
Noname manuscript No.
(will be inserted by the editor)

Temporal Locality-Aware Sampling for Accurate Triangle
Counting in Real Graph Streams

Dongjin Lee · Kijung Shin · Christos Faloutsos

Received: date / Accepted: date

Abstract If we cannot store all edges in a dynamic

graph, which edges should we store to estimate the tri-

angle count accurately?

Counting triangles (i.e., cliques of size three) is a

fundamental graph problem with many applications in

social network analysis, web mining, anomaly detection,

etc. Recently, much effort has been made to accurately

estimate the counts of global triangles (i.e., all trian-

gles) and local triangles (i.e., all triangle incident to

each node) in large dynamic graphs, especially with lim-

ited space. Although existing algorithms use sampling

techniques without considering temporal dependencies

in edges, we observe temporal locality in the formation of

triangles in real dynamic graphs. That is, future edges

are more likely to form triangles with recent edges than

with older edges.

In this work, we propose a family of single-pass

streaming algorithms called Waiting-Room Sampling

(WRS) for estimating the counts of global and local

triangles in a fully dynamic graph, where edges are in-

serted and deleted over time, within a fixed memory

budget. WRS exploits the temporal locality by always

storing the most recent edges, which future edges are

more likely to form triangles with, in the waiting room,

while it uses reservoir sampling and its variant for the

D. Lee
School of Electrical Engineering, KAIST, Daejeon, South Ko-
rea, 34141.
E-mail: dongjin.lee@kaist.ac.kr

K. Shin (Corresponding Author)
Graduate School of AI & School of Electrical Engineering,
KAIST, Daejeon, South Korea, 34141.
E-mail: kijungs@kaist.ac.kr

C. Faloutsos
Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA, 15213.
E-mail: christos@cs.cmu.edu

remaining edges. Our theoretical and empirical analy-

ses show that WRS is: (a) Fast and ‘any time’: runs

in linear time, always maintaining and updating esti-

mates while the input graph evolves, (b) Effective:

yields up to 47% smaller estimation error than its best

competitors, and (c) Theoretically sound: gives un-

biased estimates with small variances under the tempo-

ral locality.

Keywords Triangle Counting · Graph Stream ·
Waiting-Room Sampling · Temporal Locality

1 Introduction

Consider a large dynamic graph where edges are in-

serted and deleted over time. If we cannot store every
edge in memory, which edges should we store to esti-

mate the count of triangles accurately?

Counting the triangles (i.e., cliques of size three) in

a graph is a fundamental problem with many applica-

tions. For example, triangles in social networks have re-

ceived much attention as an evidence of homophily (i.e.,

people choose friends similar to themselves) [28] and

transitivity (i.e., people with common friends become

friends) [51]. Thus, many concepts in social network

analysis, such as social balance [51], the global/local

clustering coefficient [52], and the transitivity ratio [30],

are based on the triangle count. Moreover, the count

of triangles has been used for spam and anomaly de-

tection [6,27,40], web-structure analysis [9], degeneracy

estimation [36], and query optimization [4].

Due to the importance of triangle counting, numer-

ous algorithms have been developed in many different

settings, including multi-core [41,20], external-memory

[20,16], distributed-memory [3], and MapReduce [43,

32,31] settings. The algorithms aim to accurately and

2 D. Lee et al.

2
8

2
9

2
10

2
11

2
27

2
28

2
29

2
30

Size of Input Streams

R
u

n
n

in
g

 T
im

e
 (

s
e

c
)

linear
scalability

WRSDEL

WRSINS

(a) WRS is fast

986.5K

987K

987.5K

988K

346.6K 346.8K

Number of
Processed Elements

N
u

m
b

e
r

o
f

T
ri

a
n

g
le

s
(C

o
n

fi
d

e
n

c
e

 I
n

te
rv

a
l)

WRSINS

True Count

TriestIMPR

MAS

COT

(b) WRS is ‘any time’

better
0.004

0.008

0.012

0.016

50K 100K 150K

Memory Budget (k)

G
lo

b
a
l
E

rr
o
r

TriestIMPR

MASCOT

WRSINS

better

0.3

0.6

0.9

50K 100K 150K

Memory Budget (k)

L
o

c
a

l
E

rr
o

r

WRSINS

TriestIMPR

MASCOT

(c) WRS is effective

2e−05

4e−05

6e−05

950K 1000K 1050K

Estimated Count

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

WRSINS

TriestIMPRMAS
COT

True triangle count

(d) WRS is unbiased

Fig. 1: Strengths of WRS. (a) WRS scales linearly with the size of the input stream. (b) WRS always maintains

the estimates of the triangle counts while the input graph evolves. (c) WRS is more accurate than state-of-the-art

streaming algorithms in both global and local triangle counting. (d) WRS gives unbiased estimates (Theorems 1

and 2) with small variances (Lemma 5).

rapidly count global triangles (i.e., all triangles in a

graph) and/or local triangles (i.e., triangles that each

node is involved with).

Especially, as many real graphs, including social me-

dia and web, evolve over time, recent work has focused

largely on streaming settings where graphs are given as

a sequence of edge insertions and deletions. To accu-

rately estimate the count of the triangles in large graph

streams not fitting in memory, a number of sampling-

based algorithms have been developed, as summarized

in Table 1.

Notably, many real-world graphs exhibit temporal

locality in triangle formation, i.e., the tendency that

future edges are more likely to form triangles with re-

cent edges than with older edges (see Section 4 for de-

tails). However, existing streaming algorithms sample

edges without considering temporal dependencies be-

tween edges, and thus they cannot exploit the temporal

locality in triangle formation.

How can we exploit temporal locality for accurately

estimating global and local triangle counts? As an an-

swer to this question, we propose Waiting-Room Sam-

pling (WRS)1, a family of single-pass streaming algo-

rithms for estimating the counts of global and local tri-

angles in a fully dynamic graph stream, within a fixed

memory budget. WRS always stores the most recent

edges in the waiting room, while using standard reser-

voir sampling [49] and its variant, namely random pair-

ing [13], for the remaining edges. Due to the temporal

locality, when a new edge arrives, recent edges, which

the new edge is likely to from triangles with, are al-

ways stored in the waiting room. Thus, the waiting

room enables WRS to discover more triangles, which

are useful for estimating the triangle counts more ac-

curately, while reservoir sampling and random pairing

enable WRS to give unbiased estimates.
1 A preliminary version of WRS for insertion-only graph

streams was presented in [35]. This work is an extended ver-
sion of [35] with (a) a new algorithm for fully dynamic graph
streams, (b) theoretical analyses on its accuracy and com-
plexity, and (c) additional experiments with more datasets,
competitors, and evaluation metrics.

Table 1: Comparison of state-of-the-art streaming al-

gorithms for triangle counting. By exploiting temporal

patterns, WRS achieves the best accuracy. WRS also

satisfies all other considered criteria.

W
R

S
(P

ro
p

o
se

d
)

T
h
in

k
D

[3
8
,4

0
]

T
r
iè

st
F

D
[8

]

E
S
D

[1
5
]

T
r
iè

st
IM

P
R

[8
]

M
a
sc

o
t

[2
7
]

O
th

er
s

[1
,2

,3
3
]

Count Global Triangles 3 3 3 3 3 3 3
Count Local Triangles 3 3 3 7 3 7 7

Handling Large Graphs* 3 3 3 7 3 3 3
Handle Edge Additions 3 3 3 3 3 3 3
Handle Edge Deletions 3 3 3 3 7 7 7

Exploit Temporal Patterns 3 7 7 7 7 7 7

*Graphs that are too large to fit in memory

Our theoretical and empirical analyses show that

WRS has the following strengths:

• Fast and ‘any time’: WRS scales linearly with the

size of the input stream, and it gives the estimates

of triangle counts at any time, not only at the end

of the input stream (Figures 1(a)-(b)).

• Effective: WRS produces up to 47% smaller esti-

mation error than its best competitors (Figure 1(c)).

• Theoretically sound: we prove the unbiasedness

of the estimates given by WRS and their small vari-

ances under temporal locality (Theorems 1 and 2;

Figure 1(d)).

Reproducibility: The code and datasets used in the

paper are available at http://dmlab.kaist.ac.kr/

wrs/.

This paper is organized as follows. In Section 2, we

review related work. In Section 3, we introduce nota-

tions and the problem definition. In Section 4, we dis-

cuss temporal locality in real graph streams. In Sec-

tion 5, we propose our algorithm WRS and analyze its

theoretical properties. After sharing experimental re-

sults in Section 6, we conclude in Section 7.

http://dmlab.kaist.ac.kr/wrs/
http://dmlab.kaist.ac.kr/wrs/

Temporal Locality-Aware Sampling for Accurate Triangle Counting in Real Graph Streams 3

2 Related Work

We discuss previous work on counting global and local

triangles in a graph. After we briefly discuss counting

triangles in a static graph, we focus on counting trian-

gles with limited space in a graph stream, where edges

arrive as a data stream. See Table 1 for a summary of

the state-of-the-art streaming algorithms.

Triangle counting in static graphs: There has

been considerable interest in counting triangles in a

static graph, and there have been numerous algorithms

working in multi-core [41,20], external-memory [20,16],

distributed-memory [3], and MapReduce [43,32,31] set-

tings. While most of them are exact, several of them are

approximate based on eigenvalues [44], sampled edges

[3,11,19,41], and sampled wedges (i.e., paths of length

2) [34,47,46]. Notably a state-of-the-art method [46]

estimates the global triangle count by sampling wedges

after eliminating those that are less likely to partici-

pate in triangles. These approaches for static graphs are

not directly applicable to graph streams, where edges

should be processed in the order that they arrive.

Global triangle counting in insertion-only

graph streams: For estimating the count of global tri-

angles (i.e., all triangles in a graph), Tsourakakis et al.

[45] proposed sampling each edge i.i.d. with probability

p. Then, the global triangle count is estimated simply

by multiplying that in the sampled graph by p−3. Jha et

al. [17] and Pavan et al. [33] proposed sampling wedges

(i.e., paths of length 2) instead of edges for better space

efficiency. Ahmed et al. [1] proposed an edge-sampling

method where edges are sampled with different prob-

abilities depending on whether an adjacency (i.e. an

edge sharing a node) of them has been sampled or not.

Ahmed et al. [2] proposed a priority-based edge sam-

pling method where the priority is proportional to the

number of the adjacencies of each edge or the number

of triangles created by the edge.

Global triangle counting in fully-dynamic

graph streams: Kutzkov and Pagh [25] combined edge

and wedge sampling methods for global triangle count-

ing in fully-dynamic graph streams. For the same prob-

lem, Han and Sethu [15] proposed an incremental algo-

rithm, which, however, requires the entire graph to be

maintained in memory.

Local triangle counting in insertion-only

graph streams: For estimating the count of local tri-

angles (i.e., triangles with each node), Lim and Kang

[27] proposed Mascot which samples each edge i.i.d

with a fixed probability p but updating global and lo-

cal counts whenever an edge arrives, even when the

edge is not sampled. To properly set p, however, the

number of edges in input streams should be known in

advance. Likewise, randomly coloring nodes to sample

the edges connecting nodes of the same color, as sug-

gested by Kutzkov and Pagh [24], requires the number

of nodes in advance to decide the number of colors. De

Stefani et al. [8] proposed TrièstIMPR to address this

problem using reservoir sampling [49], which fully uti-

lizes given memory space, without requiring any prior

knowledge of the input stream. Recently, Jung et al. [18]

and Wang et al. [50] proposed streaming algorithms for

counting global and local triangles, respectively, in a

multigraph stream, which may have duplicated edges.

Shin et al. [37,39] proposed distributed algorithms for

triangle counting in a graph stream where edges are

streamed from multiple sources. The streamed edges

are processed and sampled across multiple workers.

Local triangle counting in fully-dynamic

graph streams: De Stefani et al. [8] proposed

TrièstFD for global and local triangle counting in fully-

dynamic graph streams. TrièstFD samples edges us-

ing random pairing [13], a variant of reservoir sampling

for fully-dynamic streams, without requiring any prior

knowledge of the input stream. While TrièstFD sim-

ply discards unsampled edges, ThinkD, proposed by

Shin et al. [38,40] for the same problem, fully utilizes

unsampled edges to update estimates before discarding

them. Specifically, in response to each arrived change in

the input stream, ThinkD first updates corresponding

estimates, which are shown to be unbiased, and then

update the sampled graph (i.e., sampled edges). When

updating the sampled graph, ThinkDFAST, which is a

simple and fast version, samples each edge i.i.d. with a

fixed probability, while ThinkDACC, which is an accu-

rate version, employs random pairing [13].

Semi-streaming algorithms: In addition to

single-pass streaming algorithms, semi-streaming algo-

rithms that require multiple passes over a graph were

also explored [6,23].

Comparison with our proposed algorithm:

Our single-pass algorithm WRS estimates both global

and local triangle counts in a fully dynamic graph

stream without any prior knowledge of the input graph

stream (see Section 3.3 for the detailed settings). Differ-

ent from the existing approaches above, WRS exploits

the temporal locality in real-world graph streams (see

Section 4), which leads to higher accuracy.

3 Preliminaries and Problem Definition

In this section, we first introduce notations and con-

cepts used in the paper. Then, we review two uni-

form sampling schemes that our proposed algorithms

are based on. Lastly, we define the problem of global

and local triangle counting in a real graph stream.

4 D. Lee et al.

Table 2: Table of symbols.

Symbol Definition

Notations for Graph Streams

G(t) = (V(t), E(t)) graph G at time t
{u, v} edge between nodes u and v
{u, v, w} triangle with nodes u, v, and w
∆(t) = (e(t), δ(t)) edge insertion or deletion at time t
e(t) = {u, v} edge changed at time t
tuv arrival time of edge {u, v}
e
(i)
uvw edge arrived i-th among {{u, v}, {v, w}, {w, u}}
t
(i)
uvw arrival time of e

(i)
uvw

T (t) set of triangles in G(t)

T (t)
u set of triangles with a node u in G(t)

Notations for Algorithms (defined in Section 5)

S given memory space
W waiting room
R reservoir
ER set of edges flowing into R from W
k maximum number of edges stored in S
α relative size of the waiting room (i.e., |W|/|S|)
c estimated global triangle count
cu estimated local triangle count of node u

Ĝ = (V̂, Ê) graph composed of the edges in S
N̂u set of neighbors of a node u in Ĝ

Notations for Analyses (defined in Section 5)

A(t) set of triangles added at time t or earlier
D(t) set of triangles deleted at time t or earlier
{u, v, w}(t) triangle {u, v, w} added or deleted at time t

3.1 Notations and Concepts

Symbols frequently used in the paper are listed in Ta-

ble 2. Consider an undirected graph G = (V, E) with

the set of nodes V and the set of edges E . We use the

unordered pair {u, v} ∈ E to indicate the edge between

two distinct nodes u 6= v ∈ V, and the unordered triple

{u, v, w} to represent the triangle (i.e., clique of size

three) with nodes u, v, and w.

