On the Persistence of Higher-Order Interactions in Real-World Hypergraphs

Hyunjin Choo

Kijung Shin
Hypergraph

- A **hypergraph** is a generalization of an ordinary graph
- A **hyperedge** joins an **arbitrary** number of nodes

- Sender and receivers of an email
- Co-authors of a publication
- Items co-purchased by a customer
Higher-Order Interaction (HOI)

• A higher-order interaction (HOI) is the co-appearance of a set of nodes in any hyperedge
 ➢ E.g.) If A, B, and C publish a paper together, any of $\{A, B\}$, $\{A, C\}$, $\{B, C\}$, $\{A, B, C\}$ becomes a HOI
Persistence of HOIs

- HOIs can appear repeatedly over time
- **Persistence** of repeated HOIs can be used to measure the strength or robustness of group relations
Applications

• Predicting the persistence of HOIs has many **potential applications**
 • Recommending groups (e.g., Facebook groups) in social networks
 • Recommending multiple items together
 • Predicting missing recipients of emails

- Amy
- Bob
- Carl
- Dan

Jan.

- Amy
- Bob
- Carl
- Dan

Feb.

- Amy
- Bob
- Carl
- Dan

Mar.

- Amy
- Bob
- Carl
- Dan

Apr.

- Amy
- Bob
- Carl
- Dan

Missing?
Our Questions

1. How do HOIs in real-world hypergraphs persist over time?
2. What are the key factors governing the persistence?
3. How accurately can we predict the persistence?
Roadmap

• Introduction

• Observations <<
 ◦ Hypergraph-Level Analysis
 ◦ Group-Level Analysis
 ◦ Node-Level Analysis

• Predictions

• Conclusions
Datasets

Observations

Coauthorship

Email

Predictions

NDC 0777-3105-02

Tags

SDM 2022 On the Persistence of Higher-Order Interactions in Real-World Hypergraphs
Datasets

<table>
<thead>
<tr>
<th>Domain</th>
<th>Dataset</th>
<th>Node</th>
<th>Hyperedge</th>
<th>Time Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coauthorship</td>
<td>DBLP</td>
<td>an author</td>
<td>authors</td>
<td>1 Year</td>
</tr>
<tr>
<td></td>
<td>Geology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>History</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact</td>
<td>High</td>
<td>a person</td>
<td>a group interaction</td>
<td>1 Day</td>
</tr>
<tr>
<td></td>
<td>Primary</td>
<td></td>
<td></td>
<td>6 Hours</td>
</tr>
<tr>
<td>Email</td>
<td>Enron</td>
<td>an email address</td>
<td>sender and all receivers</td>
<td>1 Month</td>
</tr>
<tr>
<td></td>
<td>Eu</td>
<td></td>
<td></td>
<td>2 Weeks</td>
</tr>
<tr>
<td>NDC</td>
<td>Classes</td>
<td>a class label</td>
<td>class labels applied to a drug</td>
<td>2 Years</td>
</tr>
<tr>
<td></td>
<td>Substances</td>
<td>a substance</td>
<td>substances in a drug</td>
<td></td>
</tr>
<tr>
<td>Tags</td>
<td>Math.sx</td>
<td>a tag</td>
<td>tags added to a question</td>
<td>1 Month</td>
</tr>
<tr>
<td></td>
<td>Ubuntu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threads</td>
<td>Math.sx</td>
<td>a user</td>
<td>users who participate in a thread</td>
<td>1 Month</td>
</tr>
<tr>
<td></td>
<td>Ubuntu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Timestamped Hyperedges

- For each HOI S,
 - $E(S)$: Set of hyperedges containing S
 - $E(S, t)$: Set of hyperedges at time t containing S
 - Hyperedge e_i is associated with the timestamp t_i

Examples:

- $S = \{v_1, v_2, v_3\}$
- $E(S) = \{e_1, e_2, e_3\}$
- $E(S, 1) = \{e_1, e_2\}$
- $E(S, 2) = \emptyset$
- $E(S, 3) = \{e_3\}$

Timestamped Hyperedges:

- $e_1 = \{v_1, v_2, v_3, v_4\}, \quad t_1 = 1$
- $e_2 = \{v_1, v_2, v_3, v_5, v_6\}, \quad t_2 = 1$
- $e_3 = \{v_1, v_2, v_3, v_7\}, \quad t_3 = 3$
Measure: Persistence of a HOI

