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Introduction

Graphs are everywhere!

* Graphs represent relationships such as
° Friends in social networks
o Purchase history

| W B & 6k
o Hyperlinks between web pages

</>

/>

Social network Purchase history Web graph
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Introduction

Graphs become large!

* Graphs grow rapidly at an unprecedented pace

25 million (2013) 0.6 bllllon (2013)

@ 1.9 billion (2022)

157.4 million (2022)
Users Web pages
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Introduction

Graphs become large!

* Graphs grow rapidly at an unprecedented pace

a 25 million (2013) 0.6 bllllon (2013)
157.4 million (2022) @ 1.9 billion (2022)
Users Web pages

How do we efficiently
utilize such large graphs?
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Introduction

Graph summarization

* A lossy graph compression technique [1, 2, 3, 4]

* A summary graph is in the form of a graph
o Directly query processing without restoration
> Application of other graph compression techniques

Graph Further

Hmar'zation compression

Inout eraph Summary Compressed
e graph graph
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Introduction

Graph summarization

* Given: input graph G
* Find: summary graph G

What should be the objective & constraint?

&P e/l

Input graph G Summary graph G
(w/ 5 nodes, 5 edges) (w/ 3 nodes, 2 edges)
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Introduction

Graph summarization

* Given: input graph G
* Find: summary graph G

* To minimize: the difference between G and G
° (e.g.) Manhattan distance between adjacency matrices

Restoration process:
described in the paper

e~ 05050

Input graph G Summary graph G Restored graph G
(w/ 5 nodes, 5 edges) (w/ 3 nodes, 2 edges) (w/ 5 nodes, 6 edges)
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Introduction

Graph summarization

* Given: input graph G and a budget k
* Find: summary graph G

* To minimize: the difference between G and G
° (e.g.) Manhattan distance between adjacency matrices

» Subject to: size of summary graph G < k
> (e.g.) # of nodes in G, # of bits to encode G

-G53

Input graph G Summary graph G Restored graph G
(w/ 5 nodes, 5 edges) (w/ 3 nodes, 2 edges) (w/ 5 nodes, 6 edges)
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Introduction

Limitation of graph summarization

* Information loss increases inevitably as a graph is
more compressed

A
>

Difference
between ¢ and G

N

Size of G
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Introduction

Limitation of graph summarization

* Information loss increases inevitably as a graph is
more compressed

How can we mitigate
‘ this inherent limitation?

Size of G

Py

Difference
between ¢ and G
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Introduction

Motivation: example

* We often have different levels of interest in
different parts of a graph

KAIST

Land far far away

ﬁ &
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Introduction

Motivation: example

* We often have different levels of interest in
different parts of a graph

KAIST

Land far far away

ﬁ &

For lossy compression, which connections
do “I” prioritize to better preserve?
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Introduction

First law of geography

* We often have different levels of interest in
different parts of a graph

“Everything is related to everything else,
but near things are more related than
distant things” [5]

- Waldo Tobler (the 1st law of geography) -
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Introduction

First law of geography

* Other examples of the 15 law of geography

(o)

/

-

Citation network Road network
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Introduction

Road map

v Introduction

v" Problem formulation <<
v Optimization: PeGaSus
v" Application

v Experiments

v" Conclusion
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Problem formulation

Personalized graph summarization

* Given: input graph: ¢ = (I, E)
set of target nodes: T(CSV)
and a budget: k

* Find: summary graph G = (S, P)
personalized to T

* To minimize: error personalized to T supernode

A = {a,b}
* Subject to: Size(G) = # of bits to encode G < k
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Problem formulation

Personalized error

* Personalized error is the weighted sum of errors

14114 (T) (G) (G)
Z 12 Aij _Aij )

> where each weight WU( ) is personalized to target nodes T
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Problem formulation

Personalized weight

* Personalized weight on a node pair depends on their
distance from target nodes

I/ViET) x g~ (PGT)+D(,T))

o where D(i,T) = r&iqp(#of hops(i, t)) and « is a constant

(e.g.) Personalized weights are

Largest H
arge —O@

\"4

small ()—Q@
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Optimization

Road map

v Introduction

v" Problem formulation

v’ Optimization: PeGaSus <<
v" Application

v Experiments

v" Conclusion
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Optimization

Optimization: PeGaSus

* Personalized Graph Summarization with Scalability

[ ] Effective in personalization

[ ] Useful for applications

[ ] Scalable to large graphs
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Optimization

