
On Improving the Cohesiveness of Graphs byMerging Nodes:
Formulation, Analysis, and Algorithms

Fanchen Bu and Kijung Shin
KAIST EE & AI

Email: {boqvezen97,kijungs}@kaist.ac.kr
Code: bit.ly/truss_merge_code

Summary

Goal: To study the problem of improving the cohesiveness of real-world

systems using graph analysis and graph algorithms

Formulation: How can we mathematically formulate such a problem?

Analysis: To analyze the problem from both theoretical and empirical aspects

Experiments: To show the empirical performance of the proposed algorithm

based on our analysis

Fast: The proposed algorithm time-efficiently finds good node pairs by

pruning unpromising node pairs and identifying a small number of

promising candidate node pairs

Effective: Merging the node pairs selected by the proposed algorithm

effectively improves the optimization objective, and also effectively

improves the cohesiveness of graphs

Motivation

Many real-world systems can be abstracted and represented as graphs

Cohesiveness: We love cohesive systems in the real world

Cohesive public traffic networks are convenient

and robust to unexpected problems

Cohesive social networks imply good

communication and tight relations

Therefore, improving the cohesiveness of graphs is a meaningful problem

How can we mathematically formulate such a problem?

How (what metric) can we measure the cohesiveness of graphs?

How (what operation) can we improve the cohesiveness of graphs?

Existing Research

How does existing research formulate such a problem? What metrics and

operations have researchers considered?

Metrics: Maximizing the size of a cohesive subgraph model

Operations: Anchoring nodes (forcing nodes to stay in the considered

cohesive subgraph model) or adding edges

Operation

Anchoring nodes Adding edges

Metric

Maximizing the

size of a k-core
Bhawalkar et al. 2015

Zhang et al. 2022
Zhou et al. 2022

Maximizing the

size of a k-truss
Zhang et al. 2018

Sun et al. 2021

Chen et al. 2022

However, a realistic and interesting operation has been overlooked!

Problem Formulation

Merging nodes: An overlooked operation, which is realistic and interesting

Merging stations can make public traffic

network more compact and reduce

maintenance expenses

In social networks, merging people can represent

forming teams, which can create a more

collaborative and synergic environment

Metric: We use the size of a k-truss as the cohesiveness metric

Definition: Given a graph G and k, the k-truss of G is the maximal subgraph

such that each edge in the k-truss is in at least k − 2 triangles

Node engagements (neighbors) and edge interrelatedness (triangles)

5-truss: only purple edges

4-truss: + green edges

3-truss: + blue edges

2-truss: + red edges (i.e., all the edges)

The trussness of a node (or an edge) is

the maximum k such that the node (or

the edge) is in the k-truss

Final problem statement:

Given: graph G = (V, E), k ∈ N, and budget b ∈ N
Find: b pairs of nodes to be merged

To maximize: # edges in the k-truss after merging those b node pairs

Hardness Analysis & A Naive Algorithm

Theorems: The considered problem is NP-hard and not submodular

Therefore, instead of aiming to solve the problem optimally, we aim to find

a practically well-performing algorithm

A naive algorithm: Until the budget is exhausted, we repeatedly compute #

edges in the k-truss after all possible mergers and operate the best one

But it takes prohibitive O(b|V |2|E|1.5) times!

We need to repeat b times to use all the budget

There are O(|V |2) node pairs in total

Computing the number of edges in a k-truss takes O(|E|1.5)
We aim to find good node pairs more time-efficiently

We do not need to check all the possible node pairs

Among all the nodes, how can we quickly find promising candidate nodes

that may constitute good node pairs?

Among all the node pairs between the chosen candidate nodes, how can

we quickly identify promising node pairs?

Proposed Method: BATMAN
(Best-merger seArcher for Truss MAximizatioN)

Check fewer edges: We prove that, after merging any two nodes, the

trussness of all the edges (except for those incident to a merged node)

changes by at most one, and thus most edges currently with trussness lower

than k − 1 can be safely ignored when evaluating each node pair

Categorize nodes and node pairs: We theoretically show the importance of

nodes and node pairs with specific trussness (especially those with trussness

at least k − 1), and divide them into different groups based on their trussness

Heuristics for each category: We develop efficient and effective heuristics

for each category, where we first find promising nodes and then identify

promising node pairs between the chosen nodes

Distribute the budget to different categories: We exclude one category of

node pairs that is theoretically unlikely to be helpful, and propose an adaptive

way to distribute the budget based on the actual performance of the

evaluated node pairs in each category

Ranking by score functions: We finally rank candidate node pairs by score

functions considering both positive and negative impacts

With all the proposed techniques, we reduce the time complexity to

Ô(b|E|1.5), where some parameters (e.g., the numbers of promising nodes and

node pairs to be chosen and evaluated) set by the user are hidden in Ô

Experimental Results

Extensive experiments on fourteen real-world graphs show the superiority of

the proposed algorithm (BATMAN) w.r.t both speed and effectiveness

Since we are the first to study this problem, we use several other

heuristic-based methods as our baselines

NT: To form most new triangles consisting of the nodes in the (k − 1)-truss
NE: To form most new edges between the nodes in the (k − 1)-truss
RD: Randomly sampling node pairs

We also conduct an ablation study to provide justification for each

component of the proposed method.

proposed BATMANBATMAN baselines NT NE RDNT NE RD

FB EM BK HP RL ER
dataset

0

1.3

2.6

av
g

. t
ru

ss
-s

iz
e

in
cr

ea
se

o
ve

r
al

l k
 v

al
ue

s
(×
10

3)

3.05×
1.42×

2.73×1.74×1.60×

1.38×

TT SC SD EP GW
dataset

0

4

8

av
g

. t
ru

ss
-s

iz
e

in
cr

ea
se

o
ve

r
al

l k
 v

al
ue

s
(×
10

3)

2.13× 2.37×
3.31×

1.85×
2.75×

YT WT SF
dataset

0

25

50

av
g

. t
ru

ss
-s

iz
e

in
cr

ea
se

o
ve

r
al

l k
 v

al
ue

s
(×
10

3)

2.97×
6.64×

10.08×

The proposed method shows consistent superiority on different datasets

proposed BATMANBATMAN baselines NT NE RDNT NE RD

0 50 100 150
running time (seconds)

0

4

8

av
g

. t
ru

ss
-s

iz
e

in
cr

ea
se

 o
ve

r
al

l d
at

as
et

s
an

d
 k

 (
×1

03
)

3.
3×

4.
7×

0 25 50 75 100
budget b

0

14

28

av
g

. t
ru

ss
-s

iz
e

in
cr

ea
se

 o
ve

r
al

l d
at

as
et

s
an

d
 k

 (
×1

03
)

4.1×

2.7×

2.4×

5/10 15/20
input trussness k

0

4

8

av
g

. t
ru

ss
-s

iz
e

in
cr

ea
se

 o
ve

r
al

l d
at

as
et

s
an

d
 k

 (
×1

03
) 4.91× 3.50×

The proposed method shows consistent superiority when using different parameters

