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Graphs are everywhere!
•Graphs represent relationships such as

◦ Friends in social networks

◦ Purchase history

◦ Hyperlinks between web pages
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Graphs become large!
•Graphs grow rapidly at an unprecedented pace 
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How do we efficiently 
utilize such large graphs?



Graph summarization
•A lossy graph compression technique [1, 2, 3, 4] 

•A summary graph is in the form of a graph
◦ Directly query processing without restoration

◦ Application of other graph compression techniques
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Graph summarization
•Given: input graph 𝐺

• Find: summary graph ҧ𝐺
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Summary graph ҧ𝐺
(w/ 3 nodes, 2 edges)

Input graph 𝐺
(w/ 5 nodes, 5 edges)

What should be the objective & constraint? 
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Graph summarization
•Given: input graph 𝐺

• Find: summary graph ҧ𝐺
• To minimize: the difference between 𝑮 and 𝑮

◦ (e.g.) Manhattan distance between adjacency matrices
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Summary graph ҧ𝐺
(w/ 3 nodes, 2 edges)

Input graph 𝐺
(w/ 5 nodes, 5 edges)

Restored graph 𝐺
(w/ 5 nodes, 6 edges)

Wrong!

Restoration process: 
described in the paper 
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Graph summarization
•Given: input graph 𝐺 and a budget 𝒌

• Find: summary graph ҧ𝐺
• To minimize: the difference between 𝐺 and 𝐺

◦ (e.g.) Manhattan distance between adjacency matrices

• Subject to: size of summary graph ҧ𝐺 ≤ 𝒌
◦ (e.g.) # of nodes in ҧ𝐺, # of bits to encode ҧ𝐺
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Summary graph ҧ𝐺
(w/ 3 nodes, 2 edges)

Input graph 𝐺
(w/ 5 nodes, 5 edges)

Restored graph 𝐺
(w/ 5 nodes, 6 edges)

Wrong!
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Limitation of graph summarization
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• Information loss increases inevitably as a graph is 
more compressed
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Limitation of graph summarization
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How can we mitigate 
this inherent limitation?
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Me

KAIST Land far far away…

Motivation: example 
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Me

KAIST Land far far away…

Motivation: example 
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•We often have different levels of interest in 
different parts of a graph

For lossy compression, which connections 
do “I” prioritize to better preserve? 
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Me

KAIST Land far far away…

First law of geography
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•We often have different levels of interest in 
different parts of a graph

“Everything is related to everything else, 
but near things are more related than 

distant things” [5]
- Waldo Tobler (the 1st law of geography) -
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First law of geography
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•Other examples of the 1st law of geography

Citation network Road network



Road map
✓ Introduction

✓ Problem formulation <<

✓ Optimization: PeGaSus

✓ Application

✓ Experiments

✓ Conclusion
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Personalized graph summarization
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•Given: input graph: 𝐺 = (𝑉, 𝐸)

set of target nodes: 𝑻(⊆ 𝑽)

and a budget: 𝑘

• Find: summary graph ҧ𝐺 = (𝑆, 𝑃)
personalized to 𝑻

• To minimize: error personalized to 𝑻

• Subject to: Size( ҧ𝐺) = # of bits to encode ҧ𝐺 ≤ 𝑘



Personalized error
• Personalized error is the weighted sum of errors

◦ where each weight 𝑊𝑖𝑗
(𝑇)

is personalized to target nodes 𝑇
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Personalized weight
• Personalized weight on a node pair depends on their 
distance from target nodes

◦ where 𝐷 𝑖, 𝑇 = min
𝑡∈𝑇

#𝑜𝑓 ℎ𝑜𝑝𝑠 𝑖, 𝑡 and 𝛼 is a constant
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Optimization: PeGaSus
•Personalized Graph Summarization with Scalability
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Effective in personalization

Useful for applications

Scalable to large graphs
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Overview: PeGaSus
• PeGaSus is largely based on SSumM [1]

