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ABSTRACT

Group interactions arise in various scenarios in real-world systems:

collaborations of researchers, co-purchases of products, and dis-

cussions in online Q&A sites, to name a few. Such higher-order

relations are naturally modeled as hypergraphs, which consist of

hyperedges (i.e., any-sized subsets of nodes). For hypergraphs, the

challenge to learn node representation when features or labels

are not available is imminent, given that (a) most real-world hy-

pergraphs are not equipped with external features while (b) most

existing approaches for hypergraph learning resort to additional

information. Thus, in this work, we propose VilLain, a novel self-

supervised hypergraph representation learning method based on

the propagation of virtual labels (v-labels). Specifically, we learn

for each node a sparse probability distribution over v-labels as its

feature vector, and we propagate the vectors to construct the fi-

nal node embeddings. Inspired by higher-order label homogeneity,

which we discover in real-world hypergraphs, we design novel

self-supervised loss functions for the v-labels to reproduce the

higher-order structure-label pattern. We demonstrate that VilLain

is: (a) Requirement-free: learning node embeddings without rely-

ing on node labels and features, (b) Versatile: giving embeddings

that are not specialized to specific tasks but generalizable to di-

verse downstream tasks, and (c) Accurate: more accurate than its

competitors for node classification, hyperedge prediction, node clus-

tering, and node retrieval tasks. Our code and dataset are available

at https://github.com/geon0325/VilLain.
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1 INTRODUCTION

In many real-world complex systems, interactions often occur in

groups: research collaborations, email communications, group dis-

cussions, and protein interactions, to name a few. Representing such

group interactions (i.e., higher-order relationships) as edges in an

ordinary pairwise graph impairs the semantics of the interactions,

often leading to considerable information loss [12, 38, 78].

Hypergraphs address the limitations of ordinary graphs by mod-

eling group interactions as hyperedges, the non-empty subsets of

nodes. Specifically, the flexibility in hyperedge sizes enables each

hyperedge to naturally represent an interaction among any number

of nodes. Hypergraphs are used to model data from various fields

(refer to a survey [36]), including bioinformatics [31], social network

analysis [75], circuit design [32], and computer vision [29, 33, 68].

Notably, hypergraph modeling has demonstrated its effectiveness

over ordinary graphs in diverse applications, such as recommenda-

tion [69, 70], medical prediction [5], and crime prediction [43].

A popular approach for analyzing such complex relations is

to learn node embeddings (i.e., vector representations of nodes)

through self-supervision. In hypergraphs, self-supervised learning

has been applied for node classification [27, 35, 66], hyperedge

prediction [64, 84], recommendation [71, 81], and user location

prediction in social media [75]. Self-supervised learning enjoys

several key advantages. It does not require external node labels,

which are scarce in many real-world scenarios due to substantial

costs in their acquisition [26]. Moreover, the learned embeddings

often demonstrate considerable versatility, maintaining their utility

across a broad range of tasks.

Many self-supervised node embedding methods require external

features. Hypergraph Neural Networks (HNNs) [10, 16, 20, 28, 35,

66] and Graph Neural Networks (GNNs) [24, 34, 52, 62, 63, 72, 85],

for instance, heavily rely on the external node features. As such,

most of them are only tested on attributed benchmark datasets [17,

25, 56, 58, 76], and their performances strongly depend on the

feature quality [14, 18, 44, 49].

Despite their usefulness, external features are often entirely or

partially missing in real-world hypergraphs [9, 14, 18, 55, 77, 84].

In fact, only 3.03% of the graphs at a popular graph database are

given with node features [56],
1
and none of the hypergraphs at

the largest hypergraph database is attributed.
2
Such a problem, in

combination with the issue of label scarcity, poses an imminent

challenge for hypergraph representation learning.

While some self-supervised approaches do not require external

features, their embeddings are hardly versatile. Some link prediction

1
Out of 6,659 graph datasets, 202 are given with node attributes.

2
https://www.cs.cornell.edu/~arb/data/
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HNNs and GNNs leverage the structural or identity features [6, 64,

80, 82, 86] without the external ones, and random walk (RW) [23,

27, 53]- or matrix factorization (MF) [50, 54, 60]-based methods (i.e.

Hyper2Vec) only need graph structure for their node embeddings.

However, they arguably only preserve structural properties, since

their input and objective functions are solely structural. Such models

are, thus, less applicable to tasks where the importance of structural

property is less prominent, such as node classification.

In this paper, we aim to learn versatile node embeddings for

hypergraphs without relying on external labels or features. To this

end, we propose VilLain (Virtual Label Propagation). VilLain con-

structs for each node a sparse probability distribution over virtual

labels (v-labels) as its feature. The probabilistic v-label assignment

vectors are propagated to construct the final node embeddings.

At each propagation step, the v-labels are optimized with novel

self-supervised loss functions, inspired by higher-order label homo-

geneity in real-world hypergraphs. Thus, VilLain learns potential

(higher-order) structure-label relationships, beyond purely struc-

tural properties.

Through extensive experiments using eight real-world hyper-

graphs and three downstream tasks (specifically, node classifica-

tion, node retrieval, node clustering, and hyperedge prediction), we

demonstrate the superiority of VilLain over 15 baseline approaches.

We summarize its strengths as follows:

• Minimum Requirements: VilLain learns node embeddings

without any supervision (e.g., node labels) or extra information

(e.g., node features and the number of labels).

