerability in hypergraphs