- **Persistence** of a HOI S over a time range T is the number of time units in T when S co-appear in any hyperedge, i.e.,

$$ P(S, T) := \sum_{t \in T} I(S, t) $$

where $I(S, t) = \begin{cases} 1, & \text{if } |E(S, t)| \geq 1 \\ 0, & \text{otherwise} \end{cases}$

- $E(S, 1) = \{e_1, e_2\}$
- $E(S, 2) = \emptyset$
- $E(S, 3) = \{e_3\}$

$$ P(S, [1, 3]) = \sum_{t=1}^{3} I(S, t) = 1 + 0 + 1 = 2 $$
Roadmap

• Introduction
• Observations
 ◦ Hypergraph-Level Analysis <<
 ◦ Group-Level Analysis
 ◦ Node-Level Analysis
• Predictions
• Conclusions
Persistence vs. Frequency

Obs. 1: Persistence of HOIs tends to follow a **power-law**.

- **DBLP ($|S| = 2$)**
- **DBLP ($|S| = 3$)**
- **DBLP ($|S| = 4$)**

<table>
<thead>
<tr>
<th>Size of HOIs</th>
<th>R^2 of Fitted Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average over all 13 datasets</td>
<td>0.90</td>
</tr>
</tbody>
</table>
Persistence vs. Size of HOIs

Obs. 2: As HOIs grow in size, their average persistence and the power-law exponents of fitted power-law distributions tend to decrease.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Average Persistence (Relative)</th>
<th>Power-Law Exponent (Relative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of HOIs</td>
<td>2 3 4</td>
<td>2 3 4</td>
</tr>
<tr>
<td>Average over all 13 datasets</td>
<td>1.00 0.72 0.63</td>
<td>1.00 0.71 0.59</td>
</tr>
</tbody>
</table>
Roadmap

• Introduction
• Observations
 ◦ Hypergraph-Level Analysis
 ◦ Group-Level Analysis <<
 ◦ Node-Level Analysis
• Predictions
• Conclusions
Group Features vs. Group Persistence

- We examined the relations between the structural group features and the persistence of HOIs (i.e., group persistence).
- We measured the **Pearson correlation coefficient (CC)** and **normalized mutual information (MI)** between the persistence and each structural feature to examine the relation between them.
 - Normalized mutual information scales from 0 (no mutual information) to 1 (perfect correlation).
Group Features: Definition

• Basic structural features of each HOI S:
 • $\#$: number of hyperedges including S
 • Σ: sum of sizes of hyperedges containing S
 • \cup: number of hyperedges overlapping S
 • $\Sigma \cup$: sum of sizes of hyperedges overlapping S
 • \cap: number of common neighbors of S
 • \mathcal{H}: entropy in sizes of hyperedges containing S

• Group structural features of each HOI S:
 ➢ (1) $\#$, (2) $\# / \cup$, (3) $\Sigma / (\Sigma \cup)$, (4) \cap, (5) $\# / \cap$, (6) Σ / \cap, (7) $\Sigma / \#$, (8) \mathcal{H}

 density of hyperedges containing S avg. sizes of hyperedges containing S
Measure: Structural Features & Persistence

1) HOI S appears in a hyperedge for the first time at time t
Measure: Structural Features & Persistence

1) HOI S appears in a hyperedge for the first time at time t

2) Compute its structural features using only the hyperedges appearing between time $t + 1$ and $t + T_s$
Measure: Structural Features & Persistence

1) HOI S appears in a hyperedge for the first time at time t

2) Compute its structural features using only the hyperedges appearing between time $t + 1$ and $t + T_s$

3) Measure its persistence between time $t + T_s + 1$ and $t + T_s + T_p$

• We set $T_s = 5$ and $T_p = 10$
Group Features vs. Group Persistence

Obs. 3: Persistence of each HOI S is positively correlated with (a) the **number of hyperedges containing S** and (b) the **entropy in the sizes of hyperedges containing S**.