• Versatile Embedding: VilLain learns general-purpose node em-

beddings that are not specialized to specific tasks but generalized

to diverse downstream tasks.

• Accurate Embedding: VilLain achieves up to 71.6%, 72.3%, and

6.7% better accuracy than unsupervised and (semi-)supervised

baseline approaches for node classification, node retrieval, and

hyperedge prediction tasks, respectively.

2 RELATEDWORK

In this section, we briefly review related works on node represen-

tation learning, focusing on learning without labels or features.

Node embedding with propagation. Propagation has beenwidely

applied and shown effective for both hypergraph and graph rep-

resentation learning. GNNs typically have each node propagate

its features to the direct neighbors [8, 22, 34], whereas for HNNs,

the propagation is conducted on hypergraph structure. Specifically,

HGNN [20] has each node propagate to its hyperedges, where the

node features are aggregated and propagated back to the nodes

that belong to the hyperedges. HNHN [16] uses non-linear aggre-

gation functions to update both node and hyperedge embeddings,

alternatingly. AllSet [10] uses permutation-invariant functions to

propagate on hyperedges. Other simplified GNNs [11, 15, 21, 67]

first learn soft label vectors from feature vectors, which are propa-

gated to learn the final node embeddings. Note that all the described

methods require external labels or features.

Node embedding without external labels. Self-supervision has

been widely adopted for representation learning without external

labels. Self-supervised HNNs and GNNs often utilize contrastive

losses. Given both original and perturbed features or structures,

the models maximize the mutual information between them [35, 63,

85]. For hypergraphs, HyperGCL [66] uses node- and hyperedge-

level perturbation, and TriCL [35] conducts tri-directional contrasts

that maximize the agreement between two augmented views of

nodes, groups, and memberships. Intuitively, such self-supervised

loss functions are designed to learn node embeddings that denoise

the input features and structure. It, then, implies that these self-

supervised models can only learn structural properties if their input

node features are random or structural.

Given random walk sequences, RW-based embedding meth-

ods [23, 27, 53] typically use Skip-Gram [47] to optimize the em-

beddings to maximize the likelihood of the visited nodes. MF-based

approaches [50, 54, 60], on the other hand, factorize proximity ma-

trices into low-rank matrices. As such, most RW- and MF-based

embedding methods specifically preserve structural proximity.

Node embedding without external features. If external features

are not available, HNNs and GNNs require derived features for their

prediction. For structural prediction, some models have leveraged

only structural information as the input features [6, 14, 64, 80, 82,

86]. Specifically, structural [4, 6, 14, 80], positional [14, 41, 65], and

identity [1, 57, 64, 79, 82, 83, 86] encoding methods have been de-

veloped. Such encoding methods generally aim to enhance model

expressivity beyond 1-WL test [72]. On the other hand, the majority

of RW- and MF-based approaches do not require any features or

labels [23, 27, 50, 53, 54, 60]. It is, however, worth noting that all

the described methods over-emphasize structural properties, since
their features and objective loss functions are solely structural.

Thus, predictions from their embeddings hardly generalize to less

structure-dependent tasks, such as node classification.
3

Relating VilLain to the prior works. In comparison to (hyper)

graph learning models without external features or labels, we

present the novelty of VilLain in the subsequent sections as follows:

• Novel Self-Supervised Loss:Only VilLain has loss function that

learns beyond structural information for embedding versatility.

• Novel Input Feature Learning: VilLain’s motivation and mech-

anism of feature learning are distinct from the prior methods.

3 PROBLEM STATEMENT

In this section, we formulate hypergraph representation learning

without features or labels. A hypergraph 𝐺 = (𝑉 , 𝐸) consists of
a set of nodes 𝑉 = {𝑣1, · · · , 𝑣 |𝑉 | } and a set of hyperedges 𝐸 =

{𝑒1, · · · , 𝑒 |𝐸 | }. Each hyperedge 𝑒 𝑗 ∈ 𝐸 is a non-empty subset of

nodes, i.e., ∅ ⊊ 𝑒 𝑗 ⊆ 𝑉 . In the incidence matrix H ∈ {0, 1} |𝑉 |× |𝐸 |
of 𝐺 , H𝑖 𝑗 = 1, if 𝑣𝑖 ∈ 𝑒 𝑗 , and H𝑖 𝑗 = 0 otherwise.

Given a hypergraph 𝐺 = (𝑉 , 𝐸), the objective of self-supervised
hypergraph representation learning is to learn a node embedding

Z𝑖 ∈ R𝑑 of each node 𝑣𝑖 ∈ 𝑉 , or equivalently, a node embedding

matrix Z ∈ R |𝑉 |×𝑑 that captures meaningful proximity between

nodes in 𝐺 . Specifically, we aim to learn node embeddings that

are generally useful for various tasks (e.g., node classification and

hyperedge prediction), without relying on any kind of supervision

(e.g., ground-truth semantic labels or even the number of unique

labels) or external information (e.g., node attributes).

3
See the low performances of such methods (e.g. Hyper2Vec, HyperGCL) in Table 2.
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Real-world hypergraphs Randomized hypergraphs

Datasets Datasets

Figure 1: Hyperedges in real-world hypergraphs (statistics

in Table 1) exhibit label homogeneity (Obs. 1).

