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Weights in Real-World Graphs:
Concepts, Patterns, and an Algorithm
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Graphs

 Agraph G = (V, E) consists of a node set V and an edge set E
* Each edge joins a pair of nodes

* Graphs naturally represent relations between real-world objects
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Edges Weights

* Even in the same graph, edges are not all the same

* We can use edge weights to describe the heterogeneity of edges
* Each edge e has its edge weight, which is a positive integer W (e)

* Example: Online social networks

A celebrity ﬂ
Wi(e) = 1\ , W(e) =5
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Topology and Edge Weights are Entangled

* In many cases, we can infer edge weights from topology (connections)

* Example: Online social networks
* Q: Which person is more likely my close friend with strong connection?
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Research Questions

* Q: What are some realistic properties on the interplay between
topology and edge weights that realistic edge weights should satisfy?

* Q: How can we assign realistic edge weights to given graph topology
based on realistic properties?

F. Bu, S. Kang, and K. Shin [ECML PKDD’23] Interplay between Topology and Edge Weights in Real-World Graphs



Real-World Applications

* Such a problem has several real-world applications

* Edge weight anonymization: Sometimes, due to privacy issues,
connection information can be publicized but edge weights cannot

* Assign fake yet realistic edge weights to generate weighted benchmarks
without revealing the ground-truth edge weights

Data ":;:.:j:" O Assign
desensitization 00 edge weights
Ground-truth Publicized Anonymized
weighted graph unweighted graph weighted graph
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Real-World Applications

* Such a problem has several real-world applications

« Community detection: Edge weights provide additional information
about the connections and thus are helpful for community detection

* Assign realistic edge weights to unweighted graphs to enhance the
performance of community detection
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Layers

* The layer-i of a graph G consists of the edges with edge weights = i
* From layer-i, we can obtain layer-(i + 1) by removing the edges with weight i
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Layers: Example

* The layer-i of a graph G consists of the edges with edge weights = i
* The layer-i of G is denoted by G; = (V;, E;, W;)

Edge Weight
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Layers: Example

* The layer-i of a graph G consists of the edges with edge weights = i
* Layer-1 is just the whole graph G

Edge Weight
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Layers: Example

* The layer-i of a graph G consists of the edges with edge weights = i
e Layer-2 can be obtained by removing the edges with weight 1

Edge Weight
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Layers: Example

* The layer-i of a graph G consists of the edges with edge weights = i
e Similarly, we can obtain layer-3 and layer-4

Edge Weight
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Weighty Edges

* The layer-i of a graph G consists of the edges with edge weights = i
* The weighty edges in the layer-i are those with weight > i (i.e., E; ;1)

Edge Weight
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Weighty Edges

* The layer-i of a graph G consists of the edges with edge weights = i
* The weighty edges in the layer-i are those with weight > i (i.e., E; ;1)

Edge Weight
w4 | | Weighty
— 3 edges
— D
—_—1
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Overall Fractions of Weighty Edges

* We also define the overall fraction of weighty edges in the layer-i
* foverall;i(G) — |Ei+1|/|Ei|

fove'rall;z(G) — |E3|/|E2| — 15/17

Edge Weight
w4 | | Weighty
— 3 edges
— D
—_1
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Real-World Weighted Graph Datasets

* Datasets: 11 real-world weighted graphs from 5 different domains
* # nodes: 897 — 2.6M
e # edges: 15,645 - 28.2M

* Source: https://toreopsahl.com/tnet/;
https://www.cs.cornell.edu/~arb/data;
https://snap.stanford.edu/data/

dataset | |V| | |E|=|#] | | Es| | | Es| | | By

OF | 897 | 71380 | 47.266(66.2%) | 35456(49.7%) | 28.546 (40.0%) * OF: communication in a b|0g pOSt
FL | 2905 | 15645 | 4.608(295%) | 1.507(9.6%) | 564 (3.6%) ) )

th-UB | 82,075 182,648 7.297 (4.0%) 2,090 (1.1%) 965 (0.5%) * FL: fllghts between alrports

th-MA | 152,702 | 1,088,735 | 128400 (11.8%) 48,605 (4.5%) 26,121 (2.4%)

th-SO | 2.301.070 | 20,989,078 | 1,168.210 (5.6%) | 350.871 (1.7%) 170,618 (0.8%)
sx-UB | 152,599 | 453,221 135,948 (30.0%) | 56,115 (12.4%) 28,029 (6.2%)
sx-MA | 24,668 187,939 74,493 (39.6%) 36,604 (19.5%) | 21,364 (11.4%) . .
sx-SO | 2,572,345 | 28,177,464 | 9,871,784 (35.0%) | 4,137,454 (14.7%) | 2,055,034 (7.3%) ® OX. Q&A Interactions

sx-SU 189,191 712,870 216,296 (30.3%) 82,475 (11.6%) 37,655 (5.3%)

co-DB 1,654,109 | 7,713,116 | 2,269,679 (29.4%) | 1,085.489 (14.1%) | 654,182 (8.5%) ° . _ 1
co-GE 898,648 4,891,112 | 1,055,077 (21.6%) 446,833 (9.1%) 246,944 (5.1%) CO: CO-a Ut h ors h I p

* th: interactions within threads
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Common Neighbors are Simple and Indicative

* The number of common neighbors is simplest and it has the
strongest correlation with edge weightiness overall!

