B Summary

* Novel concepts: Generalized k-cores in hypergraphs with non-fragile hyperedges

* Computational algorithms: The proposed concept can be computed efficiently

* Various observations: Insights into hypergraphs analysis
- Within-domain similarity: Real-world hypergraphs in the same domain (i.e., collected from similar
scenarios) share similar patterns w.r.t the proposed concepts
- Universal statistical patterns: Real-world hypergraphs across different domains exhibit specific statistical
patterns w.r.t the proposed concepts

* Extensive applications: Practical usefulness of the proposed concepts
- Influential-node identification, dense substructure discovery, and hypergraph vulnerability detection

B Background: Group interactions and hypergraphs

* Real-world group interactions are everywhere
* Ex 1) Co-authorship: Collaboration among researchers
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* Hypergraphs model group interactions among individuals or objects
- Each hyperedge is a subset of any number of nodes
- Each hyperedge indicates a group interaction among its members
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B Generalizing k-cores in hypergraphs

* The k-core C} (G) is the maximum subgraph of G such that each node in € (G) is incident to > k edges
- Obtain a k-core by keeping removing nodes violating the conditions
- Whenever a node is removed, all its incident edges are removed too

* A naive generalization: The k-hypercore C;,(H) of a hypergraph H is the maximum subhypergraph of ¢
such that (1) each node in C, (H) is incident to > k hyeredges, and (2) each remaining hyperedge
contains all its original constituent nodes
- Whenever a node is removed, all its incident hyperedges are removed too
- Fragile hyperedges are assumed: NOT realistic and less meaningful structures

Every node has
the same hypercoreness!

B Proposed concepts: Hypercores with non-fragile hyperedges

* Motivation: Group interactions can still be valid when some members leave
- Group chats are not dismissed when some users leave the group
- Online shopping carts are not emptied when some items are deleted
* Given a hypergraph H = (V, E), a positive integer k, and t € [0, 1]
* The (k, t)-hypercore Cy . (H) of H, is the maximum subhypergraph of H such that
- Each node in Cy ((H) is incident to = k hyperedges |
- Each hyperedge in C;, . (H) contains = t proportion of the original constituent nodes
* The t-hypercoreness c;(v) of a node v is the maximum k™ such that v € Cy~ (H)
* The k-fraction f; (v) of a node v is the maximum t* such that v € Cy .+ (H)
* Example: Different (k,t)-hypercore structures with different t values

thypercoreness: @ 3 @ 2 @ 1

2/5<t<4/7 4/7<t<5/)7

* Computation: Compute a (k,t)-hypercore similarly to how we compute a k-core
- Keep removing nodes and hyperedges violating the conditions
- Whenever a node is removed, we check each of it incident hyperedge: if the proportion of remaining
constituent nodes falls below t, we remove the hyperedge
- Time complexity: Linear to the total size of the input hypergraph (0 (Y. .ck lel)

B Real-world hypergraph datasets

 Datasets: 14 real-world hypergraphs from 6 different domains
- # nodes: 143 - 2.3M
- # hyperedges: 1,047 — 8.6M
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B Observation 1: Domain-based patterns of hypercore sizes

* Observation: Real-world hypergraphs in the same domain have similar patterns of hypercore sizes

* Color of each pixel: The (k, t)-hypercore sizes
* x-Axis: the value of k; y-Axis: the value of t

- Visual similarity with each domain

- Different patterns in different domains

* Color of each block: The distance between a
pair of datasets w.r.t hypercore sizes
- The distance within the same domain is small
- Numerically support the visual observation

coauth-DBLP
coauth-Geology
NDC-classes
‘ 0.5 NDC-substances

Co-authorship Contact
1.0 : J 1.0

contact-high
contact-primary
email-Enron
email-Eu
tags-ubuntu

tags-math

0.0

tags-SO
threads-ubuntu
threads-math
threads-SO

B Observation 2: Heavy-tailed hypercoreness distributions

* Observation: In real-world hypergraphs, t-hypercoreness follows heavy-tailed distributions regardless of t

* In some datasets, we observe a strong power law
* Red: Reference power-law fitting lines

* Statistical tests on the t-hypercoreness distributions
* Red: High likelihood of a heavy-tailed distribution
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B Application 1: Influential-node identification

* Summary: t-Hypercoreness with a proper t value identifies influential nodes well
* Set-up: We use a widely-used epidemic model, the SIR model s I R
- A single initially infected node - aad Recovered
- Infected nodes can infect susceptible nodes in the same hyperedge 4 :
- Infected nodes have some probability to recover and become immune ' |
* Influence: The influence of a node v is the # ever-infected nodes when v is the initially infected node
* Metric: For each considered measure, we compute the Pearson’s r between the values of the measure and
the influences of the nodes
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B Application 2: Dense substructure discovery

* Summary: The proposed concepts can be used to find dense substructures in real-world hypergraphs
* Set-up: We consider a vertex cover problem
- Given: A hypergraph H, # nodes to choose k., and the cover threshold ¢,
- Aim to: Choose k. nodes to maximize # covered hyperedges
- A hyperedge is covered if = t,. proportion of its constituent nodes are chosen
* Considered methods:
- t.-Hypercoreness: The k. nodes with the highest t.-hypercoreness
- Degree: The k. nodes with the highest degree
- Greedy: Greedily increases the number of covered hyperedges
* Results: Overall, t.-hypercoreness outperforms the other two methods, i.e., covers more hyperedges
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* Some observations and applications are not presented here due to space limit

* Observation: t-Hypercoreness is statistically different from other existing centrality measures
- t-Hypercoreness can provide unique insights of a hypergraph

* Observation: With varying t values, the t-hypercoreness can be statistically different from each other
- Using different t values can provide us different insights

* Application: The concept of (k, t)-hypercores can be used to detect vulnerability in hypergraphs
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