4 MOTIVATING OBSERVATIONS

In this section, we present our observation in real-world hyper-

graphs, which motivate the design of VilLain in Section 5. Inspired

by pervasive homophily [2, 46] in real-world graphs, we postulate

that hypergraphs also exhibit a similar tendency. For example, re-

searchers from the same area tend to co-author a paper, and e-mails

are likely to be exchanged within the same department. To sub-

stantiate this hypothesis, we examine label homogeneity in eight

different real-world hypergraphs.

Using the ground-truth node labels, for each hyperedge, we

measure the entropy of its soft label assignment vector, which is

obtained by averaging the label assignment one-hot vectors of the

nodes in the hyperedge. If the entropy is 0, all nodes in the hy-

peredge are labeled identically (high homogeneity). The higher

the entropy is, the more diverse labels the nodes in the hyperedge

have (low homogeneity). As shown in Figure 1, the entropy in real-

world hypergraphs tends to be lower than that in hypergraphs that

are randomized by a random hypergraph generator, HyperCL [37].

Specifically, the ratio of the hyperedges with entropy 0 is much

higher in real-world hypergraphs than in the randomized hyper-

graphs, and the average entropy is lower in real-world hypergraphs

than in the randomized hypergraphs.

Observation 1. Hyperedges in real-world hypergraphs exhibit
label homogeneity, i.e., they tend to contain the same labeled nodes.

In addition, we examine higher-order homogeneity in real-world

hypergraphs. To this end, we measure the entropy of the higher-

order label assignment vectors (or ℓ-step labels in short) of hyper-

edges. For each ℓ ≥ 0, the ℓ-step label of a hyperedge is obtained by

averaging the ℓ-step labels of the nodes in it. The ℓ-step label of each

node is given if ℓ = 0, or obtained by averaging (ℓ − 1)-step labels

of the incident hyperedges (the detailed procedure can be found in

Section 5.1). Figure 2 demonstrates that (a) the entropy of 50-step

labels of hyperedges in a real-world hypergraph (spec., Trivago) is

lower than those in the randomized counterpart, and (b) regardless

of the step count ℓ , hyperedges in the real-world hypergraph ex-

hibit higher homogeneity than those in the randomized hypergraph.

These findings provide concrete evidence supporting the presence

of higher-order homogeneity in real-world hypergraphs.

Observation 2. Real-world hypergraphs exhibit higher-order
label homogeneity, i.e., the node labels in each hyperedge tend to be
homogeneous even after multiple steps of propagation.

5 PROPOSED METHOD

In this section, we propose VilLain (Figure 3), a self-supervised node

representation learning method for hypergraphs. Notably, VilLain

does not require external labels or features.

Trivago
Trivago-Random

Trivago
Trivago-Random

Figure 2: Real-world hypergraphs exhibit higher-order label

homogeneity (Obs. 2).

5.1 VilLain: Virtual Label Propagation

We first present how VilLain obtains node embeddings through

virtual label (v-labels) propagation, without external features.
Virtual Labels. Since node labels or features are not given, VilLain

assumes the presence of 𝑑 v-labels and leverages the soft v-label

assignment vector of each node as its learnable feature. Specifically,

VilLain employs a learnable matrix X̃ ∈ R |𝑉 |×𝑑 where each 𝑖th row

X̃𝑖 is used to obtain the soft assignment vector X(0)
𝑖
∈ [0, 1]𝑑 of

the node 𝑣𝑖 to 𝑑 v-labels as follows:

X(0)
𝑖 𝑗

=
𝑒 (X̃𝑖 𝑗 +𝑔𝑗 )∑𝑑

𝑗 ′=1
𝑒
(X̃𝑖 𝑗 ′+𝑔𝑗 ′ )

, for 𝑗 = 1, · · · , 𝑑, (1)

where 𝑔 𝑗 = − log(log( 1

𝑢𝑖
)) is random noise and𝑢𝑖 ∼ Uniform(0, 1) .

The above equation transforms the vector into a probability vector

and encourages it to be biased towards a single v-label. As described

later, the v-label assignment vectors are optimized to reproduce

higher-order label homogeneity (Observations 1 and 2).

Hypergraph V-label Propagation. After obtaining the v-label

matrix X(0) , VilLain conducts v-label propagation on the input

hypergraph to obtain X(ℓ ) . At each step, v-labels are propagated

alternatingly between nodes and hyperedges. Specifically, the v-

label assignment matrices of hyperedges and nodes at step ℓ are:

Y(ℓ ) = D−1

𝐸 H𝑇X(ℓ−1)
and X(ℓ ) = D−1

𝑉 HY(ℓ ) , (2)

where D𝑉 and D𝐸 are the diagonal matrices with node degrees and

hyperedge sizes, respectively. To capture higher-order dependencies

among nodes, VilLain computes node embeddings Z ∈ [0, 1] |𝑉 |×𝑑
by averaging the v-label assignment vectors obtained at propaga-

tion steps 1, · · · , 𝑘′:

Z =
1

𝑘′

𝑘 ′∑︁
ℓ=1

X(ℓ ) . (3)

Namely, the embedding Z𝑖 of node 𝑣𝑖 is a probability vector aver-

aging its v-label assignment vector at each step.

Multi-V-label Propagation. In real-world hypergraphs, nodes

may have multiple labels, each representing different aspects. For

instance, in a social network, socioeconomic status and political

inclination can both serve as labels, albeit their independent homo-

geneity w.r.t. hypergraph topology. The same goes for the number

of labels. Learning a single set of v-labels, then, can be insufficient
to capture their complex structure-label patterns.

