

On the Persistence of Higher-Order Interactions in Real-World Hypergraphs

Hyunjin Choo

Kijung Shin

SDM 2022 On the Persistence of Higher-Order Interactions in Real-World Hypergraphs

Hypergraph

- A hypergraph is a generalization of an ordinary graph
- A hyperedge joins an arbitrary number of nodes

- Sender and receivers of an email
- \succ Co-authors of a publication
- Items co-purchased by a customer

Higher-Order Interaction (HOI)

- A higher-order interaction (HOI) is the co-appearance of a set of nodes in any hyperedge
 - \succ E.g.) If A, B, and C publish a paper together, any of $\{A, B\}, \{A, C\}, \{B, C\}, \{A, B, C\}$ becomes a HOI

Persistence of HOIs

- HOIs can appear **repeatedly** over time
- Persistence of repeated HOIs can be used to measure the strength or robustness of group relations

Applications

- Predicting the persistence of HOIs has many potential applications
 - Recommending groups (e.g., Facebook groups) in social networks
 - Recommending multiple items together
 - Predicting missing recipients of emails

Missing?

Our Questions

- 1. How do HOIs in real-world hypergraphs persist over time?
- 2. What are the **key factors** governing the persistence?
- 3. How accurately can we **predict** the persistence?

Roadmap

- Introduction
- Observations <
 - Hypergraph-Level Analysis
 - Group-Level Analysis
 - Node-Level Analysis
- Predictions
- Conclusions

Introduction

Observations Predictions

Conclusions

Datasets

Coauthorship

Email

#boot #networking #drivers #server #wireless

Tags

Datasets

Domain	Dataset	Node	Hyperedge	Time Unit
Coauthorship	DBLP Geology History	an author	authors	1 Year
Contact	High Primary	a person	a group interaction	1 Day 6 Hours
Email	Enron	an email	sender and	1 Month
Email	Eu	address	all receivers	2 Weeks
NDC	Classes	a class label	class labels applied to a drug	2 Years
	Substances	a substance	substances in a drug	
Tags	Math.sx Ubuntu	a tag	tags added to a question	1 Month
Threads	Math.sx Ubuntu	a user	users who participate in a thread	1 Month

Timestamped Hyperedges

- For each HOI S,
 - *E*(*S*): Set of hyperedges containing *S*
 - E(S, t): Set of hyperedges at time t containing S

 \succ Hyperedge e_i is associated with the timestamp t_i

Timestamped Hyperedges:

$e_1 = \{ v_1, v_2, v_3, v_4 \},$	$t_1 = 1$
$e_2 = \{ \boldsymbol{v_1}, \boldsymbol{v_2}, \boldsymbol{v_3}, \boldsymbol{v_5}, \boldsymbol{v_6} \},$	$t_2 = 1$
$e_3 = \{ v_1, v_2, v_3, v_7 \},$	$t_3 = 3$

Examples:

$$S = \{v_1, v_2, v_3\}$$

$$E(S) = \{e_1, e_2, e_3\}$$

$$E(S, 1) = \{e_1, e_2\}$$

$$E(S, 2) = \emptyset$$

$$E(S, 3) = \{e_3\}$$

Measure: Persistence of a HOI

• Persistence of a HOI S over a time range T is the number of time units in T when S co-appear in any hyperedge, i.e.,

$$P(S,T) \coloneqq \sum_{t \in T} I(S,t) \qquad \text{where } I(S,t) = \begin{cases} 1, & \text{if } |E(S,t)| \ge 1 \\ 0, & \text{otherwise} \end{cases}$$

$$E(S,1) = \{e_1, e_2\}$$

$$E(S,2) = \emptyset$$

$$E(S,3) = \{e_3\}$$

$$P(S, [1,3]) = \sum_{t=1}^{3} I(S,t) = 1 + 0 + 1 = 2$$

1

Roadmap

- Introduction
- Observations
 - Hypergraph-Level Analysis <
 - Group-Level Analysis
 - Node-Level Analysis
- Predictions
- Conclusions

Persistence vs. Frequency

Obs. 1: Persistence of HOIs tends to follow a **power-law**.