Overview: PeGaSus
* PeGaSus is largely based on SSumM [1]

° Inputs

° input graph G o set of target nodes T

o size budget k o max. humber of iterations t,,,,,
* Output

o personalized summary graph G

* Procedure
> initializing step
> repeat t,,, 4, times or until Size(G) > k
» dividing step & merging step
>If Size(G) > k, then sparsifying step
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Optimization

Initializing step

> Initialize a summary graph G, and a threshold 00

E _
Input graph G Summary graph G
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Optimization

Dividing step

» Divide supernodes into groups U by MinHashing

U:{{A, B, C},{D, E}, {F, G}}

Personalized Graph Summarization: Formulation, Scalable Algorithms, and Applications (by Shinhwan Kang) 24



Optimization

Merging step

»For each group of U, if Saving(T) > 00y, merge supernodes

* Saving™ = saving (in bits) in personalized error + size
g
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Optimization

Merging step

» For each group of U, if Saving(T) > 00y, merge supernodes

* Saving™ =~ saving (in bits) in personalized error + size
g
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Optimization

Dividing step

» Divide supernodes into groups U by MinHashing

* MinHashing gives different partitions in each iteration
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Optimization

Merging step

> For each group of U, if Saving(™ > 6(1), merge supernodes
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Optimization

Sparsifying step

> After t,,,, iterations, if Size(G) > k, drop superedges to
maximize Saving™
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Optimization

Adaptive threshold: motivation

»In the merging step,

>If|Saving™ > 6,.y,|merge supernodes
> ...
* Controlling 0 is important for output quality [6]
> Small 6: supernodes are merged myopically even
when better pairs can be found later

o Large 0: supernodes remain without being merged
> A fixed rule was used to reduce 0 over iterations [1,6]
* PeGaSus controls 0 adaptively based on past savings
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Optimization

Adaptive threshold: details

* PeGaSus controls 0 adaptively based on past savings

* 0 is set to top 10% of SavingT) at “unsuccessful”
searches in the previous iteration

* 0 always decreases over iterations
o Saving ™) at unsuccessful searches is at most the current 6

SavingD at unsuccessful searches
Smal| &——————————————>large

1

0(t+1) = Top 10% entry
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Application

Road map

v Introduction

v" Problem formulation
v Optimization: PeGaSus
v’ Application <<

v Experiments

v" Conclusion
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Application

Motivation: storing big graphs

* Real-world graphs are often too large to be stored
in a single machine

a
y%—x—

Big graphs
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Application

Motivation: storing big graphs

* Thus, real-world graphs are typically distributed
across multiple machines
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Application

Motivation: query answering

* How are queries answered on distributed graphs?
o E.g., Which node is the most similar to a node u?
o E.g., Who are the neighbors of a node u?
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Application

Motivation: query answering

* Given a query, multiple workers communicate
with each other to answer it

Communication

Master node
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Application

Motivation: bottleneck

* Such communication causes a significant overhead

and often becomes a bottleneck
Communizat’ n

Master node
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Application

Motivation: bottleneck

* Such communication causes a significant overhead
and often becomes a bottleneck

Communizat’ n

\
=
How can we eliminate the
communication overhead?

Master node
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Application

Application: overview

* Get multiple summary graphs with different targets
o Each summary graph fit in main memory of a worker

* Each query is answered by a worker with a “proper”
summary graph without communications

&

o
: = Personalized
summary graph

(o = Q l
Master node £

Queryin EE
VT8 =

Personalized Graph Summarization: Formulation, Scalable Algorithms, and Applications (by Shinhwan Kang) 39



Application

Application: preprocessing

* Divide nodes into m subsets via graph partitioning
o E.g., the Louvain method [7]

Input graph ¢ = (V,E)
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Application

Application: preprocessing

* A summary graph personalized to each subset is
loaded on each worker.......5.