Consider a dynamic graph G = (V, E) that evolves

over time from an empty graph as edges (and adja-

cent nodes) are inserted and deleted. The changes in

G can be represented as a fully-dynamic graph stream

(∆(1), ∆(2), . . .), which is the sequence of edge inser-

tions and deletions. For each t ∈ {1, 2, ...}, we use e(t) to

denote the edge added or deleted at time t and use the

pair ∆(t) = (e(t), δ(t)), where δ(t) ∈ {+,−}, to denote

the change in G at time t. That is, ∆(t) = ({u, v},+)

indicates the arrival of a new edge {u, v} /∈ E , and

∆(t) = ({u, v},−) indicates the removal of an exist-

ing edge {u, v} ∈ E at time t. We denote G after the

t-th change ∆(t) is applied by G(t) = (V(t), E(t)). We

denote the set of triangles in G(t) by T (t) and the set

of triangles with a node u by T (t)
u ⊂ T (t). We call T (t)

global triangles and T (t)
u local triangles of each node u.

We use tuv ∈ {1, 2, ...} to indicate the last ar-

rival time of each edge {u, v}. For example, in cases

where the edge {u, v} is deleted and reinserted in a

fully dynamic graph stream (i.e., ∆(t1) = ({u, v},+),

∆(t2) = ({u, v},−), and ∆(t3) = ({u, v},+), where

t1 < t2 < t3), tuv is the arrival time of the rein-

serted edge (i.e., tuv = t3). For each triangle {u, v, w} ∈
T (t), we let e

(1)
uvw, e

(2)
uvw, and e

(3)
uvw be the edge arriv-

ing first, second, and last among {u, v}, {v, w}, and

{w, u}, which together form {u, v, w}. We use t
(i)
uvw to

indicate the arrival time of e
(i)
uvw. That is, t

(1)
uvw :=

min{tuv, tvw, twu}, t(2)uvw := median{tuv, tvw, twu}, and

t
(3)
uvw := max{tuv, tvw, twu}. These notations are used

to account for the concept of temporal locality in Sec-

tion 4.

3.2 Uniform Sampling Schemes for Dynamic Datasets

In this subsection, we give an overview of two uniform

sampling schemes, namely reservoir sampling and ran-

dom pairing, for sampling as many items as possible

from a dynamic dataset. Assume that a dataset D is

initially empty, and it evolves over time as items are

inserted and deleted. A sample S ⊆ D is a set of items

selected from D by a specific sampling rule. Following

[7], a sampling scheme is uniform if all equal-sized sub-

sets of D are equally likely to be S, i.e., if

P[S = A] = P[S = B], ∀A 6= B ⊆ D s.t. |A| = |B|. (1)

The two sampling schemes described below satisfy this

uniformity.

3.2.1 Reservoir Sampling

Given a sequence of item insertions into the dataset

D, reservoir sampling [49], which is described in Algo-

rithm 1, maintains a bounded-size uniform sample S.

We use k to denote the maximum size of the maintained

sample S. Until the sample size |S| reaches k, each item

inserted into D is stored in S. Then, for each item in-

serted into D, reservoir sampling replaces the newly in-

serted item with a randomly selected item from S with

probability k/|D|. Reservoir sampling guarantees that

each item in D has the same probability k/|D| of be-

ing stored in S, and thus it guarantees uniformity (i.e.,

Eq. (1)). However, it cannot handle item deletions, and

thus it can be used only for insertion-only datasets.

3.2.2 Random Pairing (RP)

Random Pairing (RP) [13] is a uniform sampling

method for fully dynamic datasets, where items are

both added and deleted. The main idea behind RP is

to make use of newly inserted items to “compensate”

for previous item deletions.

Temporal Locality-Aware Sampling for Accurate Triangle Counting in Real Graph Streams 5

Algorithm 1: Reservoir Sampling

Input : (1) Insertion-only dataset: D,
(2) Memory budget: k,
(3) Current sample: S,
(4) Item addition: a

Output: Updated sample: S
1 S ← ∅, |D| ← 0
2 Procedure INSERT(a)
3 |D| ← |D|+ 1
4 if |S| < k then
5 S ← S ∪ {a}
6 else if Bernoulli(k/|D|) = 1 then
7 replace a randomly chosen item in S with a

Algorithm 2: Random Pairing (RP)

Input : (1) Fully-dynamic dataset: D,
(2) Memory budget: k,
(3) Current sample: S,
(4) Item addition or deletion: a

Output: Updated sample: S
1 S ← ∅, |D| ← 0, nb ← 0, ng ← 0
2 Procedure INSERT(a)
3 |D| ← |D|+ 1
4 if nb + ng = 0 then
5 if |S| < k then S ← S ∪ {a}
6 else if Bernoulli(k/|D|) = 1 then
7 replace a randomly chosen item in S with a

8 else
9 if Bernoulli(nb/(nb + ng)) = 1 then

10 S ← S ∪ {a}, nb ← nb − 1

11 else ng ← ng − 1

12 Procedure DELETE(a)
13 |D| ← |D| − 1
14 if a ∈ S then
15 S ← S \ {a}, nb ← nb + 1

16 else ng ← ng + 1

RP classifies item deletions into two categories:

“bad” uncompensated deletions and “good” uncompen-

sated deletions. An uncompensated deletion is “bad” if

the deleted item is in the sample, and thus the deletion

decreases the sample size by 1. On the other hand, an

uncompensated deletion “good” if the deleted item is

not in the sample, and thus the deletion does not af-

fect the sample size. RP maintains counters nb and ng
to record the number of “bad” and “good” uncompen-

sated deletions, respectively. Undoubtedly, nb + ng is

equal to the total number of uncompensated deletions.

RP is described in Algorithm 2, where we use k to

denote the maximum size of the maintained sample S.

For each item deletion from the fully-dynamic dataset

D, RP checks whether the deleted item is included in

the maintained sample S or not. If the deleted item is in

S, RP removes the item from S and increases nb by 1;

otherwise, RP simply increases ng by 1. For each item

inserted into D, RP checks whether there are deletions

that it needs to compensate for.

• Case 1: If there is no uncompensated deletion (i.e.,

if nb+ng = 0), then the insertion is proceeded as in

reservoir sampling. Specifically, if S has less than k

items, RP adds the inserted item to S. Otherwise,

RP replaces a uniformly random item in S with the

newly inserted item with a certain probability.

• Case 2: On the other hand, if there are uncompen-

sated deletions (i.e., if nb + ng > 0), then RP flips

a coin. If the coin shows head, whose probability is

nb/(nb + ng), RP adds the new item to the sam-

ple S and decreases nb by 1. Otherwise, RP simply

discards the new item and decreases ng by 1.

Following the above procedure, RP guarantees unifor-

mity (i.e., Eq. (1)) in the presence of arbitrary item

insertions and deletions [13]. Unlike reservoir sampling,

due to item deletions, RP does not guarantee that k

samples are surely stored even if more than k items are

processed.

3.3 Problem Definition

In this work, we consider the problem of counting the

global and local triangles in a graph stream assuming

the following realistic conditions:

C1 No Knowledge: no information about the input

stream (e.g., the node count, the edge count, etc) is

available in advance.

C2 Real Dynamic: in the input stream, edge inser-

tions and edge deletions arrive in the order by which

edges are created and removed in the input graph

C3 Limited Memory Budget: we store at most k

edges in memory.

C4 Single Pass: edge additions and deletions are pro-

cessed one by one in their order of arrival. Past

changes cannot be accessed unless they are stored

in memory (within the budget stated in C3).

Based on these conditions, we define the problem of

global and local triangle counting in a real graph stream

in Problem 1.

Problem 1 (Global and Local Triangle Counting

in a Real Graph Stream)

(1) Given:

• a real graph stream {∆(1), ∆(2), ...}
• a memory budget k,

(2) Estimate:

• the global triangle count |T (t)|
• the local triangle counts {(u, |T (t)

u |)}u∈V(t)

at current time t ∈ {1, 2, ...}

6 D. Lee et al.

Real RandomClosing Interval Distribution:

0.3M

0.6M

0.9M

0K 150K 300K

Closing Time Interval

F
re

q
u
e
n
c
y

0M

2M

4M

6M

0M 8M 16M

Closing Time Interval

F
re

q
u
e
n
c
y

0M

0.1M

0.2M

0.3M

0.4M

0.5M

0K 140K 280K

Closing Time Interval

F
re

q
u
e
n
c
y

0M

0.2M

0.4M

0.6M

0K 300K 600K

Closing Time Interval

F
re

q
u
e
n
c
y

0M

1M

2M

3M

0M 3M 6M

Closing Time Interval

F
re

q
u
e
n
c
y

0M

25M

50M

75M

0M 10M 20M

Closing Time Interval

F
re

q
u
e
n
c
y

0M

0.5M

1M

1.5M

2M

0M 40M 80M

Closing Time Interval

F
re

q
u
e
n
c
y

(a) ArXiv (b) Patent (c) Email (d) Facebook (e) Youtube (f) FF-Small (g) BA-Small

Total Interval Distribution:

0K

50K

100K

150K

0K 150K300K

Total Time Interval

F
re

q
u
e
n
c
y

0K

200K

400K

600K

0M 8M 16M

Total Time Interval

F
re

q
u
e
n
c
y

0K

50K

100K

150K

0K 140K 280K

Total Time Interval

F
re

q
u
e
n
c
y

0K

40K

80K

120K

0K 300K 600K

Total Time Interval
F

re
q
u
e
n
c
y

0K

200K

400K

600K

0M 3M 6M

Total Time Interval

F
re

q
u
e
n
c
y

0M

5M

10M

15M

0M 10M 20M

Total Time Interval

F
re

q
u
e
n
c
y

0M

0.25M

0.5M

0.75M

0M 40M 80M

Total Time Interval

F
re

q
u
e
n
c
y

(h) ArXiv (i) Patent (j) Email (k) Facebook (l) Youtube (m) FF-Small (n) BA-Small

Fig. 2: Temporal locality in the formation of triangles in real graph streams. Closing and total intervals tend to

be shorter in real graph streams than in randomly ordered ones. That is, future edges are more likely to form

triangles with recent edges than with older edges.

Edge Arrival Time

!" !# !$!% !&

'()* +,

'()- +,

'(). +,

Triangle (a):
strong temporal locality

Closing Interval of (a) Closing Interval of (b)

'()/ +,

'()0 +,

'()1 +,

Triangle (b):
weak temporal locality

Total Interval of (a) Total Interval of (b)

!2

Fig. 3: Pictorial description of total intervals, closing

intervals, and temporal locality.

(3) to Minimize: the estimation errors.

If δ(t) = + for every t ∈ {1, 2, ..., }, we call Problem 1

triangle counting in an insertion-only graph stream.

Otherwise, we call Problem 1 triangle counting in a

fully dynamic graph stream. In Problem 1, instead of

minimizing a specific measure of estimation error, we

follow a general approach of reducing both bias and

variance. This approach is robust to many measures of

estimation error, as we show in the experiment section.

4 Empirical Pattern: Temporal Locality

In this section, we discuss temporal locality (i.e., the

tendency that future edges are more likely to form tri-

angles with recent edges than with older edges) in real

graph streams. To show the temporal locality, we in-

vestigate the distribution of closing intervals (see Def-

inition 1) and total intervals (see Definition 2) in real

graph streams. Figure 3 shows examples of closing and

total intervals.

Definition 1 (Closing Interval) The closing inter-

val of a triangle is defined as the time interval between

the arrivals of the second and last edges. That is,

closing interval({u, v, w}) := t(3)uvw − t(2)uvw.

Definition 2 (Total Interval) The total interval of

a triangle is defined as the time interval between the

arrivals of the first and last edges. That is,

total interval({u, v, w}) := t(3)uvw − t(1)uvw.

Figure 2 shows the distributions of the closing and

total intervals in real graph streams (see Section 6.1 for
descriptions of the streams) and random ones obtained

by randomly shuffling the orders of the edges in the

corresponding real streams. In every dataset, both in-

tervals tend to be much shorter in the real stream than

in the randomly ordered one. That is, future edges do

not form triangles with all previous edges with equal

probability. They are more likely to form triangles with

recent edges than with older edges.

Then, why does the temporal locality exist? It is

related to transitivity [51], i.e., the tendency that peo-

ple with common friends become friends. When an edge

{u, v} arrives, we can expect that edges connecting u

and other neighbors of v or connecting v and other

neighbors of u will arrive soon. These future edges form

triangles with the edge {u, v}. The temporal locality is

also related to new nodes. For example, in citation net-

works, when a new node arrives (i.e., a paper is pub-

lished), many edges incident to the node (i.e., citations

of the paper), which are likely to form triangles with

each other, are created almost instantly. Likewise, in

Temporal Locality-Aware Sampling for Accurate Triangle Counting in Real Graph Streams 7

social media, new users make many connections within

a short time by importing their friends from other so-

cial media or their address books during ‘on-boarding’

processes.

5 Proposed Method: WRS

In this section, we propose Waiting-Room Sampling

(WRS), a family of two single-pass streaming algo-

rithms that exploit the temporal locality, presented in

the previous section, for accurate global and local tri-

angle counting in real graph streams. The two algo-

rithms, namely WRSINS and WRSDEL, are designed

for insertion-only graph streams and fully-dynamic

streams with edge deletions, respectively. Throughout

the paper, we refer to WRS as the set of WRSINS and

WRSDEL. We first discuss the intuition behind WRS

in Section 5.1. Then, we describe the details of WRSINS

and WRSDEL in Sections 5.2 and 5.3, respectively. Af-

ter that, we theoretically analyze their accuracy and

complexity in Sections 5.4 and 5.5, respectively.

5.1 Intuition behind WRS

For accurate estimation, WRS minimizes both the bias

and variance of estimates. Reducing the variance is

related to finding more triangles because, intuitively

speaking, knowing more triangles is helpful to accu-

rately estimate their count. This relation is more for-

mally analyzed in Section 5.4. Thus, the following two

goals should be considered when deciding which edges

to store in memory:

• Goal 1. unbiased estimates of triangle counts

should be able to be computed from the stored

edges.

• Goal 2. when a new edge arrives, it should form

many triangles with the stored edges.

Uniform random sampling, such as reservoir sam-

pling and random pairing, achieves Goal 1 but fails to

achieve Goal 2, ignoring the temporal locality, described

in Section 4. Storing the latest edges, while discard-

ing the older ones, can be helpful to achieve Goal 2,

as suggested by the temporal locality. However, simply

discarding old edges makes unbiased estimation non-

trivial.