Thus, VilLain learns multi-v-labels for the final node embed-

ding Z*
. Specifically, we partition the 𝑑-dimensional embedding

space into𝐷 subspaces of potentially different dimensions, allowing

for independent v-label propagation within each subspace. Then,
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Figure 3: (Left) Two v-labels (red and blue) are propagated between nodes and hyperedges on a hypergraph (Sec. 5.1). Note that

hyperedges are colored to indicate Y(1) . (Right) By minimizing the proposed local and global losses, the v-label distributions

are learned to exhibit higher-order label homogeneity while being balanced and distinctive at each propagation step (Sec. 5.2).

VilLain concatenates the outputs from each subspace as follows:

Z∗𝑖 =

[
Z⟨1⟩
𝑖
∥ Z⟨2⟩

𝑖
∥ · · · ∥ Z⟨𝐷 ⟩

𝑖

]
,

where ∥ is the concatenation operation, and Z⟨·⟩
𝑖

is the embedding

obtained from each subspace.

5.2 Self-Supervision Objectives

The learning objectives of VilLain are designed to reproduce higher-

order label homogeneity by effectively capturing structural proper-

ties and also potential higher-order structure-label relationships.

Recall that the entries of the matrix X̃ are the only learnable pa-

rameters in VilLain that the objective function updates.

Capturing Local Information.Motivated by Observations 1 and

2 in Section 4, we design an objective to capture the higher-order

homogeneity of nodes and hyperedges. Specifically, VilLain mini-

mizes the entropy of the v-label assignment vectors of each node

and hyperedge obtained at propagation steps 1, · · · , 𝑘 :

L
local

=

𝑘∑︁
ℓ=1

©­« 1

|𝑉 |

|𝑉 |∑︁
𝑖=1

E
(
X(ℓ )
𝑖

)
+ 1

|𝐸 |

|𝐸 |∑︁
𝑖=1

E
(
Y(ℓ )
𝑖

)ª®¬ , (4)

where E(𝑝) = −∑
𝑖 𝑝𝑖 log𝑝𝑖 is the entropymeasure of 𝑝 . That is, we

induce structurally close nodes (or hyperedges) to be assigned to the

same v-label. Beyond capturing the homogeneity at the hyperedge

level, i.e., ℓ = 1 (Observation 1), the loss function is designed to

reproduce the higher-order homogeneity of nodes and hyperedges

by minimizing the entropy of v-label assignment vectors at each

propagation step ℓ ∈ [1, 𝑘] (Observation 2). For training speed, the

number of steps 𝑘 for training can be smaller than 𝑘′ for inference.
Capturing Global Information.VilLain also considers the global

distribution of labels. To this end, we give v-label-level supervision

to VilLain so that v-labels are properly distributed over the entire

hypergraph. First, since Eq. (4) is trivially minimized when all nodes

and hyperedges are assigned to a single v-label, we use the following

term to prevent this problem:

J
cls

= −
𝑘∑︁
ℓ=1

(
E

(
x(ℓ )

)
+ E

(
y(ℓ )

))
(5)

where x(ℓ )
𝑖

=



X(ℓ )
:,𝑖




1∑𝑑

𝑗=1



X(ℓ )
:, 𝑗




1

and y(ℓ )
𝑖

=



Y(ℓ )
:,𝑖




1∑𝑑

𝑗=1



Y(ℓ )
:, 𝑗




1

.

Here, x(ℓ ) = [x(ℓ )
1

, · · · , x(ℓ )
𝑑
] and y(ℓ ) = [y(ℓ )

1
, · · · , y(ℓ )

𝑑
] denote the

weighted ratios of nodes and hyperedges for each v-label at step ℓ .

Note thatX(ℓ )
:,𝑖

and Y(ℓ )
:,𝑖

, which are the 𝑖th columns ofX(ℓ ) and Y(ℓ ) ,

correspond to the vectors of v-label 𝑖 for nodes and hyperedges,

respectively. That is, we maximize the entropy of the global distribu-
tion of the v-labels at each step, restraining any single v-label from

dominating the entire hypergraph.

In addition, we aim to make v-labels distinctive by making the

sets of nodes and hyperedges assigned to each v-label nearly disjoint

from those with another v-label. To this end, we minimize the

following cross-entropy-based objective:

J
dst

= −
𝑘∑︁
ℓ=1

𝑑∑︁
𝑖=1

(
log x̄(ℓ )

𝑖
+ log ȳ(ℓ )

𝑖

)
(6)

where x̄(ℓ )
𝑖

=
𝑒
S

(
X(ℓ )

:,𝑖
,X(ℓ )

:,𝑖

)
∑𝑑

𝑗=1
𝑒
S

(
X(ℓ )

:,𝑖
,X(ℓ )

:, 𝑗

) and ȳ(ℓ )
𝑖

=
𝑒
S

(
Y(ℓ )

:,𝑖
,Y(ℓ )

:,𝑖

)
∑𝑑

𝑗=1
𝑒
S

(
Y(ℓ )

:,𝑖
,Y(ℓ )

:, 𝑗

) .
Here, x̄(ℓ )

𝑖
and x̄(ℓ )

𝑗
indicate the distinctiveness of v-label 𝑖 at each

propgation step ℓ in nodes and hyperedges, respectively, and S(·, ·)
measures the cosine similarity of two input vectors. Minimizing

Eq. (6) reinforces the distinctiveness of each v-label at each step.

