

Interplay between Topology and Edge Weights in Real-World Graphs: Concepts, Patterns, and an Algorithm

Fanchen Bu S

Shinhwan Kang

Kijung Shin

Graphs

- A graph G = (V, E) consists of a node set V and an edge set E
 - Each edge joins a pair of nodes
- Graphs naturally represent relations between real-world objects

Edges Weights

- Even in the same graph, edges are not all the same
- We can use **edge weights** to describe the heterogeneity of edges
 - Each edge e has its edge weight, which is a **positive integer** W(e)
- Example: Online social networks

Topology and Edge Weights are Entangled

- In many cases, we can infer edge weights from topology (connections)
- **Example:** Online social networks
 - **Q:** Which person is more likely my close friend with strong connection?

Topology and Edge Weights are Entangled

- In many cases, we can infer edge weights from topology (connections)
- **Example:** Online social networks
 - **Q:** Which person is more likely my close friend with strong connection?

Topology and Edge Weights are Entangled

- In many cases, we can infer edge weights from topology (connections)
- **Example:** Online social networks
 - **Q:** Which person is more likely my close friend with strong connection?

Research Questions

- Q: What are some realistic **properties** on the **interplay** between topology and edge weights that realistic edge weights should satisfy?
- Q: How can we assign **realistic** edge weights to given graph topology based on realistic properties?

Real-World Applications

- Such a problem has several real-world applications
- Edge weight anonymization: Sometimes, due to privacy issues, connection information can be publicized but edge weights cannot
 - Assign fake yet realistic edge weights to generate weighted benchmarks without revealing the ground-truth edge weights

Real-World Applications

- Such a problem has several real-world applications
- **Community detection:** Edge weights provide additional information about the connections and thus are helpful for community detection
 - Assign realistic edge weights to unweighted graphs to enhance the performance of community detection

Roadmap

Concepts <
Patterns
Algorithm & Experiments
Conclusions

Layers

- The layer-*i* of a graph G consists of the edges with edge weights $\geq i$
 - From layer-*i*, we can obtain layer-(i + 1) by removing the edges with weight *i*

- The layer-*i* of a graph G consists of the edges with edge weights $\geq i$
 - The **layer**-*i* of *G* is denoted by $G_i = (V_i, E_i, W_i)$

- The layer-*i* of a graph *G* consists of the edges with edge weights $\geq i$
 - Layer-1 is just the whole graph G

- The layer-*i* of a graph G consists of the edges with edge weights $\geq i$
 - Layer-2 can be obtained by removing the edges with weight 1

- The layer-*i* of a graph G consists of the edges with edge weights $\geq i$
 - Similarly, we can obtain layer-3 and layer-4

Weighty Edges

- The layer-*i* of a graph G consists of the edges with edge weights $\geq i$
- The weighty edges in the layer-*i* are those with weight > i (i.e., E_{i+1})

Weighty Edges

- The layer-*i* of a graph G consists of the edges with edge weights $\geq i$
- The weighty edges in the layer-*i* are those with weight > i (i.e., E_{i+1})

Overall Fractions of Weighty Edges

- We also define the **overall fraction** of weighty edges in the layer-*i*
 - $f_{overall;i}(G) = |E_{i+1}|/|E_i|$

Roadmap

Concepts
Patterns <
Algorithm & Experiments
Conclusions

Real-World Weighted Graph Datasets

- Datasets: 11 real-world weighted graphs from 5 different domains
 - # nodes: 897 2.6M
 - # edges: 15,645 28.2M
- Source: <u>https://toreopsahl.com/tnet/;</u> <u>https://www.cs.cornell.edu/~arb/data;</u> <u>https://snap.stanford.edu/data/</u>