To achieve both goals, WRS combines the two poli-

cies above. Specifically, it divides the memory space into

the waiting room and the reservoir. The most recent

edges are always stored in the waiting room, while the

remaining edges are uniformly sampled in the reservoir

using reservoir sampling or random pairing. The wait-

ing room enables achieving Goal 2 since it exploits the

temporal locality by storing the latest edges, which fu-

ture edges are more likely to form triangles with. On

the other hand, the reservoir enables achieving Goal 1,

as described in detail in the following sections.

5.2 Details of WRSINS

In this subsection, we describe WRSINS, a simple ver-

sion of WRS for insertion-only graph streams. WRSINS

provides unbiased estimates of the global and local tri-

angle counts in insertion-only graph streams. We first

describe the sampling policy of WRSINS, which is pre-

sented in Figure 4. Then, we describe how to estimate

the triangle counts from sampled edges. A pseudo code

of WRSINS is given in Algorithm 3.

5.2.1 Sampling Policy (Lines 6-13 of Algorithm 3)

We use S to denote the given memory space, where

at most k edges are stored. WRS divides S into the

waiting room W and the reservoir R, and we use α

to denote the relative size of W (i.e., |W| = kα). For

simplicity, we assume kα and k(1− α) are integers. In

W, the most recent kα edges in the input stream are

stored, and some among the edges flowing from W are

stored in the reservoirR. Reservoir sampling, presented

in Section 3.2.1, is used to decide which edges to be

stored in R. If we let e(t) = {u, v} be the edge arriving

at time t ∈ {1, 2, . . . } (i.e., ∆(t) = ({u, v},+)), then the

sampling scheme of WRSINS is described as follows:

• (Case 1). If W is not full, add e(t) to W (line 6).

• (Case 2). If W is full and R is not full, WRSINS

first removes e(t−kα) from W, which is the oldest

edge in W, and then stores e(t) in W, which is a

queue with the ‘first in first out’ (FIFO) mechanism

(lines 9-10). After that, WRSINS stores e(t−kα) in

R (line 11).

• (Case 3). If both W and R are full, WRSINS re-

moves the oldest edge e(t−kα) from W and inserts

the new edge e(t) to W (lines 9-10). Then, WRSINS

replaces a uniformly random edge in R with e(t−kα)

with probability p(t), defined as

p(t) :=
k(1− α)

|E(t)R |
, (2)

where E(t)R := {e(1), ..., e(t−kα)} is the set of edges

flowing from W to R at time t or earlier (lines 12-

13). That is, reservoir sampling, presented in Sec-

tion 3.2.1, is used for R, and thus each edge in E(t)R
is stored in R with equal probability p(t).

8 D. Lee et al.

...

!: "# slots in memory $: %& ' "(# slots in memory

!

$Push
Pop

prob.)%*(

Discard

Case 1
(the waiting room

is not full yet)

Case 2
(the reservoir is

not full yet)

Case 3
(both storage are full)

Waiting Room
(first in first out)

Standard Reservoir
(sequential storage)

... Waiting Room
(first in first out)

Standard Reservoir (random replace)

prob. & ')%*(

!: "# slots in memory

Waiting Room
(sequential storage)

...

Fig. 4: Pictorial description of the sampling process in WRSINS. Assume a new edge arrives. Case 1: If the

waiting room is not full, then the new edge is added to the waiting room. Case 2: If the waiting room is full while

the reservoir is not full, the oldest edge in the waiting room is moved from the waiting room to the reservoir, and

the new edge is added to the waiting room. Case 3: If both the waiting room and the reservoir are full, the oldest

edge in the waiting room is evicted from the waiting room, and the new edge is added to the waiting room. Then,

with probability p(t), the evicted edge replaces a uniformly random edge in the reservoir. Note that the latest |W|
edges are stored in the waiting room, while the remaining older edges are uniformly sampled in the reservoir.

Algorithm 3: WRSINS: proposed algorithm

for insertion-only graph streams

Input : (1) insertion-only graph stream:
{∆(1),∆(2), . . . },
(2) memory budget: k,
(3) relative size of the waiting room: α

Output: (1) estimated global triangle count: c,
(2) estimated local triangle counts: cu for
each node u

1 |ER| ← 0

2 foreach ∆(t) = ({u, v},+) do
/* Update estimates */

3 foreach node w in N̂u ∩ N̂v do
/* Discover the triangle {u, v, w} */

4 initialize c, cu, cv, and cw to 0 if they have not
been set

5 increase c, cu, cv, and cw by 1/p
(t)
uvw

/* Sample the inserted edge {u, v} */

6 if |W| < kα then W ←W ∪ {{u, v}}
7 else
8 |ER| ← |ER|+ 1
9 remove the oldest edge {x, y} from W

10 add {u, v} to W
11 if |R| < k(1− α) then R← R∪ {{x, y}}
12 else if Bernoulli(k(1− α)/|ER|) = 1 then
13 replace a uniformly random edge in R with

{x, y}

In summary, when ∆(t) arrives (or after ∆(t−1)

is processed), if t ≤ k + 1, then each edge in

{e(1), ..., e(t−1)} is always stored inW or R. If t > k+1,

then each edge in {e(t−kα), ..., e(t−1)} is always stored

in W, while each edge in {e(1), ..., e(t−kα−1)} is stored

in R with probability p(t−1).

5.2.2 Estimating Triangle Counts (Lines 3-5 of

Algorithm 3)

We use Ĝ = (V̂, Ê) to denote the sampled graph com-

posed of the edges in S (i.e., inW or R), and we use N̂u
to denote the set of neighbors of each node u ∈ V̂ in Ĝ.

We use c and cu to denote the estimates of the global

triangle count and the local triangle count of each node

u, respectively, in the stream so far. That is, if we let

c(t) and c
(t)
u be c and cu after processing ∆(t), they are

estimates of |T (t)| and |T (t)
u |, respectively.

When each edge e(t) = {u, v} arrives, WRSINS first

finds the triangles composed of {u, v} and two other

edges in Ĝ. The set of such triangles is {{u, v, w} : w ∈
N̂u ∩ N̂v}. For each such triangle {u, v, w}, WRSINS

increases c, cu, cv, and cw by 1/p
(t)
uvw, where p

(t)
uvw is the

probability that WRSINS discovers {u, v, w} at time t,

i.e., the probability that {v, w} and {w, u} are in S
when {u, v} arrives (see Lemma 1). Then, the expected

increase of the counters by each triangle {u, v, w} be-

comes 1 and the counters become unbiased estimates,

as formalized in Theorem 1 in Section 5.4.

The remaining task is to compute p
(t)
uvw, the prob-

ability that WRSINS discovers triangle {u, v, w}. To

this end, we classify triangles into 3 types depending

on where the first and second edges are stored when

the third edge arrives, as in Definition 3. Recall that

e
(i)
uvw indicates the edge arriving i-th among the edges

in {u, v, w}.

Definition 3 (Types of Triangles) We define the

type of each triangle {u, v, w}, depending on where the

first and the second edges in {u, v, w} are stored when

Temporal Locality-Aware Sampling for Accurate Triangle Counting in Real Graph Streams 9

the third edge arrives, as follows:

typeuvw :=


1 if e

(1)
uvw ∈ W and e

(2)
uvw ∈ W

2 else if e
(2)
uvw ∈ W

3 otherwise.

Note that a triangle is of Type 1 if its total interval

is short. A triangle is of Type 2 if its closing interval

is short while its total interval is not. If neither of its

intervals is short, a triangle is of Type 3.

The probability that each triangle is discovered

by WRSINS depends on its type, as formalized in

Lemma 1, where the superscript (t) is used to denote

the value of each variable after the t-th element ∆(t) is

processed.

Lemma 1 (Triangle Discovering Probability in

WRSINS.) Given the maximum size k of sample and

the relative size α of the waiting room, the probability

p
(t)
uvw that each new triangle {u, v, w} ∈ T (t) − T (t−1)

is discovered in line 3 of Algorithm 3 at time t is as

follows:

p(t)uvw =


1 if typeuvw = 1
z
(t−1)
R

|E(t−1)
R |

if typeuvw = 2

z
(t−1)
R

|E(t−1)
R |

· z
(t−1)
R −1
|E(t−1)
R |−1

if typeuvw = 3,

(3)

where z
(t−1)
R = min(k(1− α), |E(t−1)R |).

Proof. Without loss of generality, we assume e
(1)
uvw =

{v, w}, e(2)uvw = {w, u}, and e
(3)
uvw = e(t) = {u, v}. That

is, {v, w} arrives earlier than {w, u}, and {w, u} arrives

earlier than {u, v}. When e(t) = {u, v} arrives at time t,

the triangle {u, v, w} is discovered if and only if {v, w}
and {w, u} are in S(t−1).

Note that, since WRSINS performs updating the tri-

angle counts before sampling edges, ER = E(t−1)R at the

point of executing line 5 of Algorithm 3.

If typeuvw = 1, {v, w} and {w, u} are always stored

in W(t−1), when {u, v} arrives. Thus, WRSINS discov-

ers {u, v, w} with probability 1.

If typeuvw = 2, when {u, v} arrives, {w, u} is always

stored in W(t−1), while {v, w} cannot be in W(t−1) but

can be in R(t−1). For WRSINS to discover {u, v, w},
{v, w} should be in R(t−1), and thus the probability is

P[{v, w} ∈ R(t−1)] =

1 if |E(t−1)R | ≤ k(1− α)
k(1−α)
|E(t−1)
R |

otherwise,

or equivalently,

P[{v, w} ∈ R(t−1)] =
z
(t−1)
R

|E(t−1)R |
,

where z
(t−1)
R = min(k(1− α), |E(t−1)R |)

If typeuvw = 3, {v, w} and {w, u} cannot be in

W(t−1), when {u, v} arrives. For WRSINS to discover

{u, v, w}, both {v, w} and {w, u} should be in R(t−1).

The probability of the event is

P[{v, w} ∈ R(t−1) and {w, u} ∈ R(t−1)]

= P[{v, w} ∈ R(t−1)] · P[{w, u} ∈ R(t−1)|{v, w} ∈ R(t−1)]

=
z
(t−1)
R

|E(t−1)R |
·
z
(t−1)
R − 1

|E(t−1)R | − 1
.

�

Notice that no additional space is required to store

the arrival times of sampled edges. This is because the

type of each triangle and its discovering probability

(i.e., Eq. (3)) can be computed from the size of ER and

whether each edge is stored in W or R at time t, as ex-

plained in the proof of Lemma 1. Moreover, since only

its size matters, ER does not have to be maintained.

5.3 Handling Edge Deletion: WRSDEL

In real-world graphs, there can exist both edge inser-

tions and deletions. There can even be cases where pre-

viously deleted edges are re-inserted. In this subsection,

we present WRSDEL, which extends WRSINS for tri-

angle counting in fully-dynamic graph streams, which

is the sequence of edge insertions and deletions. To this

end, the waiting room sampling, described in the pre-

vious section, is also extended to handle edge deletions.

WRSDEL maintains unbiased estimates of both global

and local triangle counts. Below, we first present the

sampling policy of WRSDEL, and then we describe how

to estimate the triangle counts from sampled edges. A

pseudo code of WRSDEL is given in Algorithm 4.

5.3.1 Sampling Policy (Lines 9-27 of Algorithm 4)

For sampling, WRSDEL divides the given memory

space S, where up to k edges are stored, into the wait-

ing room W and the reservoir R, where up to kα and

k(1 − α) are stored, respectively. As in WRSINS, the

latest edges are stored inW, and edges sampled among

the other edges are stored in R. Handling deletions

of edges in W is straightforward, and RP, which is

described in Section 3.2.2, is used for handling dele-

tions of edges in R without losing uniformity. Let

∆(t) = (e(t) = {u, v}, δ(t)) be the edge addition or dele-

tion at time t ∈ {1, 2, ...}. Let nb and ng be the counters

of “bad” and “good” uncompensated deletions, respec-

tively, which is used in RP to record each type of dele-

tions. Below, we describe how WRSDEL updates the

10 D. Lee et al.

Algorithm 4: WRSDEL: proposed algorithm

for fully-dynamic graph streams

Input : (1) fully dynamic graph stream:
{∆(1),∆(2), ...},
(2) memory budget: k,
(3) relative size of the waiting room: α

Output: (1) estimated global triangle count: c,
(2) estimated local triangle counts: cu for
each node u

1 |ER| ← 0, nb ← 0, ng ← 0

2 foreach ∆(t) = ({u, v}, δ) do
/* Update estimates */

3 foreach node w in N̂u ∩ N̂v do
/* Discover the triangle {u, v, w} */

4 initialize c, cu, cv, and cw to 0 if they have not
been set

5 if δ = + then

6 increase c, cu, cv, and cw by 1/q
(t)
uvw

7 else if δ = − then

8 decrease c, cu, cv, and cw by 1/q
(t)
uvw

/* Sample the inserted edge {u, v} */

9 if δ = + then
10 if |W| < kα then W ←W ∪ {{u, v}}
11 else
12 |ER| ← |ER|+ 1
13 remove the oldest edge {x, y} from W and

add {u, v} to W
14 if nb + ng = 0 then
15 if |R| < k(1− α) then

R← R∪ {{x, y}}
16 else if Bernoulli(k(1− α)/|ER|) = 1

then
17 replace a randomly chosen edge in R

with {x, y}

18 else if Bernoulli(nb/(nb + ng)) = 1 then
19 R← R∪ {{x, y}}, nb ← nb − 1

20 else ng ← ng − 1

/* Delete the removed edge {u, v} */

21 else if δ = − then
22 if {u, v} ∈ W then W ←W \ {{u, v}}
23 else
24 |ER| ← |ER| − 1
25 if {u, v} ∈ R then
26 R← R \ {{u, v}}, nb ← nb + 1

27 else ng ← ng + 1

maintained sample (i.e., edges stored in W and R) in

response to edge additions and deletions.

For Edge Insertions: Whenever an insertion of an

edge arrives, WRSDEL checks whetherW is full or not.

• (Case 1). If W is not full, the new edge is stored

at W (line 10).

• (Case 2). IfW is full, WRSDEL removes the oldest

edge in W and inserts the new edge to W by the

FIFO mechanism (line 13), and then WRSDEL de-

cides whether to store the edge that is removed from

W inR or not, following the RP procedure (lines 14-

20), which is described in Section 3.2.2. Specifically,

this case is further divided into two subcases.

• (Case 2-1). If there is no deletion to be compen-

sated (line 14), RP processes each edge addition as

reservoir sampling does (lines 15-17). That is, if the

reservoir is not full (i.e., |R| < k(1 − α)), RP adds

the popped edge to R, Otherwise, RP replaces a

uniformly random edge in R with the popped edge

with probability (k(1− α))/|ER|.
• (Case 2-2). If there are deletions that need to be

compensated, then RP tosses a coin (line 18). If the

coin shows head, whose probability is nb/(nb + ng),

RP adds the popped edge to R. Otherwise, RP dis-

cards the popped edge. Next, RP decreases either

nb or ng by 1, depending on whether the popped

edge has been added to R or not (lines 19-20).