* Edge weightiness: Specifically, it is 1 if edge weight > 1, 0 otherwise

dataset | NC | SA | JC | HP | HD | SI LI | AA| RA | PA | FM | DL | EC | LP

OF 0.33 | 020 | 020 | -0.02 | 021 | 021 | -0.13 | 034 | 035 | 033 | 0.11 | 032 | 0.26 | 0.33
FL 032 026 | 026 | 0.19 | 024 | 026 | -0.06 | 0.35 | 0.35 | 021 | 008 | O.18 | 0.17 | 0.31
th-UB 0,458 | 0.02 | 0.00 | 0.03 | 0.00 | 001 | -005 047 | 040 | 033 | 026 | 021 | 037 | 0.48
th-MA 0,45 | 022 | 015 | 0.09 | 015 | 018 | 005 | 044 | 035 | 033 | 040 | 025 | 0.38 | 0406
th-50 0,38 | 011 | 008 | 0.06 | 0.08 | 009 | -0.03 | 0.39 | 033 | 022 | 033 | 0.18 | 0.26 | 0.37
sx-UB 0.15 | 0.11 | 0.08 | 0.09 | 0.07 | 0,08 | -0.00 | 0.13 | 0.10 | 009 | 0.12 | 0.09 | 0.14 | 0.15
sx-MA 0.25 | 024 | 021 | 012 | 0.19 | 021 | -0.02 | 0.25 | 022 | 0.19 | 0.19 | 0.16 | 0.20 | 0.25
sx-50 0.10 | 0.11 | 008 | 0.08 | 0.07 | 008 | 0.00 | 0.10 | 0.07 | 0.05 | 0.10 | 0.07 | 0.07 | 0.10
sx-5U 0.14 | 0.11 | 0.08 | 0.09 | 0.07 | 0.08 | -0.00 | 0.12 | 0.08 | 0.08 | 0.11 | 0.08 | 0.13 | 0.15
co-DB 0.20 | -0.08 | -0.09 | -0.05 | <0.08 | -0.08 | -0.16 | 0.22 | 0.20 | 0.03 | 006 | 0.07 | 0.14 | 0.20
co-GE 0.30 | -0.07 | 008 | -0.08 | 0.07 | 006 | -0.16 | 032 | 026 | 0.16 | 0.19 | 0.19 | 0.22 | 0.30

avg. 0.28 | 011 | 0.09 | 0.05 | 0.09 | 0.10 | -0.06 | 0.28 | 024 | 0.18 | 0.18 | 0.16 | 0.21 | 0.258
avg. rank | 2.2 7.5 105 | 106 | 108 | 89 140 | 25 | 55 | 82 | 7.1 8.5 | 65 | 24
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(Local) Fractions of Weighty Edges

* The overall fraction of weighty edges is fyperai:i (G) = |Ei+1|/|E;]

* Let E..; € E; be the set of the edges in E; whose two endpoints share
exactly c common neighbors

* A disjoint partition of E;

Nodes 1 and 2: Edge Weight
Share 3 common neighbors —°
(nodes 3, 4, and 5) — 3
So the edge (1,2) € E3., —
—_—
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(Local) Fractions of Weighty Edges

* The overall fraction of weighty edges is fyperai:i (G) = |Ei+1|/|E;]

* Let E..; € E; be the set of the edges in E; whose two endpoints share
exactly c common neighbors

* The fraction of weighty edges (FOWE) is f..;, = |Ec;i N El-+1|/|EC;l-|

E,., consists of Edge Weight
((46), 47,67} | T
All are weighty edges! — 3
Therefore, f,., =1 —
—1
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Pattern 1: Linear Growth of FOWE

* Pattern: In each layer-i, the fraction of weighty edge (FOWE) f.;
grows nearly linearly with ¢, and saturates after some point
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Pattern 1: Linear Growth of FOWE

* Pattern: In each layer-i, the fraction of weighty edge (FOWE) f.;
grows nearly linearly with ¢, and saturates after some point
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Pattern 2: Fraction of Adjacent Pairs

* Recall: The fraction of weighty edges f..; = ‘Ec;i N Ei+1‘/‘Ec;i‘

* The fraction of adjacent pairs fc;i = ‘Ec;i‘/‘Rc;i‘, where R.; is the set
of pairs sharing exactly c common neighbors in the layer-i
* Both adjacent and non-adjacent pairs are counted in R;

R1;, consists of Edge Weight

((1,8),(3,8), (5.8), (6,8), (7,8)} —4
E;., consists of

(3,8),(5,8)}
= fi,2= |E1;2|/|R1z2| = 2/5 —2
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Pattern 2: Similarity between Adjacency and Weightiness

* Pattern: In each layer-i, the fraction of weighty edge f..; and the
fraction of adjacent pairs f..; have high correlations (similar trends)

r =0.893
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Pattern 2: Similarity between Adjacency and Weightiness

* Pattern: In each layer-i, the fraction of weighty edge f..; and the
fraction of adjacent pairs f.; also have similar saturation points
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Pattern 3: A Power Law across Layers

* Q: Are there also some patterns across different layers?