Finally, we minimize the global-level loss, defined as the sum of

Eq. (5) and Eq. (6), to let v-labels be properly distributed across the

entire hypergraph:

L
global

= J
cls
+ J

dst
(7)

Objective Function. To exhibit both the local and global structure-

label patterns, VilLain minimizes both objectives, Eq. (4) and (7):

L = L
local
+ L

global
.

While we can introduce a hyperparameter for balancing L
local

and

L
global

(see Appendix D.3), we simply add the two losses since

hyperparameter tuning based on external supervision is strictly

restricted in our setting.

Note that, by reproducing higher-order label homogeneity, Vil-

Lain captures not only structural properties but also potential

higher-order structure-label relationships. Consequently, compared

to self-supervised methods that exclusively focus on structural as-

pects, VilLain can learn effective embeddings for less structure-

dependent tasks, such as node classification.

Complexity Analysis.We analyze the time and space complexity

of VilLain for computing the final embedding Z∗, as well as the com-

putational cost associated with optimizing their losses. Specifically,

when the dimension of each subspace is 𝑑/𝐷 , it takes:

𝑂

(
𝑘𝑑

∑︁
𝑒∈𝐸
|𝑒 | + 𝑘𝑑

2

𝐷
( |𝑉 | + |𝐸 |)

)
time and 𝑂

(
𝑘𝑑2

𝐷
( |𝑉 | + |𝐸 |)

)
space
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Table 1: Summary statistics of eight real-world hypergraphs:

the number of nodes |𝑉 |, the number of hyperedges |𝐸 |, the
size of the hypergraph

∑
𝑒∈𝐸 |𝑒 |, the number of edges |E | in

the clique expansion, and the number of ground-truth labels.

Dataset |𝑉 | |𝐸 | ∑
𝑒∈𝐸 |𝑒 | |E | # Labels

Primary (PR) [59] 242 12,704 30,729 8,317 11

High (HG) [45] 327 7,818 18,192 5,818 9

Citeseer (CS) [73] 1,019 819 2,808 3,867 6

Cora (CR) [73] 1,330 1,503 4,599 4,144 7

Pubmed (PM) [73] 3,824 7,951 34,605 123,819 3

DBLP (DB) [73] 36,188 18,924 90,868 425,669 6

Trivago (TV) [13] 172,738 233,202 726,861 1,095,204 160

Amazon (AZ) [48] 260,209 31,964 422,076 14,142,811 10

for propagating v-labels (Eq. (2)) and computing lossesL
local

(Eq. (4)),

J
cls

(Eq. (5)), and J
dst

(Eq. (6)) for 1, · · · , 𝑘 steps. To generate node

embeddings (Eq. (3)), the losses are not necessarily computed, and

thus it takes 𝑂 (𝑘′𝑑 ∑
𝑒∈𝐸 |𝑒 |) time and requires 𝑂 (𝑘′𝑑 ( |𝑉 | + |𝐸 |))

space. The details can be found in Appendix A. Importantly, intro-

ducing multi-v-labels (i.e., 𝐷 > 1) leads to the reduction in time

and space complexity, thereby indicating an additional advantage

of learning v-labels in multiple subspaces.

5.3 Extension to Unobserved Nodes

Heretofore, we described how VilLain learns node embeddings Z
from a static hypergraph. However, in many scenarios, hypergraphs

evolve over time (e.g., new members in the group), introducing new

nodes and hyperedges to the hypergraph. This motivates us to

extend VilLain to generate embeddings also for newly introduced,

unobserved nodes and hyperedges. In this subsection, we extend

VilLain to embed such unobserved nodes and hyperedges.

Settings. Consider a connected hypergraph 𝐺S = (𝑉S, 𝐸S), which
is a subset of a connected hypergraph 𝐺 = (𝑉 , 𝐸), where 𝑉S ⊆ 𝑉

and 𝐸S ⊆ 𝐸. Using the incidence matrix HS ∈ {0, 1} |𝑉S |× |𝐸S |
of 𝐺S,

VilLain has generated v-labels and embeddings X(0)
S

,ZS ∈ R |𝑉S |×𝑑
,

respectively, for the observed nodes𝑉S. Nodes𝑉 \𝑉𝑆 and hyperedges
𝐸 \ 𝐸𝑆 are introduced after VilLain training.

Embedding Unobserved Nodes. To embed nodes including the

unobserved ones𝑉 \𝑉S, VilLain propagates learned v-labels X(0)
𝑆

of

the observed nodes𝑉𝑆 on hypergraph𝐺 containing the unobserved

nodes and hyperedges. Specifically, v-label assignment matrices for

all nodes X(ℓ ) and hyperedges Y(ℓ ) at step ℓ ≥ 1 are obtained like

in Eq. (2) as follows:

Y(ℓ ) = D−1

𝐸 H𝑇X(ℓ−1)
and X(ℓ ) = D−1

𝑉 HY(ℓ ) ,

where X(0) ∈ R |𝑉 |×𝑑 is X(0)
𝑆

with zero-paddings at row indices

of the nodes 𝑉 \𝑉S. Since we assume a connected hypergraph 𝐺 ,

there always exists ℓ′ such that all nodes 𝑉 are assigned non-zero

v-labels. Then, using Eq. (3), X(ℓ
′ ) , · · · ,X(𝑘 ′ ) are used to generate

embeddings Z for all nodes 𝑉 , where 𝑘′ ≥ ℓ′.