For Edge Deletions: Whenever a deletion of an edge

arrives, WRSDEL first checks whether the edge is in

W or not. If the edge is stored in W, it is simply re-

moved from W (line 22). Otherwise, WRSDEL removes

the edge from R (if it is in R) and increases nb or

ng depending on whether the edge was in R or not

(lines 24-27).

5.3.2 Estimating Triangle Counting (Lines 3-8 of

Algorithm 4)

When each edge insertion or deletion ∆(t) =

({u, v}, δ(t)) arrives, WRSDEL first finds the triangles

composed of {u, v} and two edges in Ĝ. The set of such

triangles is {{u, v, w} : w ∈ N̂u ∩ N̂v}. For each trian-

gle {u, v, w}, WRSDEL increases or decreases c, cu, cv,

and cw by 1/q
(t)
uvw, where q

(t)
uvw is the probability that

WRSDEL discovers {u, v, w} at time t (see Lemma 2) in

line 3 of Algorithm 4, depending on whether the edge

is inserted (i.e., δ(t) = +) or deleted (i.e., δ(t) = −).

Then, the expected increase or decrease in each counter

by each triangle {u, v, w} becomes 1, which makes the

counters unbiased estimates, as formalized in Theo-

rem 2 in the following section.

In Lemma 2, the probability q
(t)
uvw that WRSDEL

discovers the triangle {u, v, w} at time t is formulated.

To this end, in Definitions 4 and 5, we define two con-

cepts: added triangles and deleted triangles in a fully dy-

namic graph stream. The added triangles and deleted

triangles are the sets of all triangles that have been

added to and deleted from the input graph, respec-

tively. In a fully dynamic graph stream, if the same

edge arrives again after being deleted, a triangle can

be added or deleted multiple times. To distinguish the

same triangle added and deleted at different times, we

use {u, v, w}(t) to denote the triangle {u, v, w} added

or deleted at time t. Similarly, we use the superscript

Temporal Locality-Aware Sampling for Accurate Triangle Counting in Real Graph Streams 11

(t) to denote the value of each variable after the t-th

element ∆(t) is processed.

Definition 4 (Added Triangles) A(t) is defined as

the set of triangles that have been added to the graph

G at time t or earlier. That is,

A(t) := {{u, v, w}(s) : {u, v, w} /∈ T (s−1),

{u, v, w} ∈ T (s), where 1 ≤ s ≤ t}.

Definition 5 (Deleted Triangles) D(t) is defined as

the set of triangles that have been deleted from the

graph G at time t or earlier. That is,

D(t) := {{u, v, w}(s) : {u, v, w} ∈ T (s−1),

{u, v, w} /∈ T (s), where 1 ≤ s ≤ t}.

By the definition of added triangles, the set of tri-

angles added at time t is A(t) − A(t−1). Likewise, by

the definition of deleted triangles, the set of triangles

deleted at time t is D(t−1) −D(t).

Lemma 2 (Triangle Discovering Probability in

WRSDEL.) Given the maximum size k of sample and

the relative size α of the waiting room, the probability

q
(t)
uvw that each triangle {u, v, w} ∈ (A(t) − A(t−1)) ∪

(D(t−1)−D(t)) is discovered in line 3 of Algorithm 4 at

time t is as follows:

q(t)uvw =
1 if typeuvw = 1

y
(t−1)
R

|E(t−1)
R |+d(t−1)

if typeuvw = 2

y
(t−1)
R

|E(t−1)
R |+d(t−1)

· y
(t−1)
R −1

|E(t−1)
R |+d(t−1)−1

if typeuvw = 3,

(4)

where d(t−1) = n
(t−1)
b + n

(t−1)
g and y

(t−1)
R = min(k(1−

α), |E(t−1)R |+ d(t−1)).

Proof. WRSDEL discovers a triangle {u, v, w}(t) added

or removed at time t if any only if the other two edges

are stored in S when an edge forming the triangle is

added or removed at time t. Thus, the probability q
(t)
uvw

of discovering {u, v, w}(t) is equal to the probability

that the other two edges are stored in S(t−1). A full

proof with the derivation of the probability is given in

Appendix A. �

Recall that the type of each triangle is determined

simply by whether each edge is stored inW orR. More-

over, Eq. (4) is directly calculated from the three coun-

ters (i.e., nb, ng and |ER|). Thus, WRSDEL requires no

additional space to store any additional information or

the arrival times of sampled edges. Especially, since only

its size matters, ER does not have to be maintained.

5.4 Accuracy Analysis

In this subsection, we prove that WRS maintains un-

biased estimates, whose expected values are equal to

the true global and local triangle counts. Then, we ana-

lyze the variance of the estimates provided by WRSINS.

Throughout this section, we use the superscript (t) to

denote the value of each variable after the t-th element

∆(t) is processed.

5.4.1 Bias Analysis

We prove the unbiasedness of the estimates given by

WRSINS in Theorem 1.

Theorem 1 (Unbiasedness of WRSINS.) If the in-

put graph stream is insertion only and k(1−α) ≥ 2, then

WRSINS gives unbiased estimates of the global and lo-

cal triangle counts at any time t. That is, if we let c(t)

and c
(t)
u be c and cu after processing ∆(t), respectively,

then the followings hold:

E[c(t)] = |T (t)|, ∀t ≥ 1 (5)

E[c(t)u] = |T (t)
u |, ∀u ∈ V(t), ∀t ≥ 1. (6)

Proof. Let x
(s)
uvw be the amount of increase in each of

c(t), c
(t)
u , c

(t)
v , and c

(t)
w due to the discovery of {u, v, w}(s)

(i.e., {u, v, w} added at time s) where s ≤ t. Without

loss of generality, we assume e
(3)
uvw = e(s) = {u, v} and

thus ∆(s) = ({u, v},+). Then, the following holds:

x(s)uvw =

{
1/p

(s)
uvw if {v, w} and {w, u} ∈ S(s−1)

0 otherwise,

From this and Lemma 1, we have E[x
(s)
uvw] = 1/p

(s)
uvw ×

p
(s)
uvw + 0 × (1 − p(s)uvw) = 1. Combining this and c(t) =∑
{u,v,w}(s)∈T (t) x

(s)
uvw gives

E[c(t)] = E

 ∑
{u,v,w}(s)∈T (t)

x(s)uvw

 =
∑

{u,v,w}(s)∈T (t)

E[x(s)uvw] = |T (t)|,

which proves Eq. (5). Likewise, combining E[x
(s)
uvw] = 1

and c
(t)
u =

∑
{u,v,w}(s)∈T (t)

u
x
(s)
uvw gives

E[c(t)u] = E

 ∑
{u,v,w}(s)∈T (t)

u

x(s)uvw

 =
∑

{u,v,w}(s)∈T (t)
u

E[x(s)uvw] = |T (t)
u |,

which proves Eq. (6). �

Before showing the unbiasedness of WRSDEL, we

extend the concept of added triangles and deleted tri-

angles in Definitions 4 and 5 to the node level. We de-

note the sets of added and deleted triangles with each

12 D. Lee et al.

node u ∈ V(t) by A(t)
u ⊆ A(t) and D(t)

u ⊆ D(t), respec-

tively. Then, from their counts, the number of triangles

remaining without being deleted is obtained, as formal-

ized in Lemma 3.

Lemma 3 (Count of Triangles [38]) Subtracting

the number of deleted triangles from the number of

added triangles gives the number of triangles in the in-

put stream. Formally,

|T (t)| = |A(t)| − |D(t)|, ∀t ≥ 1, (7)

|T (t)
u | = |A(t)

u | − |D(t)
u |, ∀t ≥ 1, ∀u ∈ V(t). (8)

Based on Lemma 3, we prove the unbiasedness of

the estimates given by WRSDEL in fully dynamic graph

streams in Theorem 2. Note that Theorem 2 is a gen-

eralization of Theorem 1.

Theorem 2 (Unbiasedness of WRSDEL.) If k(1−
α) ≥ 2, then WRSDEL gives unbiased estimates of the

global and local triangle counts at any time t. That is,

if we let c(t) and c
(t)
u be c and cu after processing ∆(t),

respectively, then the followings hold:

E[c(t)] = |T (t)|, ∀t ≥ 1, (9)

E[c(t)u] = |T (t)
u |, ∀u ∈ V(t), ∀t ≥ 1. (10)

Proof. Let x
(s)
uvw be the amount of increase in each

of c(t), c
(t)
u , c

(t)
v , and c

(t)
w due to the discovery of

{u, v, w}(s) ∈ A(t) (i.e., {u, v, w} added at time s)

where s ≤ t. Without loss of generality, we assume

e
(3)
uvw = e(s) = {u, v} and thus ∆(s) = ({u, v},+). Then,

the following holds:

x(s)uvw =

{
1/q

(s)
uvw if {v, w} and {w, u} ∈ S(s−1)

0 otherwise,
(11)

Similarly, let y
(s)
uvw be the amount of decrease in

each of c(t), c
(t)
u , c

(t)
v , and c

(t)
w due to the discovery

of {u, v, w}(s) ∈ D(t) (i.e., {u, v, w} deleted at time

s) where s ≤ t. Without loss of generality, we assume

e
(3)
uvw = e(s) = {u, v} and thus ∆(s) = ({u, v},−). Then,

the following holds:

y(s)uvw =

{
−1/q

(s)
uvw if {v, w} and {w, u} ∈ S(s−1)

0 otherwise.

(12)

Eq. (11), Eq. (12), and Lemma 2, which states that

P[{v, w}, {w, u} ∈ S(s−1)] is equal to q
(s)
uvw, imply

E[x(s)uvw] = 1 and E[y(s)uvw] = −1. (13)

Definition 4, Definition 5, and Algorithm 4 imply

c(t) =
∑

{u,v,w}(s)∈A(t)

x(s)uvw +
∑

{u,v,w}(s)∈D(t)

y(s)uvw. (14)

Combining this, linearity of expectation, Eq. (7) in

Lemma 3, Eq. (13), and Eq. (14) gives

E[c(t)] =
∑

{u,v,w}(s)∈A(t)

E[x(s)uvw] +
∑

{u,v,w}(s)∈D(t)

E[y(s)uvw]

=
∑

{u,v,w}(s)∈A(t)

1 +
∑

{u,v,w}(s)∈D(t)

−1

= |A(t)| − |D(t)| = |T (t)|.

Hence, Eq. (9) holds. Likewise, for each node u ∈ V(t),

the following equation holds:

c(t)u =
∑

{u,v,w}(s)∈A(t)
u

x(s)uvw +
∑

{u,v,w}(s)∈D(t)
u

y(s)uvw. (15)

Combining this, linearity of expectation, Eq. (8) in

Lemma 3, Eq. (13), and Eq. (15) gives

E[c(t)u] =
∑

{u,v,w}(s)∈A(t)
u

E[x(s)uvw] +
∑

{u,v,w}(s)∈D(t)
u

E[y(s)uvw]

=
∑

{u,v,w}(s)∈A(t)
u

1 +
∑

{u,v,w}(s)∈D(t)
u

−1

= |A(t)
u | − |D(t)

u | = |T (t)
u |

Hence, Eq. (10) holds. �

5.4.2 Variance Analysis

We present a variance analysis through which we shed

light on the effectiveness of WRS. For simplicity, we

focus on the variance of the estimates provided by

WRSINS and specifically the following:

Ṽar[c(t)] =
∑
{u,v,w}(s)∈T (t)

Var[x(s)uvw], (16)

Ṽar[c(t)u] =
∑
{u,v,w}(s)∈T (t)

u

Var[x(s)uvw], (17)

where the dependencies between {x(s)uvw}{u,v,w}(s)∈T (t)

are ignored. In real-world graphs, the variance Var[c(t)]

and the simplified version Ṽar[c(t)] (i.e., Eq. (16)) are

strongly correlated (R2 > 0.99), as discussed in detail

in Appendix B.

To show how the temporal locality, described in Sec-

tion 4, is related to reducing Ṽar[c(t)] and Ṽar[c
(t)
u], we

first formulate Var[x
(t)
uvw], which is summed in Eq. (16)

and Eq. (17), in Lemma 4.

Lemma 4 (Variance of xuvw in WRSINS) If k(1−
α) ≥ 2, the variance of the increment xuvw in c by each

triangle {u, v, w} ∈ T (t) − T (t−1) in WRSINS is

Var[x(t)uvw] =


0 if typeuvw = 1
|E(t−1)
R |
z
(t−1)
R

− 1 if typeuvw = 2

|E(t−1)
R |
z
(t−1)
R

× |E
(t−1)
R |−1
z
(t−1)
R −1

− 1 if typeuvw = 3,

Temporal Locality-Aware Sampling for Accurate Triangle Counting in Real Graph Streams 13

(18)

where z
(t−1)
R = min(k(1− α), |E(t−1)R |).

Proof. From Var[x
(t)
uvw] = E[(x

(t)
uvw)2] −

(
E[x

(t)
uvw]

)2
,

Var[x
(t)
uvw] = (1/p

(t)
uvw)−1 holds. This and Eq. (3) imply

that, if k(1 − α) ≥ 2, the variance of x
(t)
uvw is equal to

Eq. (18). �

As formalized in Lemma 5, compared to

TrièstIMPR [8], where

Var[x(t)uvw] =
|E(t−1)|
m(t−1) ×

|E(t−1)| − 1

m(t−1) − 1
− 1

and m(t−1) = min(k, |E(t−1)|) for every triangle added

at time t regardless of its type, WRSINS reduces the

variance regarding the triangles of Type 1 and 2,

while increasing the variance regarding the triangles of

Type 3. Note that, in both WRSINS and TrièstIMPR,

the variance regarding the triangles added at time

t = k+1 or earlier is 0 since every edge is stored without

being discarded at time t = k + 1 or earlier.

Lemma 5 (Comparison of Variances between

WRSINS and TrièstIMPR) At any time t > k + 1,

for each triangle {u, v, w} ∈ T (t)−T (t−1), Var[x
(t)
uvw] is

smaller in WRSINS than in TrièstIMPR [8], i.e.,

Var[x(t)uvw] <
|E(t−1)|
m(t−1) ×

|E(t−1)| − 1

m(t−1) − 1
− 1, (19)

where m(t−1) = min(k, |E(t−1)|), if any of the following

conditions are satisfied:

• typeuvw = 1

• typeuvw = 2 and t > 1 + α
1−αk

• typeuvw = 2 and α < 0.5.