» Pattern: Across layers, the overall fractions of weighty edges
foveraw:i = |Ei+1l/|E;| and the fy.;’s exhibit a strong power law

* fo.i: the fraction of weighty edges among those without common neighbors

2 (A7 22,000 T ey
RZ =0, RZ=1, R? = 0.998 RZ =0,
512 .64 9 7 .72
g’:o o 032 ;g 095 48 Layer index
$28 0 32 _ Ik
Q . .
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Formalize the Patterns

* Q: How can we propose an algorithm to assign realistic edge weights
based on the patterns we observed?

* Let us mathematically formalize the patterns!
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Formalize the Patterns: Pattern 1

* Pattern: In each layer-i, the fraction of weighty edge (FOWE) f.;
grows nearly linearly with ¢, and saturates after some point

* ldealization: Perfect linearity

@ OF, layer-1 FOWE
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Formalize the Patterns: Pattern 1

* Pattern: In each layer-i, the fraction of weighty edge (FOWE) f.;
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Formalize the Patterns: Pattern 2

* Pattern: In each layer-i, the fraction of weighty edge f..; and the
fraction of adjacent pairs f.; also have similar saturation points

* Idealization: Exactly the same saturation point
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Formalize the Patterns: Pattern 2
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Formalize the Patterns: Pattern 3

e Pattern: Across layers, the overall fractions of weighty edges
foveraw:i = |Ei+1l/|E;| and the fy.;’s exhibit a strong power law

* ldealization: Perfect power law
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Proposed Algorithm: PEAR

* With all the idealization, we propose an algorithm called PEAR, with
only two parameters a and k in the power law in Pattern 3

* fO;i — a(foverall;i)k
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Proposed Algorithm: PEAR

* Algorithm overview:
 Starting from the layer-1, i.e., the given graph topology
 Combine all the patterns to compute the fractions of weighty edges
» Sample weighty edges according to the computed fractions
* Repeat until all the layers are built up
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Experimental Settings

* Baseline methods with additional information
* Five unsupervised baseline methods are given ground-truth |E;|’s
* Two supervised baseline methods are given ground-truth edge weights

e Evaluation metrics: We compare the generated layers with the
original layers, and realistic edge weights are supposed to
* Preserve graph statistics (KSCN, KSND, DACC)
* Exhibit overall similarity (NetSimile)

* Results summary: With fewest parameters and least information,
PEAR usually achieves the best performance
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Experimental Results

* Results summary: With fewest parameters and least information,
PEAR usually achieves the best performance (*)

* For each considered metric, the smaller the better
* The cases where PEAR performs best are indicated with asterisks (*)
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Experimental Results

* Detailed distributions of degrees and # common neighbors
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Application: Community Detection

* The performance of the Louvain method on the original unweighted
graph and the weighted ones with edge weights output by PEAR

* The predicted edge weights output by PEAR indeed enhance the community
detection performance of the Louvain method

dataset

ARI (unweighted)

ARI (PEAR)

NMI (unweighted)

NMI (PEAR)

cora
clteseer
pubmed
computer
photo
cornell
texas
wisconsin

0.2481 4= 0.0189
0.0937 &= 0.0069
0.0946 £ 0.0034
0.5147 = 0.0119
0.5696 £ 0.0301
0.0230 £ 0.0006
0.0513 &= 0.0025
0.0230 £ 0.0039

0.2507 = 0.0151
0.0950 = 0.0059
0.0948 4+ 0.0083
0.3201 = 0.0199
0.5796 = 0.0074
0.0274 4+ 0.0011
0.0758 4+ 0.0007
0.0290 = 0.0045

0.4546 £ 0.0069
0.3287 £ 0.0027
0.1774 4= 0.0033
0.5411 4 0.0083
0.6673 £ 0.0165
0.0956 &= 0.0019
0.0698 4= 0.0014
0.0911 £ 0.0057

0.4570 £ 0.0055
0.3292 = 0.0020
0.1779 £ 0.0035
0.5459 = 0.0056
0.6722 + 0.0069
0.1014 = 0.0030
0.0835 = 0.0030
0.0977 £ 0.0047
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Application: Community Detection

* The performance of the Louvain method on the original unweighted
graph and the weighted ones with edge weights output by PEAR

* The predicted edge weights output by PEAR indeed enhance the community
detection performance of the Louvain method

dataset

ARI (unweighted)

ARI (PEAR)

NMI (unweighted)

NMI (PEAR)

cora
clteseer
pubmed
computer
photo
cornell
texas
wisconsin
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Conclusions

 Our contributions are summarized as follows:

v"Novel concepts useful for analyzing weighted graphs
v'Various patterns extensively observed in real-world graphs
v'A practical algorithm integrating all the observed patterns

v Extensive evaluation showing the effectiveness of the algorithm

O Code: bit.ly/edge weight code
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