6 EXPERIMENTAL RESULTS

In this section, we present experimental results for four downstream

tasks utilizing node embeddings. We first assess the accuracy of

VilLain by comparing it with the state-of-the-art (hyper)graph rep-

resentation learning methods (Section 6.2). Then, we demonstrate

the effectiveness of each design choice of VilLain (Section 6.3).

Lastly, we conduct additional analyses on VilLain (Section 6.4).

6.1 Experimental Settings

In this subsection, we report the experimental settings.

Datasets. We use eight publicly available real-world hypergraphs

summarized in Table 1. All datasets are derived from group inter-

actions that arise in real-world scenarios (e.g., coauthorship and

co-purchase). For details regarding the preprocessing method and

descriptions for each dataset, refer to Appendix C.1.

Baselines. We consider 15 unsupervised and (semi-)supervised

graph and hypergraph embedding methods as competitors. Deep-

walk [53], Node2vec [23], DGI [63], GRACE [85], GMI [52], Hy-

per2vec [27], LBSN [75], and TriCL [35] are unsupervised methods,

and GCN [34], GAT [62], HGNN [20], HNHN [16], AllSet [10],

UniGNN [28], and HyperGCL [66] are (semi-)supervised meth-

ods. For graph embedding methods (i.e., GCN, GAT, Deepwalk,

Node2vec, DGI, GRACE, and GMI), we use the clique expansion of

the hypergraph.
4
For all methods that require node features (i.e.,

GCN, GAT, DGI, GRACE, GMI, HGNN, HNHN, AllSet, UniGNN,

HyperGCL, and TriCL), we use the embeddings obtained by Hy-

per2vec,
5
which lead to the best performance among three alterna-

tives (see [39] for detailed results).

Implementations. We simply use 𝑘 = 4 for VilLain and all its

variants and use 𝑘′ = 10 for small datasets (s.t., |𝑉 | < 10, 000)

and 𝑘′ = 100 for large datasets (s.t., |𝑉 | ≥ 10, 000). As discussed

in Section 5.1, to capture diverse structural-label information, we

aggregate embeddings obtained with various numbers of v-labels.

Specifically, we concatenate embeddings obtained using different

numbers of v-labels. For each number ⌈ 𝑑
𝐷
⌉ ∈ {2, 3, · · · , 8} of v-

labels, we learn 𝐷 subspaces and then perform PCA to ensure

that the final embedding is of the target dimension 𝑑 . Refer to

Appendix C.2 for the detailed settings of other baselines.

6.2 Accuracy of VilLain

To verify the quality of the VilLain’s node embeddings, we consider

four downstream tasks on hypergraphs: node classification, node

retrieval, node clustering, and hyperedge prediction. The embed-

ding dimension of all methods, including VilLain, is fixed to 128.

Results including standard deviations are provided in [39].

Node Classification.We perform node classification by randomly

and disjointly splitting the dataset into training, validation, and

test sets. For training and validation sets, the labels of 20 nodes

per class are given for all datasets except for Primary and High,

where the labels of 2 nodes are given per class. The remaining

nodes are used as the test set. For un- or self-supervised methods

including VilLain, we evaluate the accuracy of logistic regression

using the embeddings obtained from each method. Table 2 shows

the accuracy of all methods in all datasets. VilLain ranks first on

average, showing the best performance. We conjecture that v-label

propagation inherits rich structural properties and also potential

higher-order structure-label relationships, generating high-quality

representations of nodes.

4
The clique expansion is the pairwise graph obtained by replacing each hyperedge

with the clique formed by the nodes in the hyperedge.

5
For Amazon, we use Node2vec since Hyper2vec ran out of time (> 24 hours).
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Table 2: VilLain performs best on node classification in terms of accuracy. Each baseline method is designed for either graphs

or hypergraphs and for either semi-supervised or unsupervised settings.

Method DBLP Trivago Amazon Primary High Citeseer Cora Pubmed Rank

GCN 67.37 ± 1.45 38.06 ± 1.49 28.73 ± 4.73 75.63 ± 5.08 96.25 ± 2.55 60.64 ± 3.47 72.96 ± 1.82 77.56 ± 2.58 7.00 ± 2.91

GAT 61.74 ± 1.97 51.52 ± 0.68 30.94 ± 2.13 66.79 ± 4.73 90.58 ± 2.76 49.57 ± 2.64 58.09 ± 2.14 73.67 ± 1.78 11.75 ± 3.83

Deepwalk 29.03 ± 1.43 16.85 ± 0.45 25.43 ± 1.72 84.89 ± 3.67 99.31 ± 0.48 45.10 ± 3.18 56.58 ± 1.88 68.58 ± 2.60 11.62 ± 4.71

Node2vec 29.21 ± 1.89 16.88 ± 0.44 25.27 ± 2.36 83.53 ± 3.09 99.38 ± 0.45 45.37 ± 3.17 59.15 ± 1.84 69.05 ± 3.00 11.00 ± 4.35

