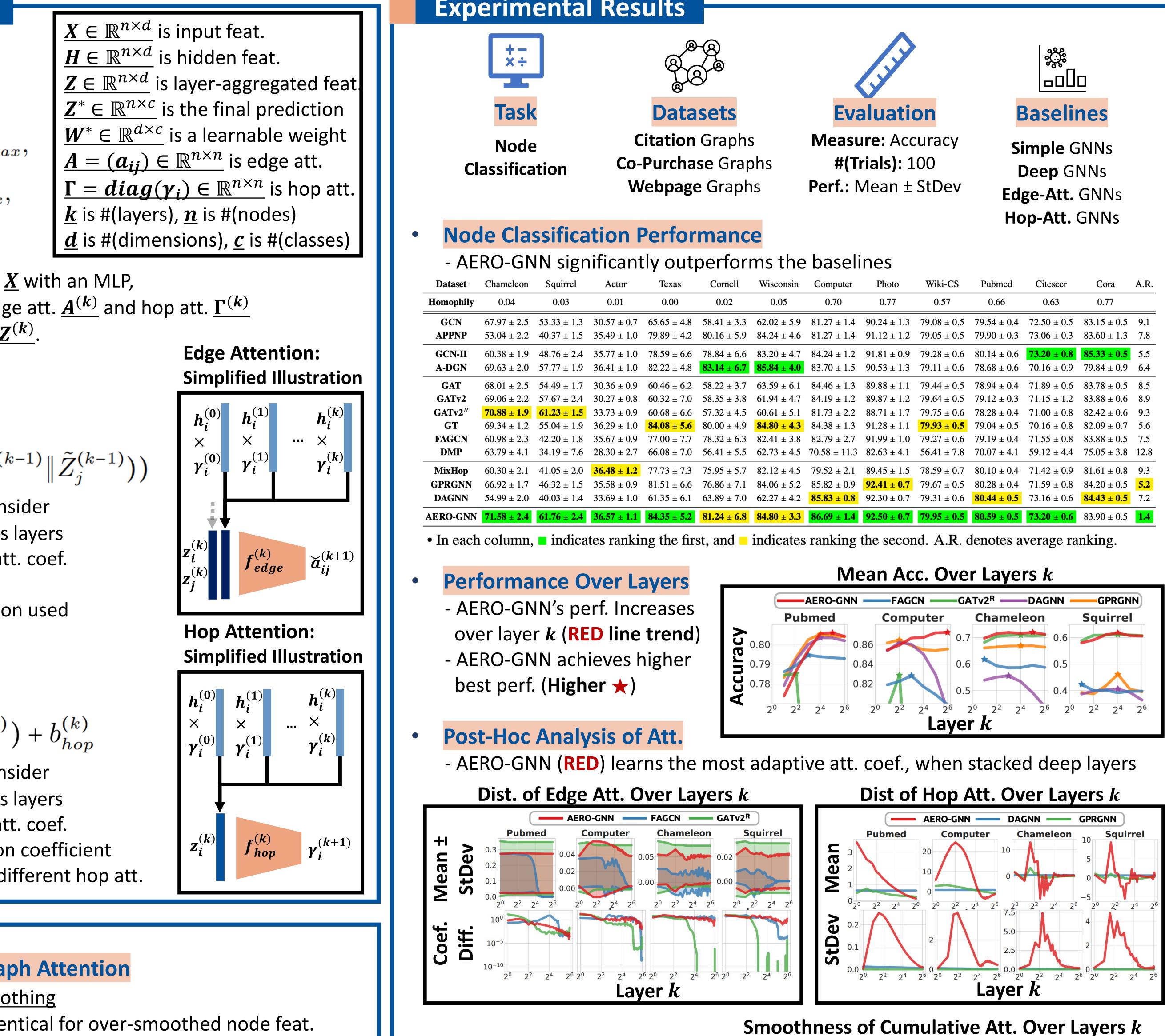


Limitations in Building Deep Graph Attention

Summary

	- We identify <u>two problems</u> that limit existing attention-based GNNs from remaining expressive at deep layers
•	Proposed Solution - To mitigate the problems, we propose a novel GNN architecture, <u>Attentive</u> p <u>RO</u> pagation- <u>GNN</u> (<u>AERO-GNN</u>)
•	 Theoretical and Empirical Results AERO-GNN provably mitigates the proposed problems AERO-GNN outperforms baselines models in node classification task by le the most adaptive and less smooth attention
	Introduction
•	Graphs - Relational data that consists of nodes and edges - Real-world networks can be expressed as graph Web Transp
•	Graph Neural Networks (GNNs)NetworksNetworks- Graph representation learning neural networkNode: WebpageNode- Can solve various downstream tasks on graphsEdge: HyperlinksNode- To enhance it expressiveness:Image: Graph AttentionImage: Graph AttentionImage: Graph Attention
•	 Deeper GNNs Co-Purchase Co-Purchase So Research Question Can existing attention-based GNNs remain Node: Product Node: Product Node: Edge: Co-Purchased
	Analysis of Graph Attention