dataset	V	$ E = E_1 $	$ E_2 $	$ E_3 $	$ E_4 $
OF	897	71,380	47,266 (66.2%)	35,456 (49.7%)	28,546 (40.0%)
FL	2,905	15,645	4,608 (29.5%)	1,507 (9.6%)	564 (3.6%)
th-UB	82,075	182,648	7,297 (4.0%)	2,090 (1.1%)	965 (0.5%)
th-MA	152,702	1,088,735	128,400 (11.8%)	48,605 (4.5%)	26,121 (2.4%)
th-SO	2,301,070	20,989,078	1,168,210 (5.6%)	350,871 (1.7%)	170,618 (0.8%)
sx-UB	152,599	453,221	135,948 (30.0%)	56,115 (12.4%)	28,029 (6.2%)
sx-MA	24,668	187,939	74,493 (39.6%)	36,604 (19.5%)	21,364 (11.4%)
sx-SO	2,572,345	28,177,464	9,871,784 (35.0%)	4,137,454 (14.7%)	2,055,034 (7.3%)
sx-SU	189,191	712,870	216,296 (30.3%)	82,475 (11.6%)	37,655 (5.3%)
co-DB	1,654,109	7,713,116	2,269,679 (29.4%)	1,085,489 (14.1%)	654,182 (8.5%)
co-GE	898,648	4,891,112	1,055,077 (21.6%)	446,833 (9.1%)	246,944 (5.1%)

- OF: communication in a blog post
- FL: flights between airports
- th: interactions within threads
- sx: Q&A interactions
- co: co-authorship

Common Neighbors are Simple and Indicative

• The number of common neighbors is **simplest** and it has the **strongest correlation** with edge weightiness overall!

•	Edge weightiness:	Specifically,	it is 1 if e	edge weight >	1, 0 otherwise
---	-------------------	---------------	--------------	---------------	----------------

dataset	NC	SA	IC	HP	HD	SI			RA	PA	FM	DL	FC	IP
unuser		0.1		111	m	51		1		111	1.01		LC	
OF	0.33	0.20	0.20	-0.02	0.21	0.21	-0.13	0.34	0.35	0.33	0.11	0.32	0.26	0.33
FL	0.32	0.26	0.26	0.19	0.24	0.26	-0.06	0.35	0.35	0.21	0.08	0.18	0.17	0.31
th-UB	0.48	0.02	0.00	0.03	0.00	0.01	-0.05	0.47	0.40	0.33	0.26	0.21	0.37	0.48
th-MA	0.45	0.22	0.15	0.09	0.15	0.18	-0.05	0.44	0.35	0.33	0.40	0.25	0.38	0.46
th-SO	0.38	0.11	0.08	0.06	0.08	0.09	-0.03	0.39	0.33	0.22	0.33	0.18	0.26	0.37
sx-UB	0.15	0.11	0.08	0.09	0.07	0.08	-0.00	0.13	0.10	0.09	0.12	0.09	0.14	0.15
sx-MA	0.25	0.24	0.21	0.12	0.19	0.21	-0.02	0.25	0.22	0.19	0.19	0.16	0.20	0.25
sx-SO	0.10	0.11	0.08	0.08	0.07	0.08	0.00	0.10	0.07	0.05	0.10	0.07	0.07	0.10
sx-SU	0.14	0.11	0.08	0.09	0.07	0.08	-0.00	0.12	0.08	0.08	0.11	0.08	0.13	0.15
co-DB	0.20	-0.08	-0.09	-0.05	-0.08	-0.08	-0.16	0.22	0.20	0.03	0.06	0.07	0.14	0.20
co-GE	0.30	-0.07	-0.08	-0.08	-0.07	-0.06	-0.16	0.32	0.26	0.16	0.19	0.19	0.22	0.30
avg.	0.28	0.11	0.09	0.05	0.09	0.10	-0.06	0.28	0.24	0.18	0.18	0.16	0.21	0.28
avg. rank	2.2	7.5	10.5	10.6	10.8	8.9	14.0	2.5	5.5	8.2	7.1	8.5	6.5	2.4

(Local) Fractions of Weighty Edges

- The overall fraction of weighty edges is $f_{overall;i}(G) = |E_{i+1}|/|E_i|$
- Let $E_{c;i} \subseteq E_i$ be the set of the edges in E_i whose two endpoints share exactly c common neighbors
 - A disjoint partition of E_i

Nodes 1 and 2:

Share 3 common neighbors (nodes 3, 4, and 5) So the edge $(1,2) \in E_{3;2}$

(Local) Fractions of Weighty Edges

- The overall fraction of weighty edges is $f_{overall;i}(G) = |E_{i+1}|/|E_i|$
- Let $E_{c;i} \subseteq E_i$ be the set of the edges in E_i whose two endpoints share exactly c common neighbors
 - The fraction of weighty edges (FoWE) is $f_{c;i} = |E_{c;i} \cap E_{i+1}| / |E_{c;i}|$