DGI 62.37 ± 3.32 73.46 ± 1.22 31.80 ± 1.45 86.66 ± 4.51 92.49 ± 0.60 61.36 ± 2.91 71.23 ± 2.04 77.51 ± 1.38 7.25 ± 3.59

GRACE 71.86 ± 2.51 OOM OOM 63.78 ± 5.12 99.03 ± 0.30 61.16 ± 2.78 73.43 ± 1.81 77.70 ± 1.81 5.50 ± 4.75

GMI 64.19 ± 1.63 OOM OOM 80.10 ± 4.94 96.61 ± 2.63 58.67 ± 2.68 71.31 ± 1.69 75.51 ± 2.77 9.16 ± 1.57

HGNN 66.60 ± 2.18 OOM OOM 88.28 ± 5.02 92.19 ± 3.84 60.91 ± 2.32 72.90 ± 2.00 76.58 ± 2.86 7.50 ± 3.09

HNHN 63.99 ± 2.21 59.52 ± 1.64 28.99 ± 2.63 91.31 ± 2.47 96.83 ± 1.25 59.02 ± 1.63 68.81 ± 1.26 75.33 ± 1.77 7.50 ± 2.39

AllSet 63.67 ± 1.89 36.58 ± 0.93 21.75 ± 1.67 85.94 ± 3.02 95.70 ± 1.66 56.08 ± 1.95 67.73 ± 1.81 74.11 ± 2.04 10.75 ± 1.08

UniGNN 67.16 ± 2.15 69.98 ± 1.60 33.77 ± 3.22 88.88 ± 3.58 95.12 ± 3.97 59.10 ± 2.76 71.44 ± 1.03 74.37 ± 2.10 7.12 ± 3.09

HyperGCL 58.72 ± 1.54 74.99 ± 1.23 22.86 ± 2.01 74.07 ± 6.06 85.79 ± 8.92 57.54 ± 1.61 74.99 ± 1.33 78.44 ± 3.33 8.87 ± 5.18

Hyper2vec 67.18 ± 1.78 75.82 ± 1.45 OOT 92.52 ± 2.45 96.34 ± 1.34 61.50 ± 2.60 71.79 ± 1.63 77.04 ± 1.51 4.85 ± 2.35

LBSN 22.63 ± 2.20 47.99 ± 0.82 11.56 ± 0.90 86.71 ± 3.71 95.87 ± 2.28 45.43 ± 2.15 59.70 ± 1.31 54.89 ± 2.38 11.87 ± 3.21

TriCL 68.18 ± 1.36 OOM OOM 92.67 ± 2.50 98.10 ± 1.02 59.17 ± 3.35 72.35 ± 1.53 78.57 ± 1.88 4.16 ± 1.95

VilLain 77.16 ± 1.26 79.43 ± 1.63 57.95 ± 2.47 93.66 ± 3.93 99.19 ± 0.41 61.53 ± 3.17 75.03 ± 1.38 78.82 ± 1.47 1.25 ± 0.66

Table 3: VilLain performs overall best on hyperedge prediction (in terms of accuracy), node clustering (in terms of normalized

mutual information), and node retrieval (in terms of mean average precision).

Method

Hyperedge Prediction (Acc.) Node Clustering (NMI) Node Retrieval (MAP)

DB TV AZ PR HG CS CR PM Rank DB TV AZ PR HG CS CR PM Rank DB TV AZ PR HG CS CR PM Rank

Deepwalk 63.9 61.3 69.4 83.8 85.9 69.6 67.2 65.9 6.25 0.7 16.7 7.8 85.2 100.0 14.6 23.9 34.4 5.00 21.3 7.5 27.7 81.6 98.7 27.6 29.2 49.0 6.37

Node2vec 64.2 61.4 69.3 83.2 85.4 70.4 66.9 65.8 6.62 0.9 17.0 7.7 83.5 100.0 14.5 23.8 32.8 5.87 21.6 7.1 27.8 81.1 98.6 27.3 29.4 49.4 6.50

DGI 86.1 83.8 90.8 79.1 84.4 79.2 76.3 80.9 3.75 16.6 44.5 13.0 84.4 73.9 29.1 32.1 31.3 5.62 36.1 37.3 31.1 89.7 97.8 43.8 50.6 61.7 3.25

GRACE 85.4 OOM OOM 80.3 87.4 77.9 74.5 79.1 4.00 43.0 OOM OOM 67.6 98.2 33.0 46.0 31.6 5.00 50.2 OOM OOM 61.4 99.5 41.1 54.2 60.9 4.00

GMI 75.6 OOM OOM 82.4 85.9 74.4 69.4 72.3 5.50 27.8 OOM OOM 84.1 93.1 25.3 42.6 18.7 6.50 34.6 OOM OOM 80.0 97.8 35.9 41.6 55.1 6.33

Hyper2vec 71.2 72.4 OOT 76.4 79.6 78.1 71.7 71.5 6.14 43.4 66.3 OOT 92.5 99.3 34.3 45.5 33.6 2.27 35.5 43.1 OOT 85.7 90.7 41.2 46.7 55.6 4.85

LBSN 48.7 89.1 63.7 79.4 87.1 74.3 69.6 66.1 5.87 1.1 39.4 2.7 85.5 97.8 12.1 29.0 4.6 6.50 21.0 19.1 29.1 81.3 93.2 30.6 40.1 43.5 6.62

TriCL 77.4 OOM OOM 84.0 87.8 82.0 76.7 80.5 2.33 38.0 OOM OOM 87.8 98.7 34.4 44.8 33.7 3.00 45.1 OOM OOM 89.9 97.6 42.4 55.0 61.9 3.16

VilLain 81.6 95.1 94.9 83.2 87.8 82.1 79.0 82.8 1.50 46.6 69.4 35.2 85.7 98.7 34.5 50.4 32.7 2.25 60.2 67.2 53.6 91.3 99.0 46.4 58.0 64.4 1.12

Hyperedge Prediction. The problem of hyperedge prediction is

formulated as a binary classification task, predicting whether the

given hyperedge is real or fake [30, 51, 78]. Given a set 𝐸 of real

hyperedges, we generate a set 𝐸′ of fake hyperedges with the same

hyperedge size distribution by randomly sampling subsets of nodes.