•	 Graph Attention Intuition: Relational importance among node pairs For GNNs, att. coefficient is the weight for feat. propagation 1-hop neighbours 2-hop neighbours 3-hop neighbours edge attention hop attention
•	Edge-Attention GNNs - Intuition: Learn neighbor importance <i>within</i> each hop - Edge Attention Matrix: $A^{(k)} = (a_{ij}^{(k)}) \in \mathbb{R}^{n \times n}$ $\boxtimes a_{ij}^{(k)}$ is an edge att. coef. btw. node <i>i</i> and <i>j</i> at layer <i>k</i> - Feature Propagation: Weighted for direct neighbors - Propagation Function: $H'^{(k)} = A^{(k)}H^{(k-1)}$ $\boxtimes H'^{(k)}$ is an agg. of node feat. $H^{(k-1)}$, based on $A^{(k)}$ - Models: GATs, FAGCN, etc.
•	Hop-Attention GNNs - Intuition: Learn neighbor importance of each hop - Hop Attention Matrix: $\Gamma^{(k)} = diag(\gamma_i^{(k)}) \in \mathbb{R}^{n \times n}$ $\boxtimes \gamma_i^{(k)}$ is a hop att. coef. of node <i>i</i> for <i>k</i> -hop neighbors - Feature Propagation: Weighted for <i>k</i> -hop neighbors - Propagation Function: $Z^{(k)} = \sum_{\ell=0}^{k} \Gamma^{(\ell)} H^{(\ell)}$ $= \sum_{\ell=0}^{k} \Gamma^{(\ell)} A^{\ell} H^{(0)}$ $\boxtimes Z^{(k)}$ is an agg. of node feat. $H^{(0)}$, based on $\Gamma^{(\ell)}$ and A^{ℓ} - Models: DAGNN, GPRGNN, etc.

