
• Observations
- 𝐶𝐹𝐻 (class-controlled feature homophily) and class-homophily show distinct patterns

Summary
• Motivation
      - To understand how dependence between graph topology 𝐴 and features 𝑋

(𝐴-𝑋 dependence) affect graph convolution

• Proposed Measure and Random Graph Model
   - To measure 𝐴-𝑋 dependence, we propose a measure class-controlled feature

homophily (𝐶𝐹𝐻)
- To control 𝐶𝐹𝐻 with a random graph model, we propose CSBM-X

• Conclusion
- We conclude that 𝐴-𝑋 dependence (i.e., 𝐶𝐹𝐻) mediates the effect of graph conv,
such that 𝐶𝐹𝐻 moderates its force to pull each node feature toward the feature
mean of the respective node class, with smaller 𝐶𝐹𝐻 increasing the force

Observations: Feature Homophily in Real-World Graphs

Introduction Theoretical Results in a Random Graph Model CSBM-X

• Experimental Setting
- We shuffle the node features 𝑋 from
the same class 𝑌 to reduce 𝐶𝐹𝐻
(class-controlled feature homophily)
of benchmark graphs 

- After the feature shuffle, 𝐶𝐹𝐻 tends
to approach 0 (i.e., no dependence
between topology 𝐴 and features 𝑋)

- The feature shuffle does not
interrupt with class-homophily 
(i.e., 𝐴-𝑌 dependence) or feature 
informativeness (i.e., 𝑋-𝑌 dependence)

Empirical Results in Real-World Graphs

• Goal
- To control 𝐶𝐹𝐻 (class-controlled feature homophily) with a graph model

• CSBM-X Overview (informal)
- step 1. sample nodes by the model parameter 𝑛, i.e., 𝑉 = 𝑛
- step 2. divide nodes evenly into two classes, i.e, 𝑌! ∈ 0,1
- step 3. sample node features from Gaussian distributions, i.e, 𝑋!~𝒩(𝜇"! , Σ"!)
- step 4. compute edges sampling weights based on node pair features

- 𝐴-𝑋 dependence strength parameter 𝜏 controls edge sampling weights 
- a positive (or negative) 𝜏 exaggerates edge sampling weights among node pairs 
with higher (or lower) 𝐶𝐹𝐻

- step 5. sample edges by the computed weights without replacement, where the
model parameters (𝑑#, 𝑑$) determine same- and different-class neighbor number

• Key Technical Innovation
- CSBM-X can control 𝐶𝐹𝐻 (i.e., 𝐴-𝑋 dependence), while holding class-homophily 
(𝐴-𝑌 dependence) and feature informativeness (𝑋-𝑌 dependence) to be constant

- By only controlling 𝐶𝐹𝐻, CSBM-X provides a suitable theoretical setting to examine
the effect of 𝐶𝐹𝐻 on graph convolution

• Proposed Theory (informal)
- Theorem: A simplified GNN’s node classification accuracy increases as 𝑨-𝑿
dependence strength parameter 𝝉 → 𝟎

- Additional result: The effect of 𝜏 on GNN performance is moderated by class-
homophily and feature informativeness for node class

Measure: Class-Controlled Feature Homophily 𝑪𝑭𝑯

Discussion
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• Graph Neural Networks (GNNs)
- GNNs are functions of graph topology and features
- Prior studies revealed that GNNs are affected by 
𝐴-𝑌 relation (e.g., class-homophily) and 
𝑋-𝑌 relation (e.g., feature informativeness)

- How the relation between topology 𝐴 and features
𝑋 (𝐴-𝑋 dependence) affects GNNs is not known

• Research Question
- 1. How should 𝑨-𝑿 dependence be measured?
- 2. How does 𝑨-𝑿 dependence affect GNNs?

• Goal
- To measure homophily based on node features (i.e., 𝐴-𝑋 dependence)

• Handling arbitrary-dimensional, discrete and continuous features
- Use L2 distance to measure relationship between feature pairs

• Controlling for a third variable (i.e., node class)
- To measure feature homophily while mitigating the effect of a third variable
(in our context, node class 𝑌), we define class-controlled feature 𝑿!
𝑿! = 𝑋! −

%
&!
∑'∈&!𝑋' , where 𝐶! is a set of nodes with class 𝑌!