	R^2	of Fitted I	Line
Size of HOIs	2	3	4
Average over all 13 datasets	0.90	0.90	0.90

SDM 2022 On the Persistence of Higher-Order Interactions in Real-World Hypergraphs

Persistence vs. Size of HOIs

Obs. 2: As HOIs grow in size, their **average persistence** and the **power-law exponents** of fitted power-law distributions tend to decrease.

Dataset	P	Average ersisten Relative	ce	E	ower-La Exponen Relative	t
Size of HOIs	2	3	3 4		3	4
Average over all 13 datasets	1.00	0.72	0.63	1.00	0.71	0.59

Roadmap

- Introduction
- Observations
 - Hypergraph-Level Analysis
 - Group-Level Analysis <
 - Node-Level Analysis
- Predictions
- Conclusions

Group Features vs. Group Persistence

- We examined the relations between the structural group features and the persistence of HOIs (i.e., group persistence)
- We measured the Pearson correlation coefficient (CC) and normalized mutual information (MI) between the persistence and each structural feature to examine the relation between them
 - Normalized mutual information scales from 0 (no mutual information) to 1 (perfect correlation)

Introduction

Group Features: Definition

- Basic structural features of each HOI S:
 - #: number of hyperedges including *S*
 - Σ : sum of sizes of hyperedges containing S
 - U: number of hyperedges overlapping S
 - $\Sigma \cup$: sum of sizes of hyperedges overlapping S
 - \cap : number of common neighbors of S
 - \mathcal{H} : entropy in sizes of hyperedges containing S
- Group structural features of each HOI S: > (1) #, (2) #/U, (3) $\Sigma/(\Sigma \cup)$, (4) \cap , (5) #/ \cap , (6) Σ/\cap , (7) $\Sigma/\#$, (8) \mathcal{H}

density of hyperedges containing S

avg. sizes of hyperedges containing \boldsymbol{S}

Measure: Structural Features & Persistence

1) HOI S appears in a hyperedge for the first time at time t

Measure: Structural Features & Persistence

- 1) HOI *S* appears in a hyperedge for the first time at time *t*
- 2) Compute its structural features using only the hyperedges appearing between time t + 1 and $t + T_s$

Measure: Structural Features & Persistence

- 1) HOI *S* appears in a hyperedge for the first time at time *t*
- 2) Compute its structural features using only the hyperedges appearing between time t + 1 and $t + T_s$
- 3) Measure its persistence between time $t + T_s + 1$ and $t + T_s + T_p$

• We set $T_s = 5$ and $T_p = 10$

Group Features vs. Group Persistence

Obs. 3: Persistence of each HOI S is positively correlated with (a) the **number of hyperedges containing** *S* and (b) the **entropy in the sizes of hyperedges containing** *S*.

	Size of HOIs	#	# U	$\frac{\Sigma}{\Sigma \cup}$	Ω	<u>#</u> ∩	$\frac{\Sigma}{\Box}$	$\frac{\Sigma}{\#}$	(\mathcal{H})
	2	0.13	0.11	<u>0.14</u>	0.05	0.10	0.12	0.10	0.15
NЛI	3	<u>0.11</u>	0.06	0.08	0.05	0.08	0.09	0.08	0.12
MI	4	<u>0.11</u>	0.05	0.07	0.06	0.07	0.10	0.07	0.12
	Avg.	<u>0.12</u>	0.08	0.10	0.05	0.08	0.11	0.08	0.13
	2	0.36	0.09	0.09	0.17	0.19	0.26	-0.08	<u>0.32</u>
$\mathbf{c}\mathbf{c}$	3	0.31	0.10	0.10	0.05	0.16	0.20	-0.09	<u>0.25</u>
CC	4	0.30	0.13	0.13	-0.01	0.17	0.20	-0.10	<u>0.24</u>
	Avg.	0.32	0.10	0.11	0.07	0.17	0.22	-0.09	<u>0.27</u>

Group Features vs. Group Persistence

Obs. 3: Persistence of each HOI S is positively correlated with (a) the **number of hyperedges containing** *S* and (b) the **entropy in the sizes of hyperedges containing** *S*.