Towards Deep Attention in Graph Neural Networks: Problems and Remedies <u>Soo Yong Lee¹, Fanchen Bu¹, Jaemin Yoo², and Kijung Shin¹</u> ¹ KAIST, ² CMU ¹{syleetolow, boqvezen97, kijungs}@kaist.ac.kr, ²{jaeminyoo}@cmu.edu Code and Data: *https://github.com/syleeheal/AERO-GNN* **Experimental Results Proposed Model: AERO-GNN** $X \in \mathbb{R}^{n \times d}$ is input feat. 88 **Model Overview** + -× ÷ $H \in \mathbb{R}^{n \times d}$ is hidden feat. $\underline{Z \in \mathbb{R}^{n \times d}}$ is layer-aggregated feat. $H^{(k)} = \begin{cases} MLP(X), & \text{if } k = 0, \\ \mathcal{A}^{(k)} H^{(k-1)}, & \text{if } 1 \le k \le k_{max}, \end{cases}$ $Z^{(k)} = \sum_{l=0}^{k} \Gamma^{(l)} H^{(l)}, \forall 1 \le k \le k_{max}, \\ Z^* = \sigma(Z^{(k_{max})}) W^*, \end{cases}$ $\underline{Z^*} \in \mathbb{R}^{n \times c}$ is the final prediction **Task Datasets** $\underline{W^*} \in \mathbb{R}^{d \times c}$ is a learnable weight **Citation** Graphs Node $\underline{A} = (\underline{a}_{ii}) \in \mathbb{R}^{n \times n}$ is edge att. **Co-Purchase** Graphs Classification re, <u>A</u>ttentive d<u>E</u>ep $\underline{\Gamma} = diag(\gamma_i) \in \mathbb{R}^{n \times n}$ is hop att. Webpage Graphs \underline{k} is #(layers), \underline{n} is #(nodes) **Node Classification Performance** <u>d</u> is #(dimensions), <u>c</u> is #(classes) - AERO-GNN significantly outperforms the baselines - AERO-GNN first transforms input feat. X with an MLP, then propagates the feat. $\underline{H^{(0)}}$ with edge att. $\underline{A^{(k)}}$ and hop att. $\underline{\Gamma^{(k)}}$ on task by learning 67.97 ± 2.5 53.33 ± 1.3 GCN to learn the final node representation $\underline{Z}^{(k)}$. 53.04 ± 2.2 40.37 ± 1.5 **Edge Attention:** 60.38 ± 1.9 48.76 ± 2.4 3 69.63 ± 2.0 57.77 ± 1.9 Simplified Illustration 68.01 ± 2.5 54.49 ± 1.7 **Computing Edge Attention** 69.06 ± 2.2 57.67 ± 2.4 **70.88 ± 1.9 61.23 ± 1.5** - Edge Attention Function 69.34 ± 1.2 55.04 ± 1.9 60.98 ± 2.3 42.20 ± 1.8 $\check{\alpha}_{ij}^{(k)} = \operatorname{softplus}((W_{edge}^{(k)})^{\mathsf{T}} \sigma(\tilde{Z}_i^{(k-1)} \| \tilde{Z}_j^{(k-1)}))$ 63.79 ± 4.1 34.19 ± 7.6 60.30 ± 2.1 41.05 ± 2.0 **PRGNN** 66.92 ± 1.7 46.32 ± 1.5 **DAGNN** $54.99 \pm 2.0 \quad 40.03 \pm 1.4$ **Transportation** - Input: $\underline{Z^{(\kappa)}}$ enables att. function to consider AERO-GNN 71.58 ± 2.4 61.76 ± 2.4 Networks node feat. $\underline{H}^{(\ell)}$ from all previous layers Node: Region $f_{edge}^{(k)}$ $\check{a}_{ii}^{(k+1)}$ - **Non-linearity**: MLP layer to compute att. coef. nks Edge: Connection **Performance Over Layers** - **Softplus**: Positively map att. coef. - AERO-GNN's perf. Increases - Normalization: Symmetric normalization used Hop Attention: over layer k (**RED line trend**) Simplified Illustration - AERO-GNN achieves higher **Computing Hop Attention** Acc best perf. (**Higher** \star) Social - Hop Attention Function $h_i^{(0)}$ $h_i^{(1)}$ $h_i^{(k)}$ Networks ... × $\gamma_i^{(k)} = (W_{hop}^{(k)})^{\mathsf{T}} \sigma(H_i^{(k)} || \tilde{Z}_i^{(k-1)}) + b_{hop}^{(k)}$ X X **Post-Hoc Analysis of Att.** $\gamma_i^{(0)}$ Node: User $\gamma_i^{(1)}$ Edge: Follow nased - Input: $\underline{Z^{(k)}}$ enables att. function to consider node feat. $\underline{H}^{(\ell)}$ from all previous layers Dist. of Edge Att. Over Layers k ----- FAGCN ------ GATv2^I - **Non-linearity**: MLP layer to compute att. coef. $f_{hop}^{(k)}$ $\gamma_i^{(k+1)}$ -hop neighbors of 🕡 - Negative Att.: Allows negative attention coefficient ean tDev 2-hop neighbors of 🕧 - **Node-Adaptive**: Each node may have different hop att. 8-hop neighbors of 🚺 **Theoretical Results** edge attention $a_{ii}^{(k)}$ Coef. Diff. hop attention $\gamma_i^{(k)}$ **Theoretical Limitations to Deep Graph Attention** Layer k - **Problem 1**: Vulnerability to Over-Smoothing Edge Attention ☑ (Informal) The att. coef. become identical for over-smoothed node feat. - **Problem 2**: Smooth Cumulative Attention $T^{(k)}$ - AERO-GNN's (**RED**) cumul. \square (Informal) Cumul. att. vectors $T_i^{(k)}$ become identical for nodes *i* at deep layer att. $T^{(k)}$ is the least smooth \square Cumulative Attention Matrix $T^{(k)}$ (high smoothness score), Intuition: Expresses att. at kth layer, considering both edge and hop att. and often un-smoothes $\blacktriangleright T^{(k)} = \Gamma^{(k)} \prod_{\ell=k}^{1} A^{(\ell)} \in \mathbb{R}^{n \times n}$ (increasing smoothness score) **Properties of Attention Functions Discussion: Implications** - Att. function of AERO-GNN is the most flexible, with many desirable properties Hop Attention - The properties allows only AERO-GNN to provably mitigate the proposed problems of deep graph att. **Deep GNNs Attention-Based GNNs** Edge & Use Z as Use MLP to Model A larger focus has been Hop Att. Score Att. Input placed on designing a more GATv2 0 **GNN** research FAGCN



