
Random Walk with Restart on Hypergraphs: 
Fast Computation and an Application to Anomaly Detection

Jaewan Chun

KAIST

jjwpalace@kaist.ac.kr

Geon Lee

KAIST

geonlee0325@kaist.ac.kr

Kijung Shin

KAIST

kijungs@kaist.ac.kr

Jinhong Jung

Songsil University

jinhong@ssu.ac.kr

Summary

• Motivation
• Measuring node proximity is important with many practical applications including 

clustering, ranking, and anomaly detection
• Random walk with restart (RWR) is a widely-used measure for node proximity in graphs
• However, for hypergraphs, fast computation of RWR has been unexplored

• Proposed Algorithm: ARCHER
• We propose two computation methods for RWR on hypergraphs that are complementary 

(i.e., offering relative advantages on different hypergraphs) 
• We propose ARCHER, which adaptively and efficiently selects a computation method
• We propose an application of RWR on hypergraphs to anomaly detection

• Contribution
• Efficient: ARCHER is fast and space-efficient
• Complementary Computation Algorithms: Two computation methods are complementary 

depending on datasets
• Automatic Selection: ARCHER accurately selects between two computation methods
• Anomaly Detection: RWR on hypergraphs are useful for anomaly detection tasks

Introduction

• Random Walk with Restart (RWR) on Hypergraph
• Stationary probability of a “random surfer” over the nodes
• Random walk (with probability 1 − 𝑐)

1. Select a hyperedge 𝑒 containing current node
2. Move to a node 𝑣 selected from hyperedge 𝑒

• Restart at the query node (with probability 𝑐)

• Hypergraph
• Hypergraphs model group interactions among individuals or objects

Co-authorship Group chat Email

Examples of real-world
group interactions

Action 1: 
Random Walk

Action 2: 
Restart

• Measuring Proximity between Nodes
• Measuring proximity between nodes on hypergraphs has many practical applications
• A widely used method is Random Walk with Restart (RWR)

Applications of
node proximity

Anomaly Detection Clustering Personalized Ranking

• Q1) Preprocessing Cost
• ARCHER takes up to 137.6x less time, and 16.2x less space than using always one 

expansion method 

• Q2) Query Time
• ARCHER takes up to 218.8x less time than using always one expansion method 

• Q3) Automatic Selection Method
• Proposed non-zero ratio shows high correlation with the RWR costs

• Q4) Application to Anomaly Detection
• ARCHER outperforms baselines in 3 real-world datasets

Experimental Results

Application: Anomaly Detection

• Anomaly Detection on Hypergraph
• Task: Given a hypergraph, detect anomalous hyperedges
• Proposed Method: Define the normality score of a hyperedge as the average of RWR 

scores between all pairs of nodes within the hyperedge
• Normality score

• ARCHER accelerates the computation of the normality score

𝑛𝑠 𝑒 =
1

𝑒 𝑒 − 1


𝑢∈𝑒



𝑣∈𝑒\ 𝑢

𝒓𝑢→𝑣

Proposed Algorithm: ARCHER

• Component 1: Clique-expansion-based Method
• Clique-expansion: a graph constructed from hypergraph by replacing each original 

hyperedge with a clique
• RWR on hypergraph can be reduced to RWR on clique-expanded graph with edge weights

• Formal Task Description
• Given

• Hypergraph 𝐺𝐻 = 𝑉, 𝐸
• node set 𝑉 and hyperedge set 𝐸

• Query node 𝒗𝒒
• Restart probability 𝑐

• Output: RWR scores between each node and 𝒗𝒒

• Component 2: Star-expansion-based Method
• Star-expansion: a graph constructed from hypergraph by 
• (1) aggregating nodes and hyperedges into new set of nodes
• (2) adding edges between each pair of incident node and hyperedge
• RWR on hypergraph can be reduced to RWR on star-expanded graph with edge weights

• Component 3: Automatic Selection Method
• For RWR computation, we preprocess the expanded graph into parameters
• Cost of preprocessing vary based on dataset

• Case 1: star-expansion is efficient (up to 137.6x less time, 16.2x less space)
• Case 2: clique-expansion is efficient (up to 6.4x less time, 9.6x less space)

• Hint: empirically cost of RWR depends on non-zeros of adjacency matrix
→ Choose the method with less non-zeros, without conducting preprocessing