“*Summary graph G,

0
0
0

Worker M,

ary graph G3

Worker M5
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Application

Application: query answering

* Each query is answered by a single worker
without communications

* Queries about are answered by the
worker with the summary graph personalized to
the subset with

. [\
Answer\ng : z
Worker M,
Which node is . /—\
most similar to Querylng' = —
a ? = =
Master Worker M,,
Vi
Work; M
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Application

Application: query answering

* Answers are approximate but accurate
o Summary graphs used have abundant information
about query nodes

* Multiple queries can be answered in parallel
o Workers perform independently
[\

(]

(]

0 =

Worker M4

J

(-
(d

Who are the Querying |
neighbors of a — |

node w? M

oJoYo

er Worker M,

J

Answering ——
Worker M5
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Experiments

Road map

v Introduction

v" Problem formulation
v Optimization: PeGaSus
v" Application

v EXxperiments <<

v" Conclusion
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Experiments

Experiments: settings

* Datasets
> 6 Real-world graphs (27K - 0.1B edges)
> 10 Synthetic graphs (up to 1B edges)
Social

* Graph summarization methods
o SSumM [1], k-Grass [2], SAAGs [3], S2L [4]

* Graph partitioning methods
o Louvain [7], SHP [8], BLP [9]
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Experiments

Experiments: settings & metrics

* Node similarity queries
o Random Walk with Restart (RWR) [10]
o Length of shortest path (HOP)
o Penalized Hitting Probability (PHP) [11, 12]

* Evaluation measures
o Symmetric Mean Absolute Percentage Error (SMAPE) [13]
o Spearman’ correlation coefficients (Spearman Corr.) [14]

* Set of target nodes: T
o Sample |T| nodes uniformly at random
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Experiments

Q1. Personalization

* PeGaSus provides “personalized” summary, well
preserving the information close to target nodes T

()_

o o
N @ <9,

Personalized Error
(Relative)

CA
Dataset

B PeGaSus (|T] = 1) BPeGaSus (|T] = 0.01 x |V|)
B PeGaSus (|T| = 0.1 x |V]|) BPeGaSus (|T| = 0.3 x |V])
B PeGaSus (|T| = 0.5 x |V]|) B PeGaSus (|T| = |V])

. SSumM
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Experiments

Q2. Effectiveness Dataset: amazon

* Queries were answered up to 3.86X more
accurately on personalized summary graphs

>RWR _ >Hop >PHP

044 |

&\ P IT| = 100
| ‘ | OPeGaSus
A SSumM

S & 0-751|1.37x

c c Tttt

& 0.50 & 0.50-

© ® X

80.25- & 0.25- X 0.25-

a a o.
X

0.00_& . : 0.00, . . . 0.00{_2&
00 03 06 09 00 03 06 09 00 03 06 09

Rel. Size of Summary Rel. Size of Summa Rel. Size of Summa
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Experiments

PeGaSus is ...

Qﬁiffective in personalization

[ ] Useful for applications

[ ] Scalable to large graphs
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Experiments

Q3. Applicable: settings

* Eight personalized summary graphs on eight workers

s Summary graph G, <—
V4 Test nodes ""j,::‘ @ Query for

(J
(J
(d




Experiments

Q3. Applicable: results pataset:

* Queries were answered up to 3.22X more
accurately on personalized summary graphs

> RWR » HOI > PHP
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i 0.4 i
o \ w " O PeGaSus
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Experiments

PeGaSus is ...

Qﬁiffective in personalization

Q/Useful for applications

[ ] Scalable to large graphs
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Experiments

QA4. Scalable

* PeGaSus scales linearly with the number of edges,
to about 1B edges
o Consistent with our theoretical analysis (Theorem 1)

3214_ : O PeGaSus
Q
£ : Linear
c 2'% | mmm scalability
2 I (slope=1)
5 510 :
2] 1B ed

I ges
3 4

R R =
Number of edges
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Experiments

PeGaSus is ...

Qﬁiffective in personalization

Q/Useful for applications

i scalable to large graphs
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Experiments

Road map

v Introduction

v" Problem formulation
v Optimization: PeGaSus
v" Application

v Experiments

v" Conclusion <<
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Experiments

Conclusion

*We introduce a novel problem,
personalized graph summarization

*We propose PeGaSus, an optimization
algorithm for the problem

LI Effective in personalization

L1 Useful for applications

|| Scalable to large graphs

Github Link: https://github.com/ShinhwanKang/ICDE22-PeGaSus
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