<table>
<thead>
<tr>
<th>Size of HOIs</th>
<th># of HOIs</th>
<th>MI</th>
<th># U</th>
<th>Σ U</th>
<th>∩</th>
<th># Σ</th>
<th>∑</th>
<th>∑ #</th>
<th>\mathcal{H}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.13</td>
<td>0.11</td>
<td>0.14</td>
<td>0.05</td>
<td>0.10</td>
<td>0.12</td>
<td>0.10</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.11</td>
<td>0.06</td>
<td>0.08</td>
<td>0.05</td>
<td>0.08</td>
<td>0.09</td>
<td>0.08</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.11</td>
<td>0.05</td>
<td>0.07</td>
<td>0.06</td>
<td>0.07</td>
<td>0.10</td>
<td>0.07</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>0.12</td>
<td>0.08</td>
<td>0.10</td>
<td>0.05</td>
<td>0.08</td>
<td>0.11</td>
<td>0.08</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.36</td>
<td>0.09</td>
<td>0.09</td>
<td>0.17</td>
<td>0.19</td>
<td>0.26</td>
<td>-0.08</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.31</td>
<td>0.10</td>
<td>0.10</td>
<td>0.05</td>
<td>0.16</td>
<td>0.20</td>
<td>-0.09</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.30</td>
<td>0.13</td>
<td>0.13</td>
<td>-0.01</td>
<td>0.17</td>
<td>0.20</td>
<td>-0.10</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>0.32</td>
<td>0.10</td>
<td>0.11</td>
<td>0.07</td>
<td>0.17</td>
<td>0.22</td>
<td>-0.09</td>
<td>0.27</td>
<td></td>
</tr>
</tbody>
</table>
Obs. 3: Persistence of each HOI S is positively correlated with (a) the number of hyperedges containing S and (b) the entropy in the sizes of hyperedges containing S.
Node Features: Definition

- We examine the relations between the persistence of each HOI (i.e., group persistence) and the structural features of individual nodes involved in the HOI

- Structural features of each node \(v \) in the clique expansion:
 a. \textbf{degree} \(d(v) \)
 b. \textbf{weighted degree} \(w(v) \)
 c. \textbf{core number} \(c(v) \)
 d. \textbf{PageRank} \(r(v) \)
 e. \textbf{average degree of neighbors} \(\bar{d}(v) \)
 f. \textbf{average weighted degree of neighbors} \(\bar{w}(v) \)
 g. \textbf{local clustering coefficient} \(l(v) \)
 h. \textbf{number of occurrences of} \(v \) \(o(v) \)
Clique Expansion: Definition

• The **clique expansion** of a hypergraph is a pairwise graph between nodes

• It is obtained by replacing each hyperedge with the clique with the nodes in the hyperedge
Node Features vs. Group Persistence

Obs. 4: Persistence of each HOI S is negatively correlated with the average (weighted) degree of neighbors of each node involved in the HOI.

<table>
<thead>
<tr>
<th>Size of HOIs</th>
<th>d</th>
<th>w</th>
<th>c</th>
<th>r</th>
<th>(\bar{d})</th>
<th>(\bar{w})</th>
<th>l</th>
<th>o</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.04</td>
<td>0.09</td>
<td>0.04</td>
<td>0.17</td>
<td>0.16</td>
<td>0.17</td>
<td>0.15</td>
<td>0.08</td>
</tr>
<tr>
<td>3</td>
<td>0.03</td>
<td>0.06</td>
<td>0.04</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
<td>0.09</td>
<td>0.05</td>
</tr>
<tr>
<td>4</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td>Avg.</td>
<td>0.04</td>
<td>0.07</td>
<td>0.05</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.10</td>
<td>0.05</td>
</tr>
<tr>
<td>CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>0.09</td>
<td>-0.01</td>
<td>0.07</td>
<td>-0.12</td>
<td>-0.14</td>
<td>-0.08</td>
<td>0.09</td>
</tr>
<tr>
<td>3</td>
<td>-0.02</td>
<td>0.06</td>
<td>-0.05</td>
<td>0.03</td>
<td>-0.11</td>
<td>-0.12</td>
<td>-0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>4</td>
<td>-0.07</td>
<td>0.03</td>
<td>-0.09</td>
<td>0.03</td>
<td>-0.14</td>
<td>-0.14</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>Avg.</td>
<td>-0.01</td>
<td>0.06</td>
<td>-0.05</td>
<td>0.04</td>
<td>-0.12</td>
<td>-0.13</td>
<td>-0.02</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Node Features vs. Group Persistence

Obs. 4: Persistence of each HOI S is negatively correlated with the *average (weighted) degree of neighbors* of each node involved in the HOI.

