

Random Walk with Restart on Hypergraphs: Fast Computation and an Application to Anomaly Detection

	<pre>Jaewan Chun KAIST jjwpalace@kaist.ac.kr</pre>	Geon Lee KAIST geonlee0325@kaist.ac.kr	Kijung Shi KAIST kijungs@kaist.ac	n Jin Son .kr jin	hong Jung gsil University hong@ssu.ac.kr	
Summary Motivation • Measuring node proximity is important with many practical applications including clustering, ranking, and anomaly detection • Random walk with restart (RWR) is a widely-used measure for node proximity in graphs • However, for hypergraphs, fast computation of RWR has been unexplored Proposed Algorithm: ARCHER • We propose two computation methods for RWR on hypergraphs that are complementary (i.e., offering relative advantages on different hypergraphs) • We propose ARCHER, which adaptively and efficiently selects a computation method • We propose an application of RWR on hypergraphs to anomaly detection Contribution • Efficient: ARCHER is fast and space-efficient • Complementary Computation Algorithms: Two computation methods are complementary depending on datasets • Automatic Selection: ARCHER accurately selects between two computation methods • Anomaly Detection: RWR on hypergraphs are useful for anomaly detection tasks			 • Component 2: Star-expansion-based Method • Star-expansion: a graph constructed from hypergraph by • (1) aggregating nodes and hyperedges into new set of nodes • (2) adding edges between each pair of incident node and hyperedge • RWR on hypergraph can be reduced to RWR on star-expanded graph with edge weights • Every end of the star-expansion is efficient (up to 137.6x less time, 16.2x less space) • Agia ency Matrix of star-expansion is efficient (up to 137.6x less time, 9.6x less space) • Case 1: star-expansion is efficient (up to 6.4x less time, 9.6x less space) • Hint: empirically cost of RWR depends on non-zeros of adjacency matrix • Choose the method with less non-zeros, without conducting preprocessing 			
Introduction						

• Hypergraphs model group interactions among individuals or objects

Measuring Proximity between Nodes

- Measuring proximity between nodes on hypergraphs has many practical applications •
- A widely used method is **Random Walk with Restart (RWR)**

Applications of node proximity

Anomaly Detection

Personalized Ranking

Random Walk with Restart (RWR) on Hypergraph

- Stationary probability of a "random surfer" over the nodes
- Random walk (with probability 1 c)
 - 1. Select a hyperedge *e* containing current node
 - 2. Move to a node v selected from hyperedge e
- Restart at the query node (with probability c)

Action 1: Random Walk

> Action 2: Restart

Clustering

BePI (ARCHER)

BEAR (ARCHER)

BEAR (clique)

💋 BEAR (star)

▼ SB

▲ HB

🚟 BePI (clique)

💹 BePI (star)

< nonzero(clique) nonzero(star)

nonzero(star) > nonzero(clique)

Application: Anomaly Detection

Anomaly Detection on Hypergraph

- Task: Given a hypergraph, detect anomalous hyperedges
- **Proposed Method**: Define the normality score of a hyperedge as the average of RWR scores between all pairs of nodes within the hyperedge

Normality score
$$ns(e) = \frac{1}{|e|(|e|-1)} \sum_{u \in e} \sum_{v \in e \setminus \{u\}} r_{u \to v}$$

• ARCHER accelerates the computation of the normality score

Experimental Results

Q1) Preprocessing Cost

• ARCHER takes up to 137.6x less time, and 16.2x less space than using always one expansion method

• ARCHER takes up to 218.8x less time than using always one expansion method

COH

THM

THU

*

TRI

 $nnz(Hc) / nnz(H_{\star})$

Corr. Coeff. = 0.91

Star-expansio is selected, and Clique Query time ≥ Star Query time

Proposed Algorithm: ARCHER

Formal Task Description

- Given
 - Hypergraph $G_H = (V, E)$ • node set V and hyperedge set E
 - Query node v_a
 - Restart probability *c*
- **Output:** RWR scores between each node and v_a

Component 1: Clique-expansion-based Method

- Clique-expansion: a graph constructed from hypergraph by replacing each original hyperedge with a clique
- RWR on hypergraph can be reduced to RWR on clique-expanded graph with edge weights

Hypergraph

Clique Expansion

Q4) Application to Anomaly Detection

nnz(Hc) / nnz(H+)

selected, and

• ARCHER outperforms baselines in 3 real-world datasets

< Star Space

nnz(Hc) / nnz(H *)