0

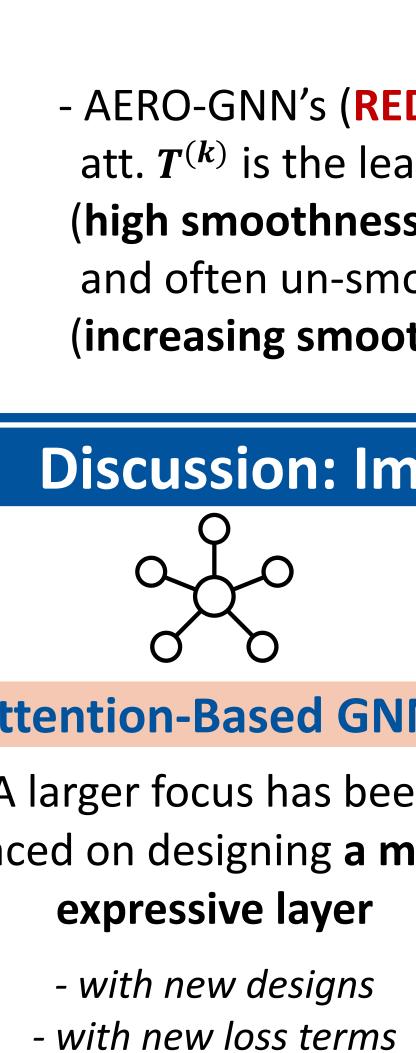
0

GPRGNN

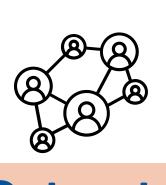
DAGNN

AERO-GNN

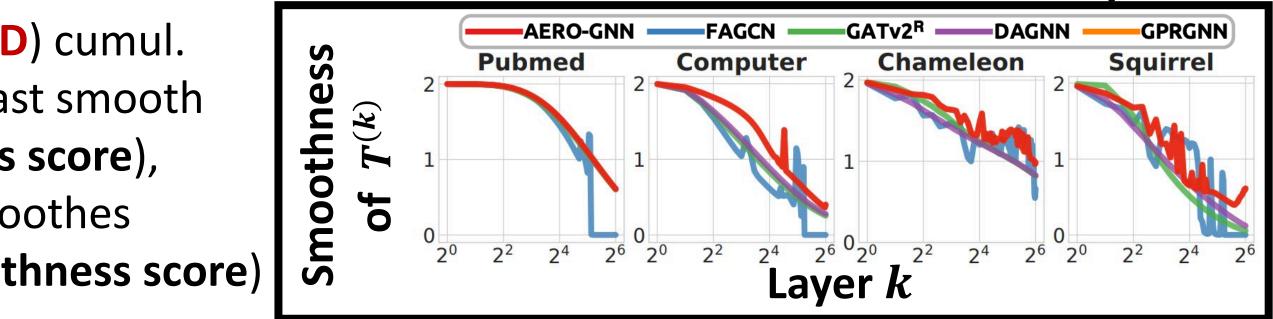
Negative Att.	Node- Adaptive	Resistance to Over- Smoothing	
X	X	X	X
0	X	Δ	Χ
0	X	X	Χ
Χ	0	X	Χ
0	0	0	0



- with more feat.