Proof. From t > k+ 1 and |E(t−1)R | = |E(t−1)| − kα, the

following (in)equalities hold:

|E(t−1)| = t− 1 > k, (20)

m(t−1) = min(k, |E(t−1)|) = k, (21)

z
(t−1)
R = min(k(1− α), |E(t−1)R |) = k(1− α). (22)

First, Eq. (18), Eq. (20), and Eq. (21) imply

Var[x(t)uvw] = 0 <
|E(t−1)|
m(t−1) ×

|E(t−1)| − 1

m(t−1) − 1
− 1,

which proves Eq. (19) when typeuvw = 1.

Second, we prove Eq. (19) when typeuvw = 2 and

t > 1 + α
1−αk. From t > 1 + α

1−αk, |E(t−1)| > α
1−αk and

thus
(
1 + k

|E(t−1)|

)
α < 1 hold. This and Eq. (20) imply(

1 +
k

|E(t−1)|

)(
1− k − 1

|E(t−1)| − 1

)
α < 1− k − 1

|E(t−1)| − 1
.

This and Eq. (20) again imply(
1− k(k − 1)

|E(t−1)|(|E(t−1)| − 1)

)
α

≤
(

1 +
k

|E(t−1)|

)(
1− k − 1

|E(t−1)| − 1

)
α

< 1− k − 1

|E(t−1)| − 1
.

This is equivalent to

(k − 1)(|E(t−1)| − kα) < |E(t−1)|(|E(t−1)| − 1)(1− α),

which is again equivalent to

|E(t−1)| − kα
k(1− α)

− 1 <
|E(t−1)|

k
× |E

(t−1)| − 1

k − 1
− 1.

Combining this, |E(t−1)| = |E(t−1)R |+ kα, Eq. (18), and

Eq. (22) gives

Var[x(t)uvw] =
|E(t−1)R |
k(1− α)

− 1 <
|E(t−1)|

k
× |E

(t−1)| − 1

k − 1
− 1,

which proves Eq. (19).

Lastly, the same conclusion holds when typeuvw = 2

and α < 0.5 since Eq. (20) and α < 0.5 imply |E(t−1)| >
α

1−αk, which with typeuvw = 2 corresponds to the sec-

ond case, which we prove above.

Hence, Eq. (19) holds under any of the given condi-

tions. �

Therefore, the superiority of WRSINS in terms of

small Ṽar[c(t)] and Ṽar[c
(t)
u] depends on the distribution

of the types of triangles in real graph streams. In the ex-

periment section, we show that the triangles of Type 1

and 2 are abundant enough in real graph streams, as

suggested by the temporal locality, so that WRSINS is

more accurate than TrièstIMPR.

Similarly, the abundance of triangles of Type 1 and

2 explains why WRSDEL is more accurate then its best

competitors in fully dynamic graph streams, as shown

experimentally in Section 6.

5.5 Complexity Analysis

In this subsection, we prove the time and space com-

plexities of WRS. Especially, we show that WRS has

the same time and space complexities as the state-

of-the-art algorithms [27,8]. We assume that sampled

edges are stored in the adjacency list format in mem-

ory, as in our implementation used for our experiments.

However, storing them sequentially, as in Figure 4, does

not change the results below.

14 D. Lee et al.

5.5.1 Time Complexity Analysis

The worst-case time complexity of WRS is linear in

the memory budget and in the number of edges in the

input stream, as formalized in Theorem 3.

Theorem 3 (Worst-Case Time Complexity of

WRS) Processing each element in the input stream by

Algorithms 3 and 4 takes O(k), and thus processing t

elements in the input stream takes O(kt).

Proof. In both Algorithms 3 and 4, the most expen-

sive step of processing an inserted or deleted edge

∆(t) = ({u, v}, δ(t)) is to find the common neigh-

bors N̂u ∩ N̂v (line 3 in Algorithm 3 and line 3 in

Algorithm 4). Assume |N̂u| ≤ |N̂v|, without loss of

generality, and a hash table is used to store all ele-

ments of N̂v. N̂u ∩ N̂v is obtained by traversing all el-

ements of N̂u and checking if each of them is in the

hash table. Since checking the membership of an el-

ement in a hash table takes O(1) time, the overall

time complexity of finding the common neighbors is

O(|N̂u|) = O(min(|N̂u|, |N̂v|)) time. Except for com-

puting N̂u ∩ N̂v, the others steps for processing ∆(t) =

({u, v}, δ(t)) take O(|N̂u ∩ N̂v|) = O(min(|N̂u|, |N̂v|))
time in total. Since O(min(|N̂u|, |N̂v|)) = O(k), the

time complexity of processing each element is O(k). �

Notice that this analysis assuming the worst-case

graph stream is pessimistic for real graph streams,

where min(|N̂u|, |N̂v|) is usually much smaller than k.

5.5.2 Space Complexity Analysis

Theorem 4 gives the space complexity of WRS. Note

that, except for the space for outputs (specifically, esti-

mates of the local triangle counts), WRS only requires

O(k) space.

Theorem 4 (Space Complexity of WRS) Let V(t)

be the set of nodes that appear in the first t elements

in the input stream. Processing t elements in the input

stream by Algorithms 3 and 4 requires O(k) space for

global triangle counting and O(k+ |V(t)|) space for local

triangle counting.

Proof. Algorithms 3 and 4 use O(k) space for sampling

edges, and they use O(|V(t)|) space for maintaining the

estimates of local triangle counts, which need not be

maintained for global triangle counting. �

6 Experiments

We review experiments that we designed to answer the

following questions:

• Q1. Accuracy: How accurately does WRS esti-

mate global and local triangle counts? Is WRS more

accurate than its state-of-the-art competitors?

• Q2. Trends: How do true triangle counts, esti-

mates, and estimation errors change over time?

• Q3. Illustration of Theorems: Does WRS give

unbiased estimates with variances smaller than its

competitors’?

• Q4. Scalability: How does WRS scale with the

number of edges in input streams?

• Q5. Effects of the Size of the Waiting Room:

How does the relative size α of the waiting room

affect the accuracy of WRS? What is the optimal

value of α?

• Q6. Effects of Temporal Locality: How does the

degree of temporal locality affect the accuracy of

WRS?

6.1 Experimental Settings

Machine: We ran all experiments on a PC with a

3.60GHz Intel i7-4790 CPU and 32GB memory.

Data: The real graph streams used in our experiments

are summarized in Table 3 with the following details:

• ArXiv [12]: A citation network between papers in

ArXiv’s High Energy Physics. Each edge {u, v} rep-

resents that paper u cited paper v. We used the

submission time of u as the creation time of {u, v}.
• Facebook [48]: A friendship network between users

of Facebook. Each edge {u, v} represents that user

v appeared in the friend list of user u. The edges

whose creation times are unknown were ignored.

• Email [21]: An email network from Enron Corpo-

ration. Each edge {u, v} represents that employee u

sent to or received from person v (who may be a

non-employee) at least one email. We used the cre-

ation time of the first email between u and v as the

creation time of {u, v}.
• Youtube [29]: A friend network between users of

Youtube. Each edge {u, v} indicates that user u and

user v are friends with each other. The edges cre-

ated before 12/10/2006 were ignored since their ex-

act creation times are unknown.

• Patent [14]: A citation network between patents.

Each edge {u, v} indicates that patent u cited patent

v. We used the time when u was granted as the

creation time of {u, v}.
• Forest Fire (FF) [26]: The forest fire model is

a graph generator that reflects several structural

properties (heavy-tailed degree distributions, small

diameters, communities, etc.) and temporal proper-

ties (densification and shrinking diameters, etc.) of

Temporal Locality-Aware Sampling for Accurate Triangle Counting in Real Graph Streams 15

Table 3: Summary of real-world graph streams.

Name # Nodes # Edges # Triangles Description

ArXiv 30, 565 346, 849 988, 009 Citation
Facebook 61, 096 614, 797 1, 756, 259 Friendship

Email 86, 978 297, 456 1, 180, 387 Email
Youtube 3, 181, 831 7, 505, 218 7, 766, 821 Friendship
Patent 3, 774, 768 16, 518, 947 7, 515, 023 Citation

FF-Small 3, 000, 000 23, 345, 764 94, 648, 815 Synthetic
FF-Large 10, 000, 000 87, 085, 880 426, 338, 480 Synthetic
BA-Small 3, 000, 000 108 1, 958, 656 Synthetic
BA-Large 10, 000, 000 109 60, 117, 894 Synthetic

ER 1, 000, 000 1011 1.333× 1015 Synthetic

real-world graphs. Generated graphs grow over time

with new nodes and edges.

• Barabási-Albert (BA) [5]: The Barabási-Albert

model is a graph generator that reflects several

structural properties of real-world graphs (heavy-

tailed degree distributions, small diameters, gi-

ant connected components, etc.). Generated graphs

grow over time with new nodes and edges.

• Erdős-Rényi (ER) [10]: The Erdős-Rényi model is

a graph generator G(n, p) that produces a random

graph with n vertices where each possible pair of

nodes are connected by an edge independently with

probability p. Since generated graphs remain static

over time, we used them only for test the scalability

of WRS in Section 6.5.

The self loops, the duplicated edges, and the direc-

tions of the edges were ignored in all the graph streams.

In insertion-only streams, edges were streamed in the

order by which they are created, as assumed in Sec-

tion 3.3. For fully dynamic streams, however, since edge

deletions are not included in the original datasets, we

created edge deletions as follows: (a) choose β% of the

edges and create the deletions of them, (b) locate each

deletion in a random position after the corresponding

edge addition. Throughout this section, we report ex-

perimental results when β was set to 20. However, the

results were consistent with other β values.

Implementations: We compared the family of WRS

to TrièstIMPR [8], TrièstFD [8], Mascot [27],

ThinkDFAST [38,40], and ThinkDACC [38,40]. They

are all single-pass streaming algorithms that estimate

both global and local triangle counts within a limited

memory budget, as briefly described in Section 2. We

implemented all the methods in Java, and we treated

negative estimates as 0.

Parameter settings: In WRS, the relative size α of

the waiting room was set to 0.1 unless otherwise stated.

Evaluation measures: To measure the accuracy of

triangle counting, we used the following metrics:

• Global Error: Let x be the number of the global

triangles at the end of the input stream and x̂ be

an estimated value of x. Then, the global error is

defined as |x− x̂|/(x+ 1).

• Local Error [27]: Let xu be the number of the local

triangles of each node u ∈ V at the end of the input

stream and x̂u be its estimate. Then, the local error

is defined as

1

|V|
∑

u∈V

|xu − x̂u|
xu + 1

.

• Rank Correlation: Spearman’s rank correlation

coefficient [42] measures the similarity of (a) the

ranking of the nodes in terms of the true local tri-

angle counts and (b) their ranking in terms of the

estimated local triangle counts, at the end of the

input stream.

In the following experiments, we computed each eval-

uation metric 1, 000 times for each algorithm, unless

otherwise stated, and reported the mean.2

6.2 Q1. Accuracy

Figures 5 and 6 show the accuracies of the considered

methods in the insertion-only and fully-dynamic graph

streams, respectively, within different memory budgets.

The memory budget k was changed from 50% of the

number of elements in the input stream to 0.1% until no

algorithm is better than settings all estimates to 0 (i.e.,

the dashed line) in terms of each evaluation measure.3, 4

In all the graph streams, WRS was most accu-

rate in terms of all the evaluation metrics, regard-

less of the memory budget. The accuracy gaps be-

tween WRS and the second best method were espe-

cially large in the ArXiv, Patent, FF-Large, and BA-

Small datasets, which showed a strong degree of tempo-
ral locality (see Section 6.7 for its effects on accuracy).

In the ArXiv dataset, for example, WRSINS gave up

to 47% smaller local error and 40% smaller global er-

ror than the second-best method. For the same dataset,

WRSDEL gave up to 28% smaller local error and 36%

smaller global error than the second-best approach.

WRS was most accurate since its estimates are based

on the largest number of discovered triangles, which in-

tuitively mean more information. Specifically, due to its
2 That is, for each measure, we computed the measure of

the estimates on each trial, and then we reported the mean
of the computed values. We did not report each measure of
the mean of the estimates obtained from all trials.
3 For Mascot and ThinkDFAST, we set the sampling prob-

ability p so that the expected number of sampled edges is
equal to the memory budget.
4 All the considered algorithms were always better than

setting all estimates to zero in terms of global error and rank
correlation. However, all the considered algorithms were not
in terms local error when the memory budget k was extremely
small and thus the variances of estimates of local triangle
counts were very large.

16 D. Lee et al.

WRSINS (Proposed) TriestIMPR MASCOT

Rank Correlation (the higher the better):

better

0.0

0.3

0.6

0.9

1.2

0K 80K 160K

Memory Budget (k)

R
a
n
k
 C

o
rr

. better

0.0

0.3

0.6

0.9

0M 4M 8M

Memory Budget (k)

R
a
n
k
 C

o
rr

. better

0.0

0.3

0.6

0.9

0K 150K 300K

Memory Budget (k)
R

a
n
k
 C

o
rr

. better

0.0

0.3

0.6

0.9

0K 60K 120K

Memory Budget (k)

R
a
n
k
 C

o
rr

. better

0.0

0.3

0.6

0.9

0M 1.5M 3M

Memory Budget (k)

R
a
n
k
 C

o
rr

. better

0.0

0.3

0.6

0.9

0M 20M 40M

Memory Budget (k)

R
a
n
k
 C

o
rr

. better

0.0

0.3

0.6

0.9

0M 20M 40M

Memory Budget (k)

R
a
n
k
 C

o
rr

.

(a) ArXiv (b) Patent (c) Email (d) Facebook (e) Youtube (f) FF-Large (g) BA-Small

Local Error (the lower the better):

better0.0

0.3

0.6

0.9

0K 80K 160K

Memory Budget (k)

L
o
c
a
l
E

rr
o
r

better0.0

0.2

0.4

0.6

0M 4M 8M

Memory Budget (k)

L
o
c
a
l
E

rr
o
r

better0.0

0.1

0.2

0K 150K 300K

Memory Budget (k)

L
o
c
a
l
E

rr
o
r

better0.00

0.25

0.50

0.75

0K 60K 120K

Memory Budget (k)

L
o
c
a
l
E

rr
o
r

better0.00

0.05

0.10

0.15

0.20

0M 1.5M 3M

Memory Budget (k)

L
o
c
a
l
E

rr
o
r

better0.00

0.25

0.50

0.75

1.00

0M 20M 40M

Memory Budget (k)

L
o
c
a
l
E

rr
o
r

better0.0

0.1

0.2

0.3

0M 20M 40M

Memory Budget (k)

L
o
c
a
l
E

rr
o
r

(h) ArXiv (i) Patent (j) Email (k) Facebook (l) Youtube (m) FF-Large (n) BA-Small

Global Error (the lower the better):

better10
−3

10
−2

10
−1

10
0

0K 80K 160K

Memory Budget (k)

G
lo

b
a
l
E

rr
o
r

better
10

−3

10
−2

10
−1

10
0

0M 4M 8M

Memory Budget (k)

G
lo

b
a
l
E

rr
o
r

better10
−3

10
−2

10
−1

10
0

0K 150K 300K

Memory Budget (k)

G
lo

b
a
l
E

rr
o
r

better10
−3

10
−2

10
−1

10
0

0K 60K 120K

Memory Budget (k)

G
lo

b
a
l
E

rr
o
r

better
10

−2

10
−1

10
0

0M 1.5M 3M

Memory Budget (k)

G
lo

b
a
l
E

rr
o
r

better10
−4

10
−3

10
−2

10
−1

10
0

0M 20M 40M

Memory Budget (k)

G
lo

b
a
l
E

rr
o
r

better10
−4

10
−3

10
−2

10
−1

10
0

0M 20M 40M

Memory Budget (k)

G
lo

b
a
l
E

rr
o
r

(o) ArXiv (p) Patent (q) Email (r) Facebook (s) Youtube (t) FF-Large (u) BA-Small

Fig. 5: WRSINS is accurate. M: million, K: thousand. In all insertion-only graph streams, WRSINS is most accurate

for both global and local triangle counting, regardless of the memory budget k. The error bars indicate estimated

standard errors.

