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DiffIM+(+) with Continuous Relaxation

* G@Goal: To minimize influence within social graphs by removing a given number of edges * Key idea: “Continuous relaxation on edge removal decision”
- Binary (whether to remove an edge or not) = Continuous (probability of edge removal)
- Pr[v activates u in the output graph] = Pr[v activates u]- Pr[edge (v, u) is not removed]
* Proposed methods: =[p(v, u)¥(v,u)| > Modified activation probability px

- DiffIM: Uses a GNN as a surrogate model for efficient influence estimation - (Continuous relaxation + GNN) makes the problem differentiable

- DiffIM+: Introduces continuous relaxation to edge removal decisions,

enabling optimization though differentiation

* Previous work: Greedy algorithms using influence estimation based on sampling

e DiffIM+: Use gradient descent to optimize every continuous decision simultaneously
- Procedure: (1) Optimize all edge removal probabilities together by gradient descent

- DiffIM++: Selects edges for removal instantly based on gradients @ Remove an edge with the smallest optimized probability.
* Experiments: (3) Repeat 1) and 2) until the budget is exhausted
- Influence estimation: GNN-based influence estimation shows near-perfect correlation - Loss function: (influence) + (penalty for the budget) + (penalty for the uncertainty)
with the ground truth and faster than MC simulations - Remaining limitation: Requires multiple epochs of gradient descent for each removal
- Performance: DiffIMs reduce influence faster and more effectively than baselines - Time complexity: O(budget - # epochs - |E|)
- inductivity: DiffIMs are effective even on graphs unseen during training ‘ —~
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* Motivation: People influence others through social links (e.g. rumor, disease), and 0 Dx(v, Uy) "
it is important to quickly suppress the spread before it explodes 0
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- Influence: Expected number of finally activated nodes Q1. Influence estimation: GNN estimation achieves near-perfect correlation with the
* Problem definition of influence minimization: ground-truth influence (R > 0.999) while being over 100X faster than MC simulations
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- Train @ GNN as a surrogate model for influence estimation
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