• Distinguishing positive, negative, and no dependence
- Let d) ! be mean distance between 𝑿! and those of neighbors 𝑁 𝑖
- Let d*\ ,! be mean distance between 𝑿! and those of random nodes 𝑉\ 𝑣!
- Feature homophilic (positive dependence; 𝐶𝐹𝐻 >> 0),     if d) ! ≫ d*\ ,!
- Feature heterophilic (negative dependence; 𝐶𝐹𝐻 << 0),   if d) ! ≪ d*\ ,!
- Feature impartial (no dependence; 𝐶𝐹𝐻 ≈ 0),               if d) ! ≈ d*\ ,!

• Comparing across different graphs with different features

- Class-Controlled Feature Homophily 𝐶𝐹𝐻 =
1 −

!! "
!#\ %"

, if d" # ≤ d$\ &" ,

!#\ %"
!! "

− 1, if d" # > d$\ &" .

- Intuitively, a node 𝑣! is ( 𝐶𝐹𝐻 )/(1 − 𝐶𝐹𝐻 ) times closer (or farther) to its 
neighbors than to random nodes, if 𝐶𝐹𝐻 > 0 (or < 0)

- For each node 𝑣!, its distance to random nodes d*\ ,! serves an anchor to
determine 𝐶𝐹𝐻 magnitude

• Conclusion
- We argue that 𝐶𝐹𝐻 (i.e., class-controlled feature homophily) mediates the 
effect of graph conv. by moderating the force to pull each node feature toward 
the feature mean of the respective node class

- In hindsight, our findings in concert suggest that the recent success of GNNs 
may have relied on the generally small 𝐶𝐹𝐻 of the benchmark datasets

- Looking forward, studying the role of 𝐶𝐹𝐻 on GNNs is a promising direction

• Future Directions
- GNN Architecture: Devising new (1) benchmark datasets with large 𝐶𝐹𝐻 and (2) 
GNN models that effectively work on them would be a promising next step

- GNN Theory: The previous GNN theories neglected the role of 𝐴-𝑋 dependence. 
We found its impact significant. GNN theories that account for more complex 
relation between topology and features would enhance understanding of GNNs.

• GNN Node Classification After Feature Shuffle
- The empirical results with 24 real-world graphs are generally consistent with
the theoretical outcomes

* Visualization of the Feature Shuffle. Features of the 
same class nodes are shuffled. The shuffled node ratio is 
0.6 in the example. 

* 𝑪𝑭𝑯 after the Feature Shuffle. The feature shuffle 
reduces 𝐶𝐹𝐻 to approach 0.

* A visual intuition of the Theorem. When 𝐶𝐹𝐻 is low (Case 2), the feature distribution of each class shrinks faster 
(denoted by the arrows) by graph conv., resulting in lower Bayes error. Namely, the power to pull node features 
towards the feature mean of each class becomes stronger with decreasing 𝐶𝐹𝐻.

* A Simplified GNN Performance in CSBM-X Graphs. Consistent with the Theorem, the simplified GNN 
performance increases as 𝐶𝐹𝐻 → 0 (i.e., 𝜏 → 0). FD roughly indicate feature informativeness for node class.

* Homophily Statistics of 
Benchmark Graphs. 
(1) The benchmark graphs 
tend to show small, 
positive 𝐶𝐹𝐻;
(2) 𝐶𝐹𝐻 and class-
homophily have a small, 
positive correlation in the 
benchmark graphs.

* The Effect of the Feature Shuffle on GNN Node Classification. (1) The feature shuffle lowers 𝐶𝐹𝐻 to 
increase GNN performance; (2) the beneficial effect of lowering 𝐶𝐹𝐻 is moderated by class-homophily, such 
that the mean performance increases are 4.4%p vs. 0.5%p.
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