WRSDEL (Proposed) ThinkDACC ThinkDFAST TriestFD

Rank Correlation (the higher the better):

better

0.0

0.3

0.6

0.9

1.2

0K 80K 160K

Memory Budget (k)

R
a
n
k
 C

o
rr

. better

0.0

0.3

0.6

0.9

0M 4M 8M

Memory Budget (k)

R
a
n
k
 C

o
rr

. better

0.0

0.3

0.6

0.9

0K 150K 300K

Memory Budget (k)

R
a
n
k
 C

o
rr

. better

0.0

0.3

0.6

0.9

0K 60K 120K

Memory Budget (k)

R
a
n
k
 C

o
rr

. better

0.0

0.3

0.6

0.9

0M 1.5M 3M

Memory Budget (k)

R
a
n
k
 C

o
rr

. better

0.0

0.3

0.6

0.9

0M 20M 40M

Memory Budget (k)

R
a
n
k
 C

o
rr

. better

0.00

0.25

0.50

0.75

1.00

0M 20M 40M

Memory Budget (k)

R
a
n
k
 C

o
rr

.

(a) ArXiv (b) Patent (c) Email (d) Facebook (e) Youtube (f) FF-Large (g) BA-Small

Local Error (the lower the better):

better0.0

0.5

1.0

0K 80K 160K

Memory Budget (k)

L
o
c
a
l
E

rr
o
r

better0.0

0.1

0.2

0.3

0.4

0.5

0M 4M 8M

Memory Budget (k)

L
o
c
a
l
E

rr
o
r

better0.00

0.05

0.10

0.15

0.20

0.25

0K 150K 300K

Memory Budget (k)

L
o
c
a
l
E

rr
o
r

better0.0

0.2

0.4

0.6

0.8

0K 60K 120K

Memory Budget (k)

L
o
c
a
l
E

rr
o
r

better0.00

0.05

0.10

0.15

0M 1.5M 3M

Memory Budget (k)

L
o
c
a
l
E

rr
o
r

better0.0

0.2

0.4

0.6

0.8

0M 20M 40M

Memory Budget (k)

L
o
c
a
l
E

rr
o
r

better0.00

0.05

0.10

0.15

0M 20M 40M

Memory Budget (k)

L
o
c
a
l
E

rr
o
r

(h) ArXiv (i) Patent (j) Email (k) Facebook (l) Youtube (m) FF-Large (n) BA-Small

Global Error (the lower the better):

better10
−3

10
−2

10
−1

10
0

0K 80K 160K

Memory Budget (k)

G
lo

b
a
l
E

rr
o
r

better10
−3

10
−2

10
−1

10
0

0M 4M 8M

Memory Budget (k)

G
lo

b
a
l
E

rr
o
r

better

10
−2

10
−1

10
0

0K 150K 300K

Memory Budget (k)

G
lo

b
a
l
E

rr
o
r

better10
−3

10
−2

10
−1

10
0

0K 60K 120K

Memory Budget (k)

G
lo

b
a
l
E

rr
o
r

better10
−3

10
−2

10
−1

10
0

0M 1.5M 3M

Memory Budget (k)

G
lo

b
a
l
E

rr
o
r

better10
−4

10
−3

10
−2

10
−1

10
0

0M 20M 40M

Memory Budget (k)

G
lo

b
a
l
E

rr
o
r

better10
−3

10
−2

10
−1

10
0

0M 20M 40M

Memory Budget (k)

G
lo

b
a
l
E

rr
o
r

(o) ArXiv (p) Patent (q) Email (r) Facebook (s) Youtube (t) FF-Large (u) BA-Small

Fig. 6: WRSDEL is accurate. M: million, K: thousand. In all fully-dynamic graph streams, WRSDEL is most

accurate for both global and local triangle counting, regardless of the memory budget k. The error bars indicate

estimated standard errors.

Temporal Locality-Aware Sampling for Accurate Triangle Counting in Real Graph Streams 17

WRSINS (Proposed) TriestIMPR MASCOT

10
4

10
5

10
6

10
7

10
8

Y
ou

tu
be

E
m

ai
l

A
rX

iv

Fac
eb

.

P
at

en
t

FF-S
B
A
-S

FF-L

N
u

m
b

e
r

o
f

 D
is

c
o

v
e

re
d

 T
ri
a

n
g

le
s

(a) Number of Discovered
Triangles (Insertion Only)

10
2

10
2.5

10
3

10
3.5

Yo
ut

ub
e

Em
ai
l

ArX
iv

Fa
ce

b.

Pat
en

t

FF−
S

BA−
S

FF−
LE

la
p

s
e

d
 T

im
e

 P
e

r
E

d
g

e
(n

a
n

o
s
e

c
o

n
d

s
)

(b) Running Time (Insertion
Only)

10
2

10
3

10
4

10
5

10
6

Yo
ut

ub
e

E
m

ai
l

A
rX

iv

Fa
ce

b.

Pat
en

t

FF−S

B
A
−S

FF−L

E
la

p
s
e

d
 T

im
e

 P
e

r
T
ri

a
n

g
le

(n
a

n
o

s
e

c
o

n
d

s
)

(c) Elapsed Time Per
Triangle(Insertion Only)

WRSDEL (Proposed) ThinkDACC ThinkDFAST TriestFD

10
4

10
5

10
6

10
7

10
8

Yo
ut

ub
e

E
m

ai
l

A
rX

iv

Fa
ce

b.

Pat
en

t

FF−S

B
A
−S

FF−L

N
u

m
b

e
r

o
f

 D
is

c
o
v
e

re
d

 T
ri

a
n

g
le

s

(d) Number of Discovered
Triangles (Fully Dynamic)

10
2

10
2.5

10
3

10
3.5

Yo
ut

ub
e

Em
ai
l

ArX
iv

Fa
ce

b.

Pat
en

t

FF−
S

BA−
S

FF−
LE

la
p

s
e

d
 T

im
e

 P
e

r
E

d
g

e
(n

a
n

o
s
e

c
o

n
d

s
)

(e) Running Time (Fully
Dynamic)

10
2

10
3

10
4

10
5

10
6

Yo
ut

ub
e

E
m

ai
l

A
rX

iv

Fa
ce

b.

Pat
en

t

FF−S

B
A
−S

FF−L

E
la

p
s
e

d
 T

im
e

 P
e

r
T
ri

a
n

g
le

(n
a

n
o

s
e

c
o

n
d

s
)

(f) Elapsed Time Per Triangle
(Fully Dynamic)

Fig. 7: The sampling scheme of WRS is effective. k is set to 10% of the number of the edges in each dataset, and

α is set to 0.1. (a,d) WRS discovers up to 2.9× more triangles than the second best method, in the same streams.

(b,e) The running times and the numbers of discovered triangles show similar trends. (c,f) WRS is comparable to

its competitors in terms of running time per discovered triangle.

effective sampling scheme, WRS discovered up to 2.9×
more triangles than its competitors while processing the

same streams, as seen in Figures 7(a) and 7(d).

6.3 Q2. Trends

Figure 9 shows how (1) the estimate of the global tri-

angle count, (2) the global error, (3) the local error,

and (4) the number of discovered triangles changed over

time in each algorithm. We set the memory budget (i.e.,

k) to the 10% of the number of elements in the input

stream. The dashed line denotes the end of the stream.

WRS was most accurate at all times both in terms

of global and local error, and it discovered the largest

number of triangles at all times. Since Mascot and

ThinkDFAST gradually use more space over time, their

global and local errors gradually decreased over time.

The other algorithms were exact until the memory is

full, and after that, their global and local errors gradu-

ally increased over time.

6.4 Q3. Illustration of Theorems

We ran experiments illustrating our analyses in Sec-

tion 5.4. Figures 1(b), 1(d), and 8 show the distributions

2.5e−05

5.0e−05

7.5e−05

1.0e−04

500K 550K 600K

Estimated Count

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

WRSDEL

ThinkDACCTriestFD

True triangle count

(a) WRSDEL is unbiased

554.8K

555.2K

555.6K

415.7K 415.9K

Number of
Processed Elements

N
u
m

b
e
r

o
f
T
ri

a
n
g
le

s
(C

o
n
fi
d
e
n
c
e
 I
n
te

rv
a
l)

WRSDEL

True Count

ThinkDACC

TriestFD

(b) 95% confidence
intervals over time

Fig. 8: WRSDEL is unbiased. (a) WRSDEL provides

unbiased estimates, and their variances are small. (b)

WRSDEL is the most accurate with the smallest con-

fidence intervals over the entire stream. The ArXiv

dataset is used for both (a) and (b).

and the 95% confidence intervals of 10, 000 estimates of

the global triangle count in the ArXiv dataset obtained

by different algorithms. We set the memory budget k to

the 10% of the number of elements in the dataset. The

average of the estimates of WRS was close to the true

triangle count. Moreover, the estimates of WRS had

smaller variances and confidence intervals than those

of the competitors. These results are consistent with

Theorems 1-2 and Lemma 5.

18 D. Lee et al.

WRSINS (Proposed) TriestIMPR MASCOT
ArXiv Dataset:

0M

0.25M

0.5M

0.75M

1M

0K 160K 320K

Number of
Processed Elements

N
u

m
b

e
r

o
f

G
lo

b
a

l
T
ri

a
n

g
le

s

WRSINS

True

Count

TriestIMPR

MAS

COT

(a) Estimates over time
(Insertion Only)

0.00

0.02

0.04

0.06

0K 160K 320K

Number of

Processed Elements
G

lo
b
a
l
E

rr
o
r

(b) Global errors over
time (Insertion Only)

0.0

0.5

1.0

0K 160K 320K

Number of

Processed Elements

L
o
c
a
l
E

rr
o
r

(c) Local errors over
time (Insertion Only)

0M

0.1M

0.2M

0K 160K 320K

Number of
Processed Elements

N
u
m

b
e
r

o
f

D
is

c
o
v
e
re

d
 T

ri
a
n
g
le

s

(d) Number of
discovered triangles over

time (Insertion Only)Patent Dataset:

0M

2M

4M

6M

0M 8M 16M

Number of
Processed Elements

N
u

m
b

e
r

o
f

G
lo

b
a

l
T
ri

a
n

g
le

s

WRSINS

True

Count

TriestIMPR

MASCOT

(e) Estimates over time
(Insertion Only)

0.00

0.01

0.02

0.03

0M 8M 16M

Number of

Processed Elements

G
lo

b
a
l
E

rr
o
r

(f) Global errors over
time (Insertion Only)

0.0

0.5

1.0

0M 8M 16M

Number of

Processed Elements

L
o
c
a
l
E

rr
o
r

(g) Local errors over
time (Insertion Only)

0M

0.5M

1M

0M 8M 16M

Number of
Processed Elements

N
u
m

b
e
r

o
f

D
is

c
o
v
e
re

d
 T

ri
a
n
g
le

s

(h) Number of
discovered triangles over

time (Insertion Only)

WRSDEL (Proposed) ThinkDACC ThinkDFAST TriestFD

ArXiv Dataset:

0M

0.2M

0.4M

0K 200K 400K

Number of
Processed Elements

N
u

m
b

e
r

o
f

G
lo

b
a

l
T
ri

a
n

g
le

s

WRSDEL

TriestFD

ThinkDACC

ThinkD
FAST

True

Count

(i) Estimates over time
(Fully Dynamic)

0.00

0.02

0.04

0.06

0K 200K 400K

Number of

Processed Elements

G
lo

b
a
l
E

rr
o
r

(j) Global errors over
time (Fully Dynamic)

0.0

0.5

1.0

1.5

0K 200K 400K

Number of

Processed Elements

L
o
c
a
l
E

rr
o
r

(k) Local errors over
time (Fully Dynamic)

0M

0.1M

0.2M

0.3M

0K 200K 400K

Number of
Processed Elements

N
u
m

b
e
r

o
f

D
is

c
o
v
e
re

d
 T

ri
a
n
g
le

s

(l) Number of discovered
triangles over time (Fully

Dynamic)Patent Dataset:

0M

1M

2M

3M

4M

0M 9M 18M

Number of
Processed Elements

N
u

m
b

e
r

o
f

G
lo

b
a

l
T
ri

a
n

g
le

s

WRSDEL

TriestFD

ThinkDACC

ThinkD
FAST

True

Count

(m) Estimates over time
(Fully Dynamic)

0.00

0.01

0.02

0.03

0M 9M 18M

Number of

Processed Elements

G
lo

b
a
l
E

rr
o
r

(n) Global errors over
time (Fully Dynamic)

0.0

0.5

1.0

0M 9M 18M

Number of

Processed Elements

L
o
c
a
l
E

rr
o
r

(o) Local errors over
time (Fully Dynamic)

0M

0.5M

1M

1.5M

0M 9M 18M

Number of
Processed Elements

N
u
m

b
e
r

o
f

D
is

c
o
v
e
re

d
 T

ri
a
n
g
le

s

(p) Number of
discovered triangles over

time (Fully Dynamic)

Fig. 9: WRS is ‘any time’ and accurate at all times. (a, e, i, m) WRS is ‘any time’, maintaining estimates while

the input graph evolves. (b-c, f-g, j-k, n-o) WRS is most accurate at all times. (d, h, l, p) WRS discovers the most

triangles at all times.

6.5 Q4. Scalability

We measured how the running time of WRS scales with

the number of edges in the input streams. To measure

the scalability independently of the speed of the input

stream, we measured the time taken by WRS to pro-

cess all the elements while ignoring the time taken to

wait for the arrivals of elements. Figure 10(a) shows

the results in graph streams that we created by sam-

pling different numbers of edges in the Patent dataset.