• Inputs
◦ input graph 𝐺

◦ size budget 𝑘
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•Output
◦ personalized summary graph ҧ𝐺

•Procedure

◦ set of target nodes 𝑇

◦ max. number of iterations 𝑡𝑚𝑎𝑥

➢ initializing step

➢ repeat 𝑡𝑚𝑎𝑥 times or until Size ҧ𝐺 > 𝑘

➢ dividing step & merging step

➢If Size ҧ𝐺 > 𝑘, then sparsifying step
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Initializing step
➢Initialize a summary graph ҧ𝐺, and a threshold 𝜃 0
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Initialize



Dividing step
➢Divide supernodes into groups 𝑈 by MinHashing
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Merging step
➢For each group of 𝑈, if 𝑺𝒂𝒗𝒊𝒏𝒈(𝑻) > 𝜃(0), merge supernodes

* 𝑺𝒂𝒗𝒊𝒏𝒈(𝑻) ≈ saving (in bits) in personalized error + size
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Dividing step
➢Divide supernodes into groups 𝑈 by MinHashing

* MinHashing gives different partitions in each iteration
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Merging step
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➢For each group of 𝑈, if 𝑆𝑎𝑣𝑖𝑛𝑔(𝑇) > 𝜃(1), merge supernodes
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Sparsifying step
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➢After 𝑡𝑚𝑎𝑥 iterations, if Size ҧ𝐺 > 𝑘,  drop superedges to 
maximize 𝑆𝑎𝑣𝑖𝑛𝑔(𝑇)
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Adaptive threshold: motivation
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➢In the merging step,

➢If 𝑆𝑎𝑣𝑖𝑛𝑔(𝑇) > 𝜃(∙), merge supernodes

➢…

• Controlling 𝜽 is important for output quality [6]

◦ Small 𝜃: supernodes are merged myopically even 
when better pairs can be found later

◦ Large 𝜃: supernodes remain without being merged

◦ A fixed rule was used to reduce 𝜃 over iterations [1,6] 

• PeGaSus controls 𝜽 adaptively based on past savings



Adaptive threshold: details
• PeGaSus controls 𝜽 adaptively based on past savings

•𝜃 is set to top 10% of 𝑆𝑎𝑣𝑖𝑛𝑔(𝑇) at “unsuccessful” 
searches in the previous iteration

•𝜃 always decreases over iterations
◦ 𝑆𝑎𝑣𝑖𝑛𝑔(𝑇) at unsuccessful searches is at most the current 𝜃
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LargeSmall
𝑺𝒂𝒗𝒊𝒏𝒈(𝑻) at unsuccessful searches

𝜃 𝑡+1 = Top 10% entry
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Motivation: storing big graphs
•Real-world graphs are often too large to be stored 
in a single machine
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Big graphs



Motivation: storing big graphs
• Thus, real-world graphs are typically distributed 
across multiple machines
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Big graphs



Motivation: query answering
•How are queries answered on distributed graphs?

◦ E.g., Which node is the most similar to a node 𝒖?

◦ E.g., Who are the neighbors of a node 𝒖?
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Motivation: query answering
•Given a query, multiple workers communicate 
with each other to answer it
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Master node

Querying
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Communication



Motivation: bottleneck
• Such communication causes a significant overhead 
and often becomes a bottleneck
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Master node

Querying

Communication
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Motivation: bottleneck
• Such communication causes a significant overhead 
and often becomes a bottleneck

38Personalized Graph Summarization: Formulation, Scalable Algorithms, and Applications (by Shinhwan Kang)

Master node

Querying

Communication

How can we eliminate the 
communication overhead?
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Application: overview
•Get multiple summary graphs with different targets 

◦ Each summary graph fit in main memory of a worker

• Each query is answered by a worker with a “proper” 
summary graph without communications
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Application: preprocessing
•Divide nodes into 𝑚 subsets via graph partitioning

◦ E.g., the Louvain method [7]
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Input graph 𝐺 = (𝑉, 𝐸)
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Application: preprocessing
•A summary graph personalized to each subset is 
loaded on each worker
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: Summarize for 𝑽𝒊