On the Persistence of Higher-Order Interactions in Real-World Hypergraphs

Node Features: Definition

- We examine the relations between the persistence of each HOI (i.e., group persistence) and the structural features of individual nodes involved in the HOI
- Structural features of each node v in the clique expansion:
 - a. degree d(v)
 - **b.** weighted degree w(v)
 - c. core number c(v)
 - d. PageRank r(v)
 - e. average degree of neighbors $\overline{d}(v)$
 - f. average weighted degree of neighbors $\overline{w}(v)$
 - g. local clustering coefficient l(v)
 - h. number of occurrences of v o(v)

Clique Expansion: Definition

- The clique expansion of a hypergraph is a pairwise graph between nodes
- It is obtained by replacing each hyperedge with the clique with the nodes in the hyperedge

Node Features vs. Group Persistence

Obs. 4: Persistence of each HOI S is negatively correlated with the **average (weighted) degree of neighbors** of each node involved in the HOI.

	Size of HOIs	d	W	С	r	ā	Ŵ	l	0
	2	0.04	0.09	0.04	0.17	0.16	<u>0.17</u>	0.15	0.08
N /1 I	3	0.03	0.06	0.04	<u>0.09</u>	0.09	0.10	0.09	0.05
MI	4	0.03	0.05	0.06	<u>0.07</u>	0.07	0.07	0.07	0.04
	Avg.	0.04	0.07	0.05	<u>0.11</u>	0.11	0.11	0.10	0.05
	2	0.05	0.09	-0.01	0.07	<u>-0.12</u>	-0.14	-0.08	0.09
$\mathbf{c}\mathbf{c}$	3	-0.02	0.06	-0.05	0.03	<u>-0.11</u>	-0.12	-0.02	0.05
CC	4	-0.07	0.03	-0.09	0.03	-0.14	<u>-0.14</u>	0.03	0.00
	Avg.	-0.01	0.06	-0.05	0.04	<u>-0.12</u>	-0.13	-0.02	0.05

Node Features vs. Group Persistence

Obs. 4: Persistence of each HOI S is negatively correlated with the **average (weighted) degree of neighbors** of each node involved in the HOI.

Roadmap

- Introduction
- Observations
 - Hypergraph-Level Analysis
 - Group-Level Analysis
 - Node-Level Analysis <
- Predictions
- Conclusions

Node Features vs. Node Persistence

- We explore the relations between the structural features of each node and its *k*-node persistence
- *k*-node persistence of a node v: average persistence of the HOIs of size $k \in \{2,3,4\}$ that the node v is involved in
- For each node v, let t_v be the time when v is involved in any HOI of size k for the first time
 - > Measure the structural node features of v using only the hyperedges appearing between time $t_v + 1$ and $t_v + T_S$

Node Features vs. Node Persistence

Obs. 5: The **weighted degree** and **number of occurrences** of each node are positively correlated with the *k*-node persistence of HOIs that the node is involved in.

	Size of HOIs	d	W	С	r	$ar{d}$	\overline{W}	l	o
	2	0.35	0.43	0.28	0.53	0.49	<u>0.51</u>	0.43	0.41
MI	3	0.30	0.37	0.24	0.44	0.42	<u>0.44</u>	0.37	0.34
IVII	4	0.26	0.31	0.21	0.36	0.35	<u>0.36</u>	0.31	0.30
	Avg.	0.30	0.37	0.24	0.44	0.42	<u>0.43</u>	0.37	0.35
	2	0.15	<u>0.22</u>	0.14	0.08	0.00	-0.07	-0.02	0.26
$\mathbf{c}\mathbf{c}$	3	0.04	<u>0.16</u>	0.04	0.03	-0.04	-0.08	-0.04	0.17
CC	4	0.03	<u>0.12</u>	0.01	0.02	-0.05	-0.07	-0.04	0.13
	Avg.	0.07	<u>0.17</u>	0.06	0.04	-0.03	-0.07	-0.03	0.19