We set k to the 10% of the number of edges in the

entire dataset. Each reported value is the average over

1, 000 runs. The same experiment was performed with

several other datasets, and the results are shown in Fig-

ure 10. In all the considered datasets, the running time

of WRS scaled linearly with the number of edges. That

Temporal Locality-Aware Sampling for Accurate Triangle Counting in Real Graph Streams 19

2
1

2
3

2
5

2
20

2
22

2
24

Size of Input Streams

R
u

n
n

in
g

 T
im

e
 (

s
e

c
)

linear
scalability

WRSDEL

WRSINS

(a) Patent

2
5

2
6

2
7

2
8

2
23

2
25

2
27

Size of Input Streams

R
u
n
n
in

g
 T

im
e
 (

s
e
c
)

linear
scalability

WRSINS

WRSDEL

(b) FF-Large

2
8

2
9

2
10

2
11

2
27

2
28

2
29

2
30

Size of Input Streams

R
u

n
n

in
g

 T
im

e
 (

s
e

c
)

linear
scalability

WRSDEL

WRSINS

(c) BA-Large

��
�

��
�

��
�

��
�

��
�

��
��

��
��

�	
��
���������������

�
�
�
�
	�
�
��
	�
�
��
�
�
�
�

linear
scalability

WRSDEL

WRSINS

(d) Erdős-Rényi

Fig. 10: WRS is scalable. The running time of WRS is linear in the number of edges in the input graph stream.

Memory Budget (k / #edges): 0.1 0.2 0.3

0.004

0.006

0.008

0.0 0.2 0.4

Relative Size of W

G
lo

b
a
l
E

rr
o
r

0.001

0.002

0.003

0.0 0.2 0.4

Relative Size of W

G
lo

b
a
l
E

rr
o
r

0.006

0.008

0.010

0.012

0.014

0.0 0.2 0.4

Relative Size of W

G
lo

b
a
l
E

rr
o
r

0.002

0.004

0.006

0.008

0.0 0.2 0.4

Relative Size of W

G
lo

b
a
l
E

rr
o
r

0.006

0.010

0.014

0.018

0.0 0.2 0.4

Relative Size of W

G
lo

b
a
l
E

rr
o
r

0.001

0.002

0.003

0.0 0.2 0.4

Relative Size of W

G
lo

b
a
l
E

rr
o
r

0.001

0.002

0.0 0.2 0.4

Relative Size of W

G
lo

b
a
l
E

rr
o
r

(a) ArXiv (b) Patent (c) Email (d) Facebook (e) Youtube (f) FF-Small (g) BA-Small

Fig. 11: Effects of α on the accuracy of WRS . In most cases, the accuracy of WRS is maximized when about

10% of memory space is used for the waiting room (i.e., α = 0.1).

is, the time taken by WRS to process each element in

the input stream was almost constant regardless of the

number of edges that have arrived so far.

Despite its linear scalability, WRS took more time

than its competitors to process the entire stream, as

seen in Figures 7(b) and 7(e), mainly because it dis-

covered and processed more triangles, as seen in Fig-

ures 7(a) and 7(d). In terms of running time per discov-

ered triangle, WRS was comparable to the competitors,

as seen in Figures 7(c) and 7(f).

6.6 Q5. Effects of the Size of the Waiting Room

We measured how the accuracy of WRS depends on α,

the relative size of the waiting room. Figure 11 shows

the results with different memory budgets. Here, we

used global error as the accuracy metric, and the av-

erage values over 1, 000 runs were reported. In all the

datasets, using proper amount of memory space for the

waiting room gave better accuracy than using no space

for the waiting room (α = 0) and using half the space

for the waiting room (α = 0.5), regardless of mem-

ory budgets. Although proper α values depended on

datasets and memory budgets, the accuracy was maxi-

mized when α was about 0.1 in most of the cases.

6.7 Q6. Effects of Temporal Locality

We investigated how the degree of temporal locality

affects the effectiveness of WRS. To this end, we quan-

tified the degree of temporal locality as the fraction of

the number of Type 1 or 2 triangles to the number of all

discovered triangles after processing the graph stream

until the given memory space is full (i.e., after process-

ing the first k non-deleted edges in the input graph

stream). Table 4 shows the number of discovered trian-

gles of each type and their proportions when we used

WRSINS. We set the memory budget k to 10% of the

number of elements in each dataset, and we set α to 0.1,

following the result of Section 6.6. In the ArXiv, Patent,

FF-Large, and BA-Small datasets, more than 99.9% of

the discovered triangles are of Type 1 or Type 2, whose

closing intervals are smaller than the size of the waiting

room. In these datasets, which show strong temporal lo-

cality, WRSINS was especially more accurate than its

competitors, as seen in Figures 5(h), 5(i), 5(m), 5(n),

5(o), 5(p), 5(t), and 5(u). The other datasets (i.e., the

Email, Facebook, and Youtube datasets) show weaker

temporal locality with smaller fractions of Type 1 or 2

triangles. In them, the accuracy gaps between WRSINS

and its competitors were relatively small, as seen in

Figures 5(j), 5(k), 5(l), 5(q), 5(r), and 5(s).

Figure 12 shows how the global and local errors of

WRSINS and its best competitor (i.e., TrièstIMPR)

changed according to the degree of temporal locality.

To obtain graph streams with different degrees of tem-

poral locality, we chose different fractions (from 10% to

50%) of the edges in the ArXiv dataset and swapped

them with randomly chosen edges.5 WRSINS was signif-

icantly more accurate than TrièstIMPR when the input

graph stream exhibited strong temporal locality. As the

temporal locality became weaker, the accuracy gap de-
5 Specifically, we ran the Knuth shuffle [22] while skipping

different fractions of iterations.

20 D. Lee et al.

Table 4: The degree of temporal locality in the input stream affects the accruacy of WRS. The table below re-

ports the number of triangles of each type and their proportions after processing each graph stream until the given

memory space is full. The ArXiv, Patent, FF-Large, and BA-Small datasets, where WRS was especially more

accurate than its competitors, show strong temporal locality with large fractions of Type 1 or 2 triangles. The

other datasets show weaker temporal locality with smaller fractions of Type 1 or 2 triangles.

Dataset #∆ #T1 (#T1/#∆) #T2 (#T2/#∆) #T3 (#T3/#∆) (#T1 + #T2)/#∆

ArXiv 35, 937 6, 754 (0.1879) 29, 161 (0.8114) 22 (0.0006) 0.9994
Patent 92, 511 345 (0.0037) 92, 166 (0.9963) 0 (0) 1.0000
Email 57, 319 16, 363 (0.2855) 15, 477 (0.2700) 25, 479 (0.4445) 0.5555

Facebook 48, 831 8, 918 (0.1826) 22, 004 (0.4506) 17, 909 (0.3668) 0.6332
Youtube 112, 386 26, 954 (0.2398) 42, 466 (0.3779) 42, 966 (0.3823) 0.6177
FF-Large 38, 135, 620 13, 397, 029 (0.3513) 24, 738, 591 (0.6487) 0 (0) 1.0000
BA-Small 1, 131, 350 645, 321 (0.5704) 486, 029 (0.4296) 0 (0) 1.0000

∆: all types of triangles when the given memory space is full.
T1: Type 1 triangles among ∆, T2: Type 2 triangles among ∆, T3: Type 3 triangles among ∆.

WRSINS (Proposed) TriestIMPR

0.006

0.007

0.008

0.009

0.010

0.2 0.4 0.6 0.8 1.0

Degree of Temporal Locality

G
lo

b
a

l
E

rr
o

r

(a) Global Error (Insertion
Only)

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Degree of Temporal Locality

L
o

c
a

l
E

rr
o

r

(b) Local Error (Insertion
Only)

Fig. 12: Effects of temporal locality on the accuracy of

WRSINS. WRSINS is significantly more accurate than

its best competitor when the input graph stream ex-

hibits strong temporal locality.

creased, and eventually TrièstIMPR became more ac-

curate than WRSINS.

As shown in the results, the degree of temporal lo-

cality in the input stream affects the accuracy of WRS.

Thus, if the degree of temporal locality in the input

stream is not known in advance, we can first measure

the fraction of Type 1 or 2 triangles until the given

memory space is full, as in Table 4 and Figure 12, and

use WRS only if the fraction is high enough (e.g., the

fraction is greater than 0.5). If the fraction is low, we

can continue without the waiting room, which is equiv-

alent to TrièstIMPR, or use any other method.

7 Conclusion

In this work, we propose WRS, a family of single-

pass streaming algorithms for global and local trian-

gle counting in insertion-only and fully dynamic graph

streams. WRS divides the memory space into the wait-

ing room, where the latest edges are stored, and the

reservoir, where the remaining edges are uniformly sam-

pled. By doing so, WRS exploits the temporal locality

in real graph streams for reducing variances, while giv-

ing unbiased estimates. To sum up, WRS has the fol-

lowing strengths:

• Fast and ‘any time’: WRS scales linearly with

the number of edges in the input graph stream, and

it maintains estimates at any time while the input

graph evolves over time (Figures 1 and 8(b)).

• Effective: Estimation error in WRS is up to 47%

smaller than that in its best competitors (Figures 5

and 6).

• Theoretically sound: WRS gives unbiased esti-

mates with small variances under the temporal lo-

cality (Theorems 1, 2; Lemma 5; and Figures 1, 8).

Reproducibility: The code and datasets used in the

paper are available at http://dmlab.kaist.ac.kr/

wrs/.

Acknowledgements This research was supported by
Disaster-Safety Platform Technology Development Program
of the National Research Foundation of Korea (NRF)
funded by the Ministry of Science and ICT (Grant Number:
2019M3D7A1094364) and Institute of Information & Com-
munications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) (No. 2019-0-00075,
Artificial Intelligence Graduate School Program (KAIST)).
This research was also supported by the National Science
Foundation under Grant No. CNS-1314632 and IIS-1408924.
This research was sponsored by the Army Research Labo-
ratory and was accomplished under Cooperative Agreement
Number W911NF-09-2-0053. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation, or other funding par-
ties. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation here on.

A Appendix: Proof of Lemma 2

We provide a proof of Lemma 2, which is based on several
properties of RP. We first introduce the uniformity of RP
[38] in Lemma 6. Then, we present the mean and variance
of the size of the reservoir R [13] in Lemma 7. Throughout
this section, we use the superscript (t) to indicate the value
of each variable after the t-th element ∆(t) is processed. We

let E(t)R be the set of edges flowing to the reservoir R from

http://dmlab.kaist.ac.kr/wrs/
http://dmlab.kaist.ac.kr/wrs/

Temporal Locality-Aware Sampling for Accurate Triangle Counting in Real Graph Streams 21

the waiting room W at time t or earlier in Algorithm 4. We

also let y
(t)
R = min(k(1− α), |E(t)R |+ n

(t)
b + n

(t)
g).

Lemma 6 (Uniformity of Random Pairing [38]) At any

time t, all equally sized subsets of the E(t)R are equally likely

to be a subset of the reservoir R(t). Formally,

P[A ⊆ R(t)] = P[B ⊆ R(t)],

∀t ≥ 1, ∀A 6= B ⊂ E(t)R , s.t. |A| = |B|. (23)

Lemma 7 (Expectation, Variance of the Reservoir
Size of Random Pairing [13]) The expected value and
the variance of the size of the reservoir R at any time t in
Algorithm 4 are formulated as follows:

E[|R(t)|] =
|E(t)R |

|E(t)R |+ d(t)
· y(t)R , (24)

Var[|R(t)|] =
d(t) · y(t)R · (|E

(t)
R |+ d(t) − y(t)R) · |E(t)R |

(|E(t)R |+ d(t))2 · (|E(t)R |+ d(t) − 1)
, (25)

where d(t) = n
(t)
b + n

(t)
g .

In Lemma 8, we formulate the probability that each edge
in ER is stored in the reservoir R in WRSDEL.

Lemma 8 (Sampling Probability of Each Edge in
Random Pairing) At any time t, the probability that each
edge in ER is stored in R after the t-th element is processed
in Algorithm 4 is

P[{u, v} ∈ R(t)] =
y
(t)
R

|E(t)R |+ n
(t)
b + n

(t)
g

. (26)

Proof. Let 1({u, v} ∈ R(t)) be a random variable that be-
comes 1 if {u, v} ∈ R(t) and 0 otherwise. By definition,

|R(t)| =
∑

{u,v}∈E(t)
R

1({u, v} ∈ R(t)). (27)

Then, by linearity of expectation and Eq. (27),

E[|R(t)|] =
∑

{u,v}∈E(t)
R

E[1({u, v} ∈ R(t))]

=
∑

{u,v}∈E(t)
R

P[{u, v} ∈ R(t)]. (28)

Then, Eq. (26) is obtained as follows:

P[{u, v} ∈ R(t)] =
1

|E(t)R |

∑
{w,x}∈E(t)

R

P[{w, x} ∈ R(t)]

=
E[|R(t)|]
|E(t)R |

=
y
(t)
R

|E(t)R |+ n
(t)
b + n

(t)
g

,

where the first, second, and last equalities are from Eq. (23),
Eq. (28), and Eq. (24), respectively. �

Proof of Lemma 2: We prove Lemma 2 based on Lemma 8.

Proof. Without loss of generality, we assume e
(1)
uvw = {v, w},

e
(2)
uvw = {w, u}, and e

(3)
uvw = e(t) = {u, v}. That is, {v, w}

arrives earlier than {w, u}, and {w, u} arrives earlier than
{u, v}. When e(t) = {u, v} arrives at time t, the triangle
{u, v, w} is discovered if and only if both {v, w} and {w, u}
are in S(t−1).

Note that, since WRSDEL updates the triangle counts be-

fore sampling or deleting edges, ER = E(t−1)
R , nb = n

(t−1)
b

and ng = n
(t−1)
g when executing lines 6 and 8 of Algorithm 4.

If typeuvw = 1, {v, w} and {w, u} are always stored
in W(t−1), when {u, v} arrives. Thus, WRSDEL discovers
{u, v, w} with probability 1.

If typeuvw = 2, when {u, v} arrives, {w, u} is always
stored in W(t−1), while {v, w} cannot be in W(t−1) but
can be in R(t−1). For WRSDEL to discover {u, v, w}, {v, w}
should be in R(t−1), and from Eq. (26), the probability of
the event is

P[{v, w} ∈ R(t−1)] =
y
(t−1)
R

|E(t−1)
R |+ d(t−1)

,

where d(t−1) = n
(t−1)
b + n

(t−1)
g .

If typeuvw = 3, {v, w} and {w, u} cannot be in W(t−1),
when {u, v} arrives. For WRSDEL to discover {u, v, w}, both
{v, w} and {w, u} should be in R(t−1). The probability of
the event is P[{v, w} ∈ R(t−1) and {w, u} ∈ R(t−1)].

