
Datasets, Tasks, and Training Methods for

Large-scale Hypergraph Learning

Sunwoo Kim*, Dongjin Lee*, Yul Kim, 

Jungho Park, Taeho Hwang, Kijung Shin



Datasets, Tasks, and Training Methods for Large-scale Hypergraph LearningSunwoo Kim

Roadmap

2

Overview

Proposed Tasks

Proposed Datasets 

Proposed Training Method

Experimental Results

Conclusions



Datasets, Tasks, and Training Methods for Large-scale Hypergraph LearningSunwoo Kim

Group Interactions are EVERYWHERE!

Group Chat Co-Authorship

EmailProtein Interaction
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Group Interactions → HYPERGRAPH!
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• Group interactions can be modeled as a hypergraph.

• A hypergraph consists of a node set and a hyperedge set. 
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Applications of Hypergraphs

5

• Hypergraphs are widely used in various domains.
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Challenges in Hypergraph Learning

• The current hypergraph representation learning field has three challenges:
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Our Contribution

• Our contribution is three-fold.
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Proposed Tasks

• We propose two pair-level downstream tasks in hypergraphs.

• Task 1) Hyperedge disambiguation, classifying a pair of hyperedges.

• Task 2) Local clustering, classifying a pair of nodes.
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Proposed Task 1: Formulation

• Setting: Certain hyperedges are split into two (or more) hyperedges.

• Goal: Identifying whether a pair of hyperedges are originally identical 

hyperedges or not.
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Proposed Task 1: Application

• One application of task 1 is author disambiguation.

• Goal: Identifying whether two authors are identical authors or not.

• Hypergraph formulation: Nodes (publications) & Hyperedges (authors)
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Proposed Task 2: Formulation

• Setting: Each node belongs to at least one cluster.

• Goal: Identifying whether a pair of nodes belong to the same cluster or not.
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Proposed Task 2: Application

• One application of task 2 is device-household matching.

• Goal: Identifying whether two devices belong to the same household or not.

• Hypergraph formulation: Nodes (devices) & Hyperedges (IP - access) & 

Clusters (households).
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Proposed Dataset: Overview

• We propose two large-scale co-authorship hypergraph datasets:

15

Dataset # of Nodes
# of 

Hyperedges
# Features # of Classes

AMiner 13,262,573 22,552,647 300 257

MAG 27,320,375 30,175,013 300 247
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Proposed Dataset: Details

• Source of datasets: Open Academic Graph 2.1

• Nodes: Publications

• Hyperedges: Authors
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** https://www.aminer.cn/oag-2-1 
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Proposed Dataset: Details

• Node features: An embedding of corpus, which consists of title and 

keywords, transformed via Sentence2Vec (S2V).

• Node labels: Research field of the corresponding publication.
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** https://www.aminer.cn/oag-2-1 

Title: Temporal patterns of 
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Challenges in Training HNNs on Large-Scale HG

• Challenge 1) Considerable time and space cost.

• Full-batch training: Can’t load the entire hypergraph into GPU memory.

• Mini-batch training: Computational overhead occurs in obtaining sub-

hypergraphs and loading them into GPU memory.
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Proposed Learning Method: Solution 1

• Solution 1) Partitioning the input hypergraph.

• A partitioning strategy is efficient in training graph neural networks 

(Chiang et al. 2019).

• We use partitioning, treating each hypergraph partition as a single 

mini-batch.
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Challenges in Training HNNs on Large-Scale HG

• Challenge 2) Loss of pair-label supervision due to partitioning.

• When we process a single partition at a time, certain pair-labels 

cannot be utilized.
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Proposed Learning Method: Solution 2

• Solution 2) Utilizing Contrastive Learning (CL).

• CL can make effective representations under label-scarce scenarios 

(Chen et al. ICML 2020, You et al. NeurIPS 2020).
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Proposed Learning Method: Solution 2

• Overview of CL is as follows:

• CL first creates multiple views of a hypergraph.