- **DBLP ($|S| = 2$)**
- **DBLP ($|S| = 3$)**
- **DBLP ($|S| = 4$)**
- **Eu ($|S| = 2$)**
- **Eu ($|S| = 3$)**
- **Eu ($|S| = 4$)**
Roadmap

• Introduction
• Observations
 ◦ Hypergraph-Level Analysis
 ◦ Group-Level Analysis
 ◦ **Node-Level Analysis **
• Predictions
• Conclusions
Node Features vs. Node Persistence

- We explore the relations between the structural features of each node and its k-node persistence

- **k-node persistence** of a node v: average persistence of the HOIs of size $k \in \{2,3,4\}$ that the node v is involved in

- For each node v, let t_v be the time when v is involved in any HOI of size k for the first time

 ➢ Measure the structural node features of v using only the hyperedges appearing between time $t_v + 1$ and $t_v + T_S$

 1. First appearance of a HOI of size k containing v
 2. Observe structural features $t_v + T_s$
 3. Measure k-node persistence $t_v + T_s + T_p$
Node Features vs. Node Persistence

Obs. 5: The *weighted degree* and *number of occurrences* of each node are positively correlated with the k-node persistence of HOIs that the node is involved in.

<table>
<thead>
<tr>
<th>Size of HOIs</th>
<th>d</th>
<th>w</th>
<th>c</th>
<th>r</th>
<th>\bar{d}</th>
<th>\bar{w}</th>
<th>l</th>
<th>o</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.35</td>
<td>0.43</td>
<td>0.28</td>
<td>0.53</td>
<td>0.49</td>
<td>0.51</td>
<td>0.43</td>
<td>0.41</td>
</tr>
<tr>
<td>3</td>
<td>0.30</td>
<td>0.37</td>
<td>0.24</td>
<td>0.44</td>
<td>0.42</td>
<td>0.44</td>
<td>0.37</td>
<td>0.34</td>
</tr>
<tr>
<td>4</td>
<td>0.26</td>
<td>0.31</td>
<td>0.21</td>
<td>0.36</td>
<td>0.35</td>
<td>0.36</td>
<td>0.31</td>
<td>0.30</td>
</tr>
<tr>
<td>Avg.</td>
<td>0.30</td>
<td>0.37</td>
<td>0.24</td>
<td>0.44</td>
<td>0.42</td>
<td>0.43</td>
<td>0.37</td>
<td>0.35</td>
</tr>
<tr>
<td>CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.15</td>
<td>0.22</td>
<td>0.14</td>
<td>0.08</td>
<td>0.00</td>
<td>-0.07</td>
<td>-0.02</td>
<td>0.26</td>
</tr>
<tr>
<td>3</td>
<td>0.04</td>
<td>0.16</td>
<td>0.04</td>
<td>0.03</td>
<td>-0.04</td>
<td>-0.08</td>
<td>-0.04</td>
<td>0.17</td>
</tr>
<tr>
<td>4</td>
<td>0.03</td>
<td>0.12</td>
<td>0.01</td>
<td>0.02</td>
<td>-0.05</td>
<td>-0.07</td>
<td>-0.04</td>
<td>0.13</td>
</tr>
<tr>
<td>Avg.</td>
<td>0.07</td>
<td>0.17</td>
<td>0.06</td>
<td>0.04</td>
<td>-0.03</td>
<td>-0.07</td>
<td>-0.03</td>
<td>0.19</td>
</tr>
</tbody>
</table>
Node Features vs. Node Persistence

Obs. 5: The **weighted degree** and **number of occurrences** of each node are positively correlated with the \(k \)-node persistence of HOIs that the node is involved in.

- **DBLP (|S| = 2)**
- **DBLP (|S| = 3)**
- **DBLP (|S| = 4)**
- **Eu (|S| = 2)**
- **Eu (|S| = 3)**
- **Eu (|S| = 4)**
Roadmap

• Introduction

• Observations
 ◦ Hypergraph-Level Analysis
 ◦ Group-Level Analysis
 ◦ Node-Level Analysis

• Predictions

• Conclusions
Prediction Experiments

- **Exp. 1: Predictability.** How accurately can we predict the persistence of HOIs using the structural features?
- **Exp. 2: Feature Importance.** Which structural features are important in predicting the persistence?
- **Exp. 3: Effect of Observation Periods.** How does the period of observation for measuring the structural features affect the prediction accuracy?
Problem 1: Persistence Prediction