Below, we formulate this joint probability by expand-
ing the covariance sum

∑
{v,w}6={w,u} Cov

(
1({v, w} ∈

R(t−1)),1({w, u} ∈ R(t−1))
)

in two ways and compare

them. Each random variable 1({u, v} ∈ R(t−1)) is 1 if
{u, v} ∈ R(t−1) and 0 otherwise.

First, we expand the variance of R(t−1). From Eq. (27),

V ar
[
|R(t−1)|

]
=

∑
{u,v}∈E(t−1)

R

V ar
[
1({u, v} ∈ R(t−1))

]
+
∑

{u,v}6={x,y}

Cov
(
1({u, v} ∈ R(t−1)),1({x, y} ∈ R(t−1))

)
,

and hence the covariance sum is be expanded as∑
{u,v}6={x,y}

Cov
(
1({u, v} ∈ R(t−1)),1({x, y} ∈ R(t−1))

)
= V ar

[
|R(t−1)|

]
−
∑

{u,v}∈E(t−1)
R

V ar
[
1({u, v} ∈ R(t−1))

]
. (29)

From V ar[x] = E[x2]− (E[x])2, we have

V ar
[
1({u, v} ∈ R(t−1))

]
=

P
[
{u, v} ∈ R(t−1)

]
− P

[
{u, v} ∈ R(t−1)

]2
. (30)

Applying Eq. (26) and Eq. (30) to Eq. (29) results in∑
{u,v}6={x,y}

Cov
(
1({u, v} ∈ R(t−1)),1({x, y} ∈ R(t−1))

)
= V ar

[
|R(t−1)|

]
−
∑

{u,v}∈E(t−1)
R

V ar
[
1({u, v} ∈ R(t−1))

]
= V ar

[
|R(t−1)|

]
− |E(t−1)

R | ·
y
(t−1)
R · (|E(t−1)

R |+ d(t−1) − y(t−1)
R)

(|E(t−1)
R |+ d(t−1))2

. (31)

22 D. Lee et al.

Then, we directly expand the covariance sum. With
Cov(x, y) = E[xy] − E[x] · E[y] and Eq. (26), the covariance
sum is expanded as∑
{u,v}6={x,y}

Cov
(
1({u, v} ∈ R(t−1)),1({x, y} ∈ R(t−1))

)
=

∑
{u,v}6={x,y}

(
P
[
{u, v} ∈ R(t−1) ∩ {x, y} ∈ R(t−1)

]
− P

[
{u, v} ∈ R(t−1)

]
· P
[
{x, y} ∈ R(t−1)

])
=

∑
{u,v}6={x,y}

P
[
{u, v} ∈ R(t−1) ∩ {x, y} ∈ R(t−1)

]
−
y
(t−1)
R · y(t−1)

R · |E(t−1)
R | · (|E(t−1)

R | − 1)

(|E(t−1)
R |+ d(t−1))2

. (32)

Next, we obtain the sum of joint probabilities by com-
paring the two expansions (i.e., Eq. (31) and Eq. (32)) as
follows:∑
{u,v}6={x,y}

P
[
{u, v} ∈ R(t−1) ∩ {x, y} ∈ R(t−1)

]
=

∑
{u,v}6={x,y}

Cov
(
1({u, v} ∈ R(t−1)),1({x, y} ∈ R(t−1))

)

+
y
(t−1)
R · y(t−1)

R · |E(t−1)
R | · (|E(t−1)

R | − 1)

(|E(t−1)
R |+ d(t−1))2

= V ar
[
|R(t−1)|

]
− |E(t−1)

R | ·
y
(t−1)
R · (|E(t−1)

R |+ d(t−1) − y(t−1)
R)

(|E(t−1)
R |+ d(t−1))2

+
y
(t−1)
R · y(t−1)

R · |E(t−1)
R | · (|E(t−1)

R | − 1)

(|E(t−1)
R |+ d(t−1))2

=
y
(t−1)
R · (y(t−1)

R − 1) · |E(t−1)
R | · (|E(t−1)

R | − 1)

(|E(t−1)
R |+ d(t−1)) · (|E(t−1)

R |+ d(t−1) − 1)
. (33)

Lastly, each joint probability P
[
{u, v} ∈ R(t−1)∩{x, y} ∈

R(t−1)
]

is implied from Eq. (23) and Eq. (33) as follows:

P
[
{u, v} ∈ R(t−1) ∩ {x, y} ∈ R(t−1)

]
=

∑
{u,v}6={x,y} P

[
{u, v} ∈ R(t−1) ∩ {x, y} ∈ R(t−1)

]
|E(t−1)
R | · (|E(t−1)

R | − 1)

=
y
(t−1)
R

|E(t−1)
R |+ d(t−1)

×
y
(t−1)
R − 1

|E(t−1)
R |+ d(t−1) − 1

,

which proves Eq. (4) in Lemma 2 when typeuvw = 3. �

B Appendix: Variance Analysis

We measured the variance Var[c(t)] of the estimate of the
global triangle count and the simplified version Ṽar[c(t)] (i.e.,
Eq. (16)) while changing the memory budget k from 30% to
50% of the number of elements in the input stream. As seen in
Figure 13, while there is a clear difference between the true
and simplified variances, the two values are strongly corre-
lated (R2 > 0.99) on a log-log scale both in the Arxiv and
Facebook datasets. This strong correlation supports the valid-
ity of our simple and illuminating analysis in Section 5.4.2,
where we compare the simplified variances of WRSINS and
TrièstIMPR, instead of their true variances, to provide an in-
tuition why WRSINS is more accurate than TrièstIMPR.

WRSINS (Proposed) TriestIMPR

6.3

6.6

6.9

7.2

5.3 5.4 5.5 5.6 5.7

Simplified Variance (log)

V
a
ri

a
n
c
e
 (

lo
g
)

50%

40% 30%

!
!
" #$%%&

(a) ArXiv

6.8

7.0

7.2

7.4

5.65 5.75 5.85 5.95

Simplified Variance (log)

V
a

ri
a

n
c
e

 (
lo

g
)

50%

40%

30%

!
!
" #$%%&

(b) Facebook

Fig. 13: The true and simplified variances are strongly

correlated (R2 > 0.99) on a log-log scale. Both true and

simplified variances of WRSINS are smaller than those

of TrièstIMPR within the same memory budget.

References

1. Ahmed, N.K., Duffield, N., Neville, J., Kompella, R.:
Graph sample and hold: A framework for big-graph ana-
lytics. In: KDD, pp. 1446–1455 (2014)

2. Ahmed, N.K., Duffield, N., Willke, T.L., Rossi, R.A.: On
sampling from massive graph streams. PVLDB 10(11),
1430–1441 (2017)

3. Arifuzzaman, S., Khan, M., Marathe, M.: Patric: A par-
allel algorithm for counting triangles in massive networks.
In: CIKM, pp. 529–538 (2013)

4. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions
in streaming algorithms, with an application to counting
triangles in graphs. In: SODA, pp. 623–632 (2002)

5. Barabási, A.L., Albert, R.: Emergence of scaling in ran-
dom networks. Science 286(5439), 509–512 (1999)

6. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient
algorithms for large-scale local triangle counting. ACM
Transactions on Knowledge Discovery from Data 4(3), 13
(2010)

7. Brown, P.G., Haas, P.J.: Techniques for warehousing of
sample data. In: ICDE, pp. 6–6 (2006)

8. De Stefani, L., Epasto, A., Riondato, M., Upfal, E.:
Trièst: Counting local and global triangles in fully dy-
namic streams with fixed memory size. ACM Transac-
tions on Knowledge Discovery from Data 11(4), 43 (2017)

9. Eckmann, J.P., Moses, E.: Curvature of co-links uncovers
hidden thematic layers in the world wide web. PNAS
99(9), 5825–5829 (2002)

10. Erdös, P.: On the structure of linear graphs. Israel J. of
Math. 1(3), 156–160 (1963)

11. Etemadi, R., Lu, J., Tsin, Y.H.: Efficient estimation of
triangles in very large graphs. In: CIKM, pp. 1251–1260
(2016)

12. Gehrke, J., Ginsparg, P., Kleinberg, J.: Overview of the
2003 kdd cup. ACM SIGKDD Explorations Newsletter
5(2), 149–151 (2003)

13. Gemulla, R., Lehner, W., Haas, P.J.: Maintaining
bounded-size sample synopses of evolving datasets. The
VLDB Journal 17(2), 173–201 (2008)

14. Hall, B.H., Jaffe, A.B., Trajtenberg, M.: The nber patent
citation data file: Lessons, insights and methodological
tools. Tech. rep., National Bureau of Economic Research
(2001)

15. Han, G., Sethu, H.: Edge sample and discard: A new
algorithm for counting triangles in large dynamic graphs.
In: ASONAM, pp. 44–49 (2017)

Temporal Locality-Aware Sampling for Accurate Triangle Counting in Real Graph Streams 23

16. Hu, X., Tao, Y., Chung, C.W.: I/O-efficient algorithms
on triangle listing and counting. ACM Transactions on
Database Systems 39(4), 27 (2014)

17. Jha, M., Seshadhri, C., Pinar, A.: A space efficient
streaming algorithm for triangle counting using the birth-
day paradox. In: KDD, pp. 589–597 (2013)

18. Jung, M., Lim, Y., Lee, S., Kang, U.: Furl: Fixed-
memory and uncertainty reducing local triangle count-
ing for multigraph streams. Data Mining and Knowledge
Discovery 33(5), 1225–1253 (2019)

19. Kallaugher, J., Price, E.: A hybrid sampling scheme for
triangle counting. In: SODA, pp. 1778–1797 (2017)

20. Kim, J., Han, W.S., Lee, S., Park, K., Yu, H.: Opt: A
new framework for overlapped and parallel triangulation
in large-scale graphs. In: SIGMOD, pp. 637–648 (2014)

21. Klimt, B., Yang, Y.: Introducing the enron corpus. In:
CEAS (2004)

22. Knuth, D.E.: Seminumerical algorithms. The art of com-
puter programming 2, 139–140 (1997)

23. Kolountzakis, M.N., Miller, G.L., Peng, R., Tsourakakis,
C.E.: Efficient triangle counting in large graphs via
degree-based vertex partitioning. In: WAW, pp. 15–24
(2010)

24. Kutzkov, K., Pagh, R.: On the streaming complexity of
computing local clustering coefficients. In: WSDM, pp.
677–686 (2013)

25. Kutzkov, K., Pagh, R.: Triangle counting in dynamic
graph streams. In: SWAT, pp. 306–318 (2014)

26. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolu-
tion: Densification and shrinking diameters. ACM Trans-
actions on Knowledge Discovery from Data 1(1), 2 (2007)

27. Lim, Y., Kang, U.: Mascot: Memory-efficient and ac-
curate sampling for counting local triangles in graph
streams. In: KDD, pp. 685–694 (2015)

28. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a
feather: Homophily in social networks. Annual review of
sociology 27(1), 415–444 (2001)

29. Mislove, A.: Online social networks: Measurement, anal-
ysis, and applications to distributed information systems.
Ph.D. thesis, Rice University (2009)

30. Newman, M.E.: The structure and function of complex
networks. SIAM review 45(2), 167–256 (2003)

31. Park, H.M., Myaeng, S.H., Kang, U.: Pte: Enumerating
trillion triangles on distributed systems. In: KDD, pp.
1115–1124 (2016)

32. Park, H.M., Silvestri, F., Kang, U., Pagh, R.: Mapreduce
triangle enumeration with guarantees. In: CIKM, pp.
1739–1748 (2014)

33. Pavan, A., Tangwongsan, K., Tirthapura, S., Wu, K.L.:
Counting and sampling triangles from a graph stream.
PVLDB 6(14), 1870–1881 (2013)

34. Seshadhri, C., Pinar, A., Kolda, T.G.: Triadic measures
on graphs: The power of wedge sampling. In: SDM, pp.
10–18 (2013)

35. Shin, K.: Wrs: Waiting room sampling for accurate tri-
angle counting in real graph streams. In: ICDM, pp.
1087–1092 (2017)

36. Shin, K., Eliassi-Rad, T., Faloutsos, C.: Patterns and
anomalies in k-cores of real-world graphs with applica-
tions. Knowledge and Information Systems 54(3), 677–
710 (2018)

37. Shin, K., Hammoud, M., Lee, E., Oh, J., Faloutsos, C.:
Tri-fly: Distributed estimation of global and local triangle
counts in graph streams. In: PAKDD, pp. 651–663 (2018)

38. Shin, K., Kim, J., Hooi, B., Faloutsos, C.: Think before
you discard: Accurate triangle counting in graph streams
with deletions. In: ECML/PKDD, pp. 141–157 (2018)

39. Shin, K., Lee, E., Oh, J., Hammoud, M., Faloutsos, C.:
Cocos: Fast and accurate distributed triangle counting in
graph streams. arXiv preprint arXiv:1802.04249 (2018)

40. Shin, K., Oh, S., Kim, J., Hooi, B., Faloutsos, C.: Fast,
accurate and provable triangle counting in fully dynamic
graph streams. ACM Transactions on Knowledge Dis-
covery from Data 14(2), 1–39 (2020)

41. Shun, J., Tangwongsan, K.: Multicore triangle computa-
tions without tuning. In: ICDE, pp. 149–160 (2015)

42. Spearman, C.: The proof and measurement of association
between two things. The American journal of psychology
15(1), 72–101 (1904)

43. Suri, S., Vassilvitskii, S.: Counting triangles and the curse
of the last reducer. In: WWW, pp. 607–614 (2011)

44. Tsourakakis, C.E.: Fast counting of triangles in large real
networks without counting: Algorithms and laws. In:
ICDM, pp. 608–617 (2008)

45. Tsourakakis, C.E., Kang, U., Miller, G.L., Faloutsos, C.:
Doulion: counting triangles in massive graphs with a coin.
In: KDD, pp. 837–846 (2009)

46. Turk, A., Türkoglu, D.: Revisiting wedge sampling for
triangle counting. In: TheWebConf, pp. 1875–1885 (2019)

47. Türkoglu, D., Turk, A.: Edge-based wedge sampling to
estimate triangle counts in very large graphs. In: ICDM,
pp. 455–464 (2017)

48. Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On
the evolution of user interaction in facebook. In: WOSN,
pp. 37–42 (2009)

49. Vitter, J.S.: Random sampling with a reservoir. ACM
Transactions on Mathematical Software 11(1), 37–57
(1985)

50. Wang, P., Qi, Y., Sun, Y., Zhang, X., Tao, J., Guan, X.:
Approximately counting triangles in large graph streams
including edge duplicates with a fixed memory usage.
PVLDB 11(2), 162–175 (2017)

51. Wasserman, S., Faust, K.: Social network analysis: Meth-
ods and applications, vol. 8. Cambridge university press
(1994)

52. Watts, D.J., Strogatz, S.H.: Collective dynamics of
‘small-world’networks. nature 393(6684), 440–442 (1998)