Actor	Texas	Cornell	Wisconsin	Computer	Photo	Wiki-CS	Pubmed	Citeseer	Cora	A.R.
0.01	0.00	0.02	0.05	0.70	0.77	0.57	0.66	0.63	0.77	
30.57 ± 0.7	65.65 ± 4.8	58.41 ± 3.3	62.02 ± 5.9	81.27 ± 1.4	90.24 ± 1.3	79.08 ± 0.5	79.54 ± 0.4	72.50 ± 0.5	83.15 ± 0.5	9.1
35.49 ± 1.0	79.89 ± 4.2	80.16 ± 5.9	84.24 ± 4.6	81.27 ± 1.4	91.12 ± 1.2	79.05 ± 0.5	79.90 ± 0.3	73.06 ± 0.3	83.60 ± 1.3	7.8
35.77 ± 1.0	78.59 ± 6.6	78.84 ± 6.6	83.20 ± 4.7	84.24 ± 1.2	91.81 ± 0.9	79.28 ± 0.6	80.14 ± 0.6	$\textbf{73.20} \pm \textbf{0.8}$	$\textbf{85.33} \pm \textbf{0.5}$	5.5
36.41 ± 1.0	82.22 ± 4.8	$\textbf{83.14} \pm \textbf{6.7}$	$\textbf{85.84} \pm \textbf{4.0}$	83.70 ± 1.5	90.53 ± 1.3	79.11 ± 0.6	78.68 ± 0.6	70.16 ± 0.9	79.84 ± 0.9	6.4
30.36 ± 0.9	60.46 ± 6.2	58.22 ± 3.7	63.59 ± 6.1	84.46 ± 1.3	89.88 ± 1.1	79.44 ± 0.5	78.94 ± 0.4	71.89 ± 0.6	83.78 ± 0.5	8.5
30.27 ± 0.8	60.32 ± 7.0	58.35 ± 3.8	61.94 ± 4.7	84.19 ± 1.2	89.87 ± 1.2	79.64 ± 0.5	79.12 ± 0.3	71.15 ± 1.2	83.88 ± 0.6	8.9
33.73 ± 0.9	60.68 ± 6.6	57.32 ± 4.5	60.61 ± 5.1	81.73 ± 2.2	88.71 ± 1.7	79.75 ± 0.6	78.28 ± 0.4	71.00 ± 0.8	82.42 ± 0.6	9.3
36.29 ± 1.0	84.08 ± 5.6	80.00 ± 4.9	$\textbf{84.80} \pm \textbf{4.3}$	84.38 ± 1.3	91.28 ± 1.1	$\textbf{79.93} \pm \textbf{0.5}$	79.04 ± 0.5	70.16 ± 0.8	82.09 ± 0.7	5.6
35.67 ± 0.9	77.00 ± 7.7	78.32 ± 6.3	82.41 ± 3.8	82.79 ± 2.7	91.99 ± 1.0	79.27 ± 0.6	79.19 ± 0.4	71.55 ± 0.8	83.88 ± 0.5	7.5
28.30 ± 2.7	66.08 ± 7.0	56.41 ± 5.5	62.73 ± 4.5	70.58 ± 11.3	82.63 ± 4.1	56.41 ± 7.8	70.07 ± 4.1	59.12 ± 4.4	75.05 ± 3.8	12.8
36.48 ± 1.2	77.73 ± 7.3	75.95 ± 5.7	82.12 ± 4.5	79.52 ± 2.1	89.45 ± 1.5	78.59 ± 0.7	80.10 ± 0.4	71.42 ± 0.9	81.61 ± 0.8	9.3
35.58 ± 0.9	81.51 ± 6.6	76.86 ± 7.1	84.06 ± 5.2	85.82 ± 0.9	$\textbf{92.41} \pm \textbf{0.7}$	79.67 ± 0.5	80.28 ± 0.4	71.59 ± 0.8	84.20 ± 0.5	5.2
33.69 ± 1.0	61.35 ± 6.1	63.89 ± 7.0	62.27 ± 4.2	$\textbf{85.83} \pm \textbf{0.8}$	92.30 ± 0.7	79.31 ± 0.6	$\textbf{80.44} \pm \textbf{0.5}$	73.16 ± 0.6	$\textbf{84.43} \pm \textbf{0.5}$	7.2
36.57 ± 1.1	$\textbf{84.35} \pm \textbf{5.2}$	$\textbf{81.24} \pm \textbf{6.8}$	$\textbf{84.80} \pm \textbf{3.3}$	$\pmb{86.69 \pm 1.4}$	$\textbf{92.50} \pm \textbf{0.7}$	$\textbf{79.95} \pm \textbf{0.5}$	$\textbf{80.59} \pm \textbf{0.5}$	$\textbf{73.20} \pm \textbf{0.6}$	83.90 ± 0.5	1.4



Making deeper GNNs have been an important **setback to**

> - over-smoothing - over-squashing - over-correlation

We Bridged the Two

The two are complementary

- deep graph attention - higher node cls. perf.