Summary graph ҧ𝐺1
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𝒊 = 𝟐

𝒊 = 𝟑

Introduction Optimization ExperimentsProblem formulation ConclusionApplication

𝑽𝟏

𝑽𝟐

𝑽𝟑

node 𝒖

node 𝒗
node 𝒘
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Application: query answering
• Each query is answered by a single worker 

without communications
• Queries about node u are answered by the 

worker with the summary graph personalized to 
the subset with node u
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Worker 𝑴𝟏

Worker 𝑴𝟐

Worker 𝑴𝟑

Master

Querying
Which node is 
most similar to 

a node u?
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Application: query answering
• Answers are approximate but accurate

◦ Summary graphs used have abundant information 
about query nodes

• Multiple queries can be answered in parallel
◦ Workers perform independently
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Experiments: settings
•Datasets

◦ 6 Real-world graphs (27K - 0.1B edges)

◦ 10 Synthetic graphs (up to 1B edges)

•Graph summarization methods
◦ SSumM [1], k-Grass [2], SAAGs [3], S2L [4]

•Graph partitioning methods 
◦ Louvain [7], SHP [8], BLP [9]
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Social Collaboration Internet Co-purchase Hyperlinks
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Experiments: settings & metrics
• Node similarity queries

◦ Random Walk with Restart (RWR) [10]

◦ Length of shortest path (HOP)

◦ Penalized Hitting Probability (PHP) [11, 12]

• Evaluation measures
◦ Symmetric Mean Absolute Percentage Error (SMAPE) [13]

◦ Spearman’ correlation coefficients (Spearman Corr.) [14]

• Set of target nodes: 𝑇
◦ Sample |𝑇| nodes uniformly at random
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Q1. Personalization
• PeGaSus provides “personalized” summary, well 
preserving the information close to target nodes T

47Personalized Graph Summarization: Formulation, Scalable Algorithms, and Applications (by Shinhwan Kang)

PeGaSus ( 𝑇 = 1) PeGaSus ( 𝑇 = 0.01 × |𝑉|)
PeGaSus ( 𝑇 = 0.1 × |𝑉|) PeGaSus ( 𝑇 = 0.3 × |𝑉|)
PeGaSus ( 𝑇 = 0.5 × |𝑉|) PeGaSus ( 𝑇 = |𝑉|)
SSumM
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Q2. Effectiveness
•Queries were answered up to 3.86X more 
accurately on personalized summary graphs
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PeGaSus is …
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Effective in personalization

Useful for applications

Scalable to large graphs
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Q3. Applicable: settings
• Eight personalized summary graphs on eight workers
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𝑽𝟏

: Summarize for 𝑽𝒊
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Test nodes Query for 
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: Load to worker 𝑀𝑖



Q3. Applicable: results
•Queries were answered up to 3.22X more 
accurately on personalized summary graphs
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PeGaSus is … 
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Effective in personalization

Useful for applications

Scalable to large graphs
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Q4. Scalable
• PeGaSus scales linearly with the number of edges, 
to about 1B edges
◦ Consistent with our theoretical analysis (Theorem 1)

53Personalized Graph Summarization: Formulation, Scalable Algorithms, and Applications (by Shinhwan Kang)

 
  

 
  

 
  

 
  

 
  

 
  

               

 
  

 
 
  
 
 
  
  

 
  
 
 
 
 

1B edges

Introduction Optimization ExperimentsProblem formulation ConclusionApplication

Number of edges

Ex
ec

u
ti

o
n

 t
im

e
 (

se
c)

PeGaSus

Linear 
scalability
(slope=1)



PeGaSus is … 
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Road map
✓ Introduction

✓ Problem formulation

✓ Optimization: PeGaSus

✓ Application

✓ Experiments

✓ Conclusion <<
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Conclusion
•We introduce a novel problem, 
personalized graph summarization

•We propose PeGaSus, an optimization 
algorithm for the problem
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