Node Features vs. Node Persistence

Obs. 5: The **weighted degree** and **number of occurrences** of each node are positively correlated with the *k*-node persistence of HOIs that the node is involved in.

SDM 2022

Roadmap

- Introduction
- Observations
 - Hypergraph-Level Analysis
 - Group-Level Analysis
 - Node-Level Analysis
- Predictions <<
- Conclusions

Prediction Experiments

- Exp. 1: Predictability. How accurately can we predict the persistence of HOIs using the structural features?
- Exp. 2: Feature Importance. Which structural features are important in predicting the persistence?
- Exp. 3: Effect of Observation Periods. How does the period of observation for measuring the structural features affect the prediction accuracy?

Problem 1: Persistence Prediction

- Given:
 - a HOI S that appears for the first time at time t,
 - all hyperedges appearing in the past
 - between time t + 1 and $t + T_s$
- Predict:
 - persistence of S in the near future
 - between $t + T_s + 1$ and $t + T_s + T_p$

Problem 2: *k***-Node Persistence Prediction**

- Given:
 - a **node** v involved in a HOI of size k for the first time at time t,
 - all hyperedges appearing in the past
 - between time t + 1 and $t + T_s$
- Predict:
 - k-node persistence of v in the near future
 - between $t + T_s + 1$ and $t + T_s + T_p$

Prediction Methods

- We use all 16 structural features (8 group and 8 node features) as input features into **four regression models**:
 - 1) multiple linear regression (LR)
 - 2) random forest regression (**RF**)
 - 3) linear support vector regression (SVR)
 - 4) multi-layer perceptron regressor (MLP)
 - \checkmark **Baseline:** mean (k-node) persistence in the training set
- Training set: 2/3 of the HOIs and their persistence and 4/5 of the nodes and their *k*-node persistence
- Test set: the remaining ones

Evaluation Methods

- We evaluate the predictive performance of the models using two metrics:
 - > Coefficients of determination (R^2): measures how well the predictions approximate the real data
 - Root mean squared error (RMSE): between predicted and real (knode) persistence
- A higher R² and lower RMSE indicate better performance

Exp. 1: Predictability

Obs. 6: The **structural features are useful** for predicting the persistence, especially when the size of the HOI is large.

Target	Pr	edictio	n of Pei	sistenc	e of HC	ls	Prediction of <i>k</i> -Node Persistence of Nodes								
Measure		R^{2*}		RMSE**				R^{2*}		F	RMSE**				
Size of HOIs	2	3	4	2	3	4	4 2 3		4	2	3	4			
Mean	0.00	0.00	0.00	1.29	0.73	0.60	-0.01	-0.01	-0.03	0.75	0.56	0.54			
SVR	0.17	0.13	0.10	1.12	0.63	0.48	0.03	0.01	0.00	0.73	0.56	0.54			
LR	0.28	0.22	0.23	1.05	0.58	0.45	<u>0.17</u>	<u>0.15</u>	<u>0.09</u>	<u>0.75</u>	<u>0.71</u>	<u>0.67</u>			
MLP	<u>0.34</u>	<u>0.31</u>	<u>0.37</u>	<u>0.95</u>	<u>0.53</u>	<u>0.42</u>	0.14	0.06	0.02	0.77	0.75	0.72			
RF	0.61	0.62	0.68	0.83	0.38	0.24	0.61	0.66	0.71	0.54	0.41	0.39			

*The higher, the better. **The lower, the better.