• Given:
 – a **HOI S** that appears for the first time at time t,
 – all hyperedges appearing in the past
 – between time $t + 1$ and $t + T_s$

• Predict:
 – **persistence of S in the near future**
 – between $t + T_s + 1$ and $t + T_s + T_p$
Problem 2: k-Node Persistence Prediction

• Given:
 – a node v involved in a HOI of size k for the first time at time t,
 – all hyperedges appearing in the past
 – between time $t + 1$ and $t + T_s$

• Predict:
 – k-node persistence of v in the near future
 – between $t + T_s + 1$ and $t + T_s + T_p$
Prediction Methods

• We use all 16 structural features (8 group and 8 node features) as input features into four regression models:
 1) multiple linear regression (LR)
 2) random forest regression (RF)
 3) linear support vector regression (SVR)
 4) multi-layer perceptron regressor (MLP)

✓ Baseline: mean (k-node) persistence in the training set

• Training set: 2/3 of the HOIs and their persistence and 4/5 of the nodes and their k-node persistence

• Test set: the remaining ones
Evaluation Methods

• We evaluate the predictive performance of the models using two metrics:

 ➢ **Coefficients of determination \((R^2)\):** measures how well the predictions approximate the real data

 ➢ **Root mean squared error \((RMSE)\):** between predicted and real \((k\)-node) persistence

• A **higher \(R^2\)** and **lower \(RMSE\)** indicate better performance
Exp. 1: Predictability

Obs. 6: The **structural features are useful** for predicting the persistence, especially when the size of the HOI is large.

<table>
<thead>
<tr>
<th>Target</th>
<th>Prediction of Persistence of HOIs</th>
<th>Prediction of k-Node Persistence of Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure</td>
<td>R^2^*</td>
<td>RMSE**</td>
</tr>
<tr>
<td>Size of HOIs</td>
<td>2 3 4</td>
<td>2 3 4</td>
</tr>
<tr>
<td>Mean</td>
<td>0.00 0.00 0.00</td>
<td>1.29 0.73 0.60</td>
</tr>
<tr>
<td>SVR</td>
<td>0.17 0.13 0.10</td>
<td>1.12 0.63 0.48</td>
</tr>
<tr>
<td>LR</td>
<td>0.28 0.22 0.23</td>
<td>1.05 0.58 0.45</td>
</tr>
<tr>
<td>MLP</td>
<td>0.34 0.31 0.37</td>
<td>0.95 0.53 0.42</td>
</tr>
<tr>
<td>RF</td>
<td>0.61 0.62 0.68</td>
<td>0.83 0.38 0.24</td>
</tr>
</tbody>
</table>

*The higher, the better. **The lower, the better.
Measure: Feature Importance

• We use the **Gini importance** to measure the importance of each structural feature for random forest

• We compute the **rankings** of the features based on the importance
Exp. 2: Feature Importance

Obs. 7: In predicting the persistence, the number of hyperedges containing S (i.e., #), and the average (weighted) degree of the neighbors of each node in S (i.e., \bar{w} and \bar{d}) are most useful.

<table>
<thead>
<tr>
<th>Size of HOIs</th>
<th>#</th>
<th>$\frac{#}{\Sigma U}$</th>
<th>$\Sigma \frac{#}{\Sigma U}$</th>
<th>\cap</th>
<th>$\frac{#}{\cap}$</th>
<th>$\Sigma \frac{#}{\cap}$</th>
<th>Σ</th>
<th>\mathcal{H}</th>
<th>d</th>
<th>w</th>
<th>c</th>
<th>r</th>
<th>\bar{d}</th>
<th>\bar{w}</th>
<th>l</th>
<th>o</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.8</td>
<td>10.7</td>
<td>8.6</td>
<td>13.1</td>
<td>13.3</td>
<td>9.0</td>
<td>9.2</td>
<td>8.7</td>
<td>9.9</td>
<td>8.6</td>
<td>8.8</td>
<td>5.9</td>
<td>4.9</td>
<td>4.3</td>
<td>6.4</td>
<td>11.9</td>
</tr>
<tr>
<td>3</td>
<td>5.4</td>
<td>9.2</td>
<td>9.2</td>
<td>11.8</td>
<td>11.2</td>
<td>9.6</td>
<td>9.8</td>
<td>7.9</td>
<td>11.2</td>
<td>9.1</td>
<td>8.4</td>
<td>5.7</td>
<td>5.1</td>
<td>4.3</td>
<td>6.4</td>
<td>12.0</td>
</tr>
<tr>
<td>4</td>
<td>5.3</td>
<td>9.3</td>
<td>9.9</td>
<td>10.3</td>
<td>10.6</td>
<td>8.3</td>
<td>8.7</td>
<td>7.0</td>
<td>9.5</td>
<td>7.3</td>
<td>9.2</td>
<td>7.7</td>
<td>7.7</td>
<td>6.3</td>
<td>8.0</td>
<td>11.0</td>
</tr>
<tr>
<td>Avg.</td>
<td>4.5</td>
<td>9.7</td>
<td>9.2</td>
<td>11.7</td>
<td>11.7</td>
<td>9.0</td>
<td>9.2</td>
<td>7.9</td>
<td>10.2</td>
<td>8.3</td>
<td>8.8</td>
<td>6.4</td>
<td>5.9</td>
<td>5.0</td>
<td>6.9</td>
<td>11.6</td>
</tr>
</tbody>
</table>