 $E_{2;2}$ consists of {(4,6), (4,7), (5,7), (6,7)} All are weighty edges! Therefore, $f_{2;2} = 1$

Pattern 1: Linear Growth of FoWE

Pattern: In each layer-*i*, the fraction of weighty edge (FoWE) *f_{c;i}* grows nearly linearly with *c*, and saturates after some point

Pattern 1: Linear Growth of FoWE

Pattern: In each layer-*i*, the fraction of weighty edge (FoWE) *f_{c;i}* grows nearly linearly with *c*, and saturates after some point

F. Bu, S. Kang, and K. Shin [ECML PKDD'23] Interplay between Topology and Edge Weights in Real-World Graphs

Pattern 2: Fraction of Adjacent Pairs

- **Recall:** The fraction of weighty edges $f_{c;i} = |E_{c;i} \cap E_{i+1}| / |E_{c;i}|$
- The fraction of adjacent pairs $\tilde{f}_{c;i} = |E_{c;i}|/|R_{c;i}|$, where $R_{c;i}$ is the set of pairs sharing exactly c common neighbors in the layer-i
 - Both adjacent and non-adjacent pairs are counted in $R_{c;i}$

 $R_{1;2} \text{ consists of} \\ \{(1,8), (3,8), (5,8), (6,8), (7,8)\} \\ E_{1;2} \text{ consists of} \\ \{(3,8), (5,8)\} \\ \Rightarrow \tilde{f}_{1;2} = |E_{1;2}| / |R_{1;2}| = 2/5$

Pattern 2: Similarity between Adjacency and Weightiness

• Pattern: In each layer-*i*, the fraction of weighty edge $f_{c;i}$ and the fraction of adjacent pairs $\tilde{f}_{c;i}$ have high correlations (similar trends)

F. Bu, S. Kang, and K. Shin [ECML PKDD'23] Interplay between Topology and Edge Weights in Real-World Graphs

Pattern 2: Similarity between Adjacency and Weightiness

• Pattern: In each layer-*i*, the fraction of weighty edge $f_{c;i}$ and the fraction of adjacent pairs $\tilde{f}_{c;i}$ also have **similar saturation points**

F. Bu, S. Kang, and K. Shin [ECML PKDD'23] Interplay between Topology and Edge Weights in Real-World Graphs

Pattern 3: A Power Law across Layers

- Q: Are there also some patterns across different layers?
- Pattern: Across layers, the overall fractions of weighty edges $f_{overall;i} = |E_{i+1}|/|E_i|$ and the $f_{0;i}$'s exhibit a strong power law
 - $f_{0;i}$: the fraction of weighty edges among those without common neighbors

Roadmap

Concepts

Patterns

Algorithm & Experiments <<</p>

Conclusions

Formalize the Patterns

- Q: How can we propose an algorithm to assign **realistic** edge weights based on the patterns we observed?
- Let us mathematically formalize the patterns!

- Pattern: In each layer-*i*, the fraction of weighty edge (FoWE) *f_{c;i}* grows nearly linearly with *c*, and saturates after some point
- Idealization: Perfect linearity

- Pattern: In each layer-*i*, the fraction of weighty edge (FoWE) *f_{c;i}* grows nearly linearly with *c*, and saturates after some point
- Idealization: Perfect linearity

- Pattern: In each layer-*i*, the fraction of weighty edge $f_{c;i}$ and the fraction of adjacent pairs $\tilde{f}_{c;i}$ also have **similar saturation points**
- Idealization: Exactly the same saturation point

- Pattern: In each layer-*i*, the fraction of weighty edge $f_{c;i}$ and the fraction of adjacent pairs $\tilde{f}_{c;i}$ also have **similar saturation points**
- Idealization: Exactly the same saturation point

- Pattern: Across layers, the overall fractions of weighty edges $f_{overall;i} = |E_{i+1}|/|E_i|$ and the $f_{0;i}$'s exhibit a strong power law
- Idealization: Perfect power law

Proposed Algorithm: PEAR

- With all the idealization, we propose an algorithm called **PEAR**, with **only two parameters** *a* and *k* in the power law in Pattern 3
 - $f_{0;i} = a(f_{overall;i})^k$