• Then, it lets HNN learn the agreement of two views. 
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Proposed Learning Method: PCL

• We propose PCL: Partitioning-based Contrastive Learning.

• We first divide the input hypergraph into several partitions.

• Then, we train HNN by CL, by regarding each partition as a mini-

batch of CL.
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Proposed Learning Method: PCL

• Specifically, we do CL for each partition, for the given number of epochs.

25

1 4

2
3

7

5
6

8
HNN

MLP
𝓛𝑪𝑳

Compute

Update

𝓛𝑪𝑳

Compute

Update

HNN

MLP
Epoch 1)

7

5
6

8

𝓛𝑪𝑳

Compute

Update

HNN

MLP

1 4

2
3

HNN

MLP

Compute

𝓛𝑪𝑳

Update

Epoch 2)



Datasets, Tasks, and Training Methods for Large-scale Hypergraph LearningSunwoo Kim

Proposed Learning Method: PCL

• When the CL process is done, we obtain node embeddings with HNN.

• Here, we do not additionally train HNN to:

• Reduce cost of message passing process.

• Utilize pair of nodes (hyperedges) in different partitions.
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Proposed Learning Method: PCL

• With node embeddings and a classifier, we perform pair-level tasks.
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Additional Tools for PCL

• We propose two additional tools for PCL.

• P-IOS: Partitioning technique that mitigates topological information loss.

• PINS: CL technique that encourages HNN to learn inter-partition 

dissimilarity.
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Additional Tools for PCL

• P-IOS: Partitioning with the Inclusion of Outsider Set.

• Certain hyperedges are destroyed during the partitioning process.
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Additional Tools for PCL

• P-IOS: Partitioning with the Inclusion of Outsider Set.

• Certain hyperedges are destroyed during the partitioning process.

• P-IOS recovers destroyed hyperedges and preserves every 1-hop 

neighboring node.
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Additional Tools for PCL

• PINS: Previous partItion’s Negative Samples.

• Basic PCL utilizes a single partition at a time, and HNN cannot learn 

dissimilarity between nodes at different partitions.
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Additional Tools for PCL

• PINS: Previous partItion’s Negative Samples.

• Basic PCL utilizes a single partition at a time, and HNN can’t learn 

dissimilarity between nodes at different partitions.

• PINS uses embeddings of previous partitions as negative samples.
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Research Questions

• We aim to analyze the following four points:

• RQ1) Accuracy of PCL for the proposed pair-level tasks.

• RQ2) Effectiveness of PINS.

• RQ3) Memory consumption of PINS.

• RQ4) Effectiveness of P-IOS.
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Used Datasets

• We utilize 5 real-world hypergraph datasets.
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Dataset # Nodes # Hyperedges # Features # Classes

DBLP 41,302 22,263 1,425 6

Trivago 172,738 233,202 300 160

OGBN-MAG 736,389 1,134,649 128 349

AMiner 13,262,573 22,552,647 300 257

MAG 27,320,375 30,175,013 300 257
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Experimental Results

• RQ1) Accuracy of PCL on Task 1 (Hyperedge disambiguation).

36

*bold: best **underline: second-best



Datasets, Tasks, and Training Methods for Large-scale Hypergraph LearningSunwoo Kim

Experimental Results

• RQ1) Accuracy of PCL on Task 2 (Local clustering).
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Experimental Results

• RQ2) Effectiveness of PINS on Task 2.
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Experimental Results

• RQ3) Memory consumption of PINS.
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Experimental Results
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• RQ4) Effectiveness of P-IOS on Task 1 and Task 2.
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Conclusions

In this work, we present…

Tasks: Two pair–level tasks on hypergraphs, 

(Hyperedge disambiguation and Local clustering).

Datasets: Two large-scale benchmark hypergraph datasets, 

(AMiner and MAG).

Training methods: Partitioning & Contrastive learning-based scalable 

training strategy and its additional tools,

(PCL, PINS, and P-IOS).
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Materials
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