Measure: Feature Importance

- We use the **Gini importance** to measure the importance of each structural feature for random forest
- We compute the **rankings** of the features based on the importance

Exp. 2: Feature Importance

Obs. 7: In predicting the persistence, the **number of hyperedges containing** *S* (i.e., #), and the **average (weighted) degree of the neighbors of each node in** *S* (i.e., \overline{w} and \overline{d}) are most useful.

Size of HOIs	#	# U	$\frac{\Sigma}{\Sigma \text{ U}}$	Ω	<u>#</u> ∩	$\frac{\Sigma}{\Box}$	$\frac{\Sigma}{\#}$	${\mathcal H}$	d	W	С	r	đ	Ŵ	l	0
2	2.8	10.7	8.6	13.1	13.3	9.0	9.2	8.7	9.9	8.6	8.8	5.9	4.9	<u>4.3</u>	6.4	11.9
3	5.4	9.2	9.2	11.8	11.2	9.6	9.8	7.9	11.2	9.1	8.4	5.7	<u>5.1</u>	4.3	6.4	12.0
4	5.3	9.3	9.9	10.3	10.6	8.3	8.7	7.0	9.5	7.3	9.2	7.7	7.7	<u>6.3</u>	8.0	11.0
Avg.	4.5	9.7	9.2	11.7	11.7	9.0	9.2	7.9	10.2	8.3	8.8	6.4	5.9	<u>5.0</u>	6.9	11.6

Feature Importance Ranking

Exp. 2: Feature Importance

Obs. 8: In predicting the k-node persistence, its **PageRank** (i.e., r) and the average (weighted) degree of its neighbors (i.e., \overline{w} and \overline{d}) are most useful.

Size of HOIs	d	W	С	r			l	
2	6.7	4.3	7.2	<u>3.2</u>	3.4	2.9	5.3 5.0 5.3	<u>3.2</u>
3	6.6	4.1	7.3	2.7	3.5	2.7	5.0	4.3
4	6.1	4.0	6.6	2.6	3.5	<u>3.1</u>	5.3	4.9
Avg.	6.4	4.1	7.0	2.8	3.5	<u>2.9</u>	5.2	4.1

Feature Importance Ranking

Exp. 2: Effect of Number of Features

Obs. 9: About a half of the considered structural features based on their importance yields similar performance.

Exp. 3: Effect of Observation Periods

Obs. 10: Observing HOIs for **longer periods of time** enables us to better predict their persistence.

Target		Pers	sistend	ce of H	lOIs		k-Node Persistence of Nodes							
Measure	RM	SE* o	f RF	Improvement (in %)			RM	SE* o	f RF	•	roven (in %)			
T_s	2**	3	4	2	3	4	2	3	4	2	3	4		
1	0.96	0.48	0.32	31.6	42.3	50.7	0.62	0.46	0.43	18.5	25.5	31.8		
3	0.88	0.42	0.28	34.1	45.4	55.0	0.55	0.41	0.38	24.8	29.1	34.4		
5	0.83	0.38	0.24	36.0	47.7	59.4	0.54	0.41	0.39	27.4	26.4	27.5	۲ ۲	

*The lower, the better. **The size of HOIs (i.e., |S|).

Roadmap

- Introduction
- Observations
 - Hypergraph-Level Analysis
 - Group-Level Analysis
 - Node-Level Analysis
- Predictions
- Conclusions <<

Conclusions

• We empirically examined the **persistence of HOIs** at hypergraph-, group-, and node- levels in 13 real-world hypergraphs to answer the following questions:

✓ How is the persistence of HOIs distributed?

- ✓ Which structural features govern the persistence of HOIs?
- ✓ How accurately can we forecast the persistence of HOIs?

Github link: <u>https://github.com/jin-choo/persistence</u>

On the Persistence of Higher-Order Interactions in Real-World Hypergraphs

Hyunjin Choo

Kijung Shin

SDM 2022 On the Persistence of Higher-Order Interactions in Real-World Hypergraphs