Feature Importance Ranking
Exp. 2: Feature Importance

Obs. 8: In predicting the k-node persistence, its PageRank (i.e., r) and the average (weighted) degree of its neighbors (i.e., \bar{w} and \bar{d}) are most useful.

<table>
<thead>
<tr>
<th>Size of HOIs</th>
<th>d</th>
<th>w</th>
<th>c</th>
<th>r</th>
<th>\bar{d}</th>
<th>\bar{w}</th>
<th>l</th>
<th>o</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6.7</td>
<td>4.3</td>
<td>7.2</td>
<td>3.2</td>
<td>3.4</td>
<td>2.9</td>
<td>5.3</td>
<td>3.2</td>
</tr>
<tr>
<td>3</td>
<td>6.6</td>
<td>4.1</td>
<td>7.3</td>
<td>2.7</td>
<td>3.5</td>
<td>2.7</td>
<td>5.0</td>
<td>4.3</td>
</tr>
<tr>
<td>4</td>
<td>6.1</td>
<td>4.0</td>
<td>6.6</td>
<td>2.6</td>
<td>3.5</td>
<td>3.1</td>
<td>5.3</td>
<td>4.9</td>
</tr>
<tr>
<td>Avg.</td>
<td>6.4</td>
<td>4.1</td>
<td>7.0</td>
<td>2.8</td>
<td>3.5</td>
<td>2.9</td>
<td>5.2</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Feature Importance Ranking
Exp. 2: Effect of Number of Features

Obs. 9: About a half of the considered structural features based on their importance yields similar performance.
Exp. 3: Effect of Observation Periods

Obs. 10: Observing HOIs for longer periods of time enables us to better predict their persistence.

<table>
<thead>
<tr>
<th>Target</th>
<th>Persistence of HOIs</th>
<th>k-Node Persistence of Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSE* of RF</td>
<td>Improvement (in %)</td>
</tr>
<tr>
<td>Measure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_s</td>
<td>2** 3 4</td>
<td>2 3 4</td>
</tr>
<tr>
<td>1</td>
<td>0.96 0.48 0.32</td>
<td>31.6 42.3 50.7</td>
</tr>
<tr>
<td>3</td>
<td>0.88 0.42 0.28</td>
<td>34.1 45.4 55.0</td>
</tr>
<tr>
<td>5</td>
<td>0.83 0.38 0.24</td>
<td>36.0 47.7 59.4</td>
</tr>
</tbody>
</table>

*The lower, the better. **The size of HOIs (i.e., $|S|$).*
Roadmap

• Introduction

• Observations
 ◦ Hypergraph-Level Analysis
 ◦ Group-Level Analysis
 ◦ Node-Level Analysis

• Predictions

• Conclusions <<
Conclusions

• We empirically examined the persistence of HOIs at hypergraph-, group-, and node- levels in 13 real-world hypergraphs to answer the following questions:

✓ How is the persistence of HOIs distributed?
✓ Which structural features govern the persistence of HOIs?
✓ How accurately can we forecast the persistence of HOIs?

• Github link: https://github.com/jin-choo/persistence
On the Persistence of Higher-Order Interactions in Real-World Hypergraphs

Hyunjin Choo

Kijung Shin