Proposed Algorithm: PEAR

- Algorithm overview:
 - Starting from the layer-1, i.e., the given graph topology
 - Combine all the patterns to compute the fractions of weighty edges
 - Sample weighty edges according to the computed fractions
 - Repeat until all the layers are built up

Experimental Settings

- Baseline methods with additional information
 - Five unsupervised baseline methods are given ground-truth $|E_i|$'s
 - Two supervised baseline methods are given ground-truth edge weights
- Evaluation metrics: We compare the generated layers with the original layers, and realistic edge weights are supposed to
 - Preserve graph statistics (KSCN, KSND, DACC)
 - Exhibit overall similarity (NetSimile)
- Results summary: With fewest parameters and least information, PEAR usually achieves the best performance

Experimental Results

- **Results summary:** With **fewest parameters** and **least information**, PEAR usually achieves the **best performance (*)**
 - For each considered metric, the smaller the better
 - The cases where PEAR performs best are indicated with asterisks (*)

Experimental Results

• Detailed distributions of degrees and # common neighbors

Application: Community Detection

- The performance of the **Louvain method** on the original unweighted graph and the weighted ones with edge weights output by PEAR
 - The predicted edge weights output by PEAR indeed enhance the community detection performance of the Louvain method

dataset	ARI (unweighted)	ARI (PEAR)	NMI (unweighted)	NMI (PEAR)
cora	0.2481 ± 0.0189	0.2507 ± 0.0151	0.4546 ± 0.0069	0.4570 ± 0.0055
citeseer	0.0937 ± 0.0069	0.0950 ± 0.0059	0.3287 ± 0.0027	0.3292 ± 0.0020
pubmed	0.0946 ± 0.0034	0.0948 ± 0.0083	0.1774 ± 0.0033	0.1779 ± 0.0035
computer	0.3147 ± 0.0119	0.3201 ± 0.0199	0.5411 ± 0.0083	0.5459 ± 0.0056
photo	0.5696 ± 0.0301	0.5796 ± 0.0074	0.6673 ± 0.0165	0.6722 ± 0.0069
cornell	0.0230 ± 0.0006	0.0274 ± 0.0011	0.0956 ± 0.0019	0.1014 ± 0.0030
texas	0.0513 ± 0.0025	0.0758 ± 0.0007	0.0698 ± 0.0014	0.0835 ± 0.0030
wisconsin	0.0230 ± 0.0039	0.0290 ± 0.0045	0.0911 ± 0.0057	0.0977 ± 0.0047

Application: Community Detection

- The performance of the **Louvain method** on the original unweighted graph and the weighted ones with edge weights output by PEAR
 - The predicted edge weights output by PEAR indeed enhance the community detection performance of the Louvain method

dataset	ARI (unweighted)	ARI (PEAR)	NMI (unweighted)	NMI (PEAR)
cora	0.2481 ± 0.0189	0.2507 ± 0.0151	0.4546 ± 0.0069	0.4570 ± 0.0055
citeseer	0.0937 ± 0.0069	0.0950 ± 0.0	0.3287 ± 0.0027	0.3292 ± 0.02
pubmed	0.0946 ± 0.0034	0.0948 ± 0	0.1774 ± 0.0033	0.1779 ± 0.7
computer	0.3147 ± 0.0119	$0.32^{\circ}1 \pm 199$	0.5411 ± 0.0083	$0.545^{\circ} \pm 56$
photo	0.5696 ± 0.0301	0/196 .0074	0.6673 ± 0.0165	0.6 22 - 5069
cornell	0.0230 ± 0.0006	0 2 2 0.0011	0.0956 ± 0.0019	0.01 0.0030
texas	0.0513 ± 0.0025	0.0758 ± 0.0007	0.0698 ± 0.0014	0.0 லை ± 0.0030
wisconsin	0.0230 ± 0.0039	0.0290 ± 0.0045	0.0911 ± 0.0057	0.0977 ± 0.0047

Roadmap

Concepts

- Algorithm & Experiments
- Conclusions <<

• Our contributions are summarized as follows:

✓ **Novel concepts** useful for analyzing weighted graphs

✓ Various patterns extensively observed in real-world graphs

✓ A practical algorithm integrating all the observed patterns

Extensive evaluation showing the effectiveness of the algorithm

Code: <u>bit.ly/edge_weight_code</u>