To obtain the embedding of each hyperedge, we apply maxmin

pooling
6
to the embeddings of the nodes in it. For more training

details on hyperedge prediction, refer to Appendix C.4. As shown

in Table 3, VilLain performs the best on average. We conjecture

that VilLain, which captures potential structure-label relations, is

effective for this task because it indirectly relates to labels due to

the high label homogeneity of real hyperedges.

Node Clustering. For the clustering task, we group nodes into the

number of unique ground-truth labels, applying k-means to the

learned embeddings. Then, we compute the Normalized Mutual

Information (NMI) to assess the quality of clustering. As shown in

Table 3, VilLain outperforms all baseline methods in terms of aver-

age ranks. This indicates that the embeddings learned by VilLain

exhibit meaningful semantic similarities in their distribution.

Node Retrieval. The problem of node retrieval aims to search for

similar nodes of a given query node, using the learned embeddings.

6
We computemaxmin pooling by: elementwise max pooling - elementwisemin pooling.

An alternative pooling method is compared in [39].

Specifically, we retrieve nodes based on the cosine similarity be-

tween their embeddings and the embedding of the query node.

Then, we compute the Mean Average Precision (MAP), to measure

the retrieval quality. Intuitively, the retrieval is considered to be suc-

cessful if the nodes of the same class as the query node are highly

ranked. For more details regarding the task, refer to Appendix C.3.

As shown in Table 3, VilLain outperforms baseline methods, with a

large margin. These results imply that v-labels, which are virtual
and learned without any ground-truth node labels, are useful for

finding similar nodes of the same class.

6.3 Ablation Study

In this subsection, we conduct ablation studies to verify the effective-

ness of each component of VilLain by comparing its performance

to that of its variants.

Effectiveness of Multi-V-label Learning.To demonstrate the ef-

fectiveness of using multiple subspaces, we consider two variants of

VilLain: (a) VilLain-S learns 𝑑 v-labels in a single embedding space

and (b) VilLain-M learns ⌈𝑑/𝐷⌉ v-labels in 𝐷 subspaces. In Ta-

ble 4, we compare VilLain with the two variants on the considered

tasks. Regarding VilLain-M, we report the average accuracy when

⌈𝑑/𝐷⌉ = {2, 3, · · · , 8}. We first observe that VilLain-M consistently

outperforms VilLain-S, indicating the effectiveness of the multi-

v-label propagation. Additionally, introducing multiple subspaces
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Table 4: VilLain outperforms its three variants, VilLain-S, VilLain-M, and VilLain-L, in four downstream tasks, implying that

VilLain benefits from (1) propagating v-labels in multiple subspaces, (2) aggregating embeddings from various numbers of

v-labels, and (3) reproducing both local and global structure-label patterns for self-supervision.

Method

Node Classification (Accuracy) Hyperedge Prediction (Accuracy) Node Clustering (NMI) Node Retrieval (MAP)

DB TV AZ PR HG CS CR PM DB TV AZ PR HG CS CR PM DB TV AZ PR HG CS CR PM DB TV AZ PR HG CS CR PM

VilLain-S 69.5 OOM OOM 83.1 96.8 59.9 71.0 77.1 79.7 OOM OOM 79.2 86.4 80.9 75.4 78.9 35.7 OOM OOM 88.4 97.9 21.3 30.3 25.8 45.3 OOM OOM 65.3 98.4 41.4 47.2 60.9

VilLain-M 74.2 75.1 54.8 91.6 98.6 61.1 73.7 78.5 80.7 95.0 94.7 83.0 87.5 82.4 79.0 82.6 43.5 65.4 35.3 87.3 98.8 31.9 46.2 34.7 49.2 46.7 50.4 86.1 98.7 44.0 53.7 62.1

VilLain-L 76.9 79.3 56.7 64.5 97.6 61.9 74.1 78.1 81.4 94.9 94.2 76.6 87.4 82.9 78.8 82.1 42.7 66.6 36.2 64.0 96.6 37.1 43.9 33.0 59.3 66.1 51.6 66.1 97.5 46.5 54.9 63.3

VilLain 77.2 79.4 58.0 93.7 99.2 61.5 75.0 78.8 81.6 95.1 94.9 83.2 87.8 82.1 79.0 82.8 46.6 69.4 35.2 85.7 98.7 34.5 50.4 32.7 60.2 67.2 53.6 91.3 99.0 46.4 58.0 64.4

Table 5: VilLain benefits from the long-range propagation of

v-labels. Increasing both the number of v-label propagation

(𝑘 for loss computation and 𝑘′ for embedding generation)

tends to improve the node classification accuracy.

DB TV AZ PR HG CS CR PM Rank

𝑘 = 1 74.25 78.14 52.16 94.67 99.51 60.48 74.96 78.21 3.00

𝑘 = 2 75.76 78.44 55.09 93.43 99.29 60.17 75.15 78.97 2.62

𝑘 = 4 77.16 79.43 57.95 93.66 99.19 61.53 75.03 78.82 2.25

𝑘 = 8 78.22 80.24 59.12 92.47 98.78 62.05 74.24 79.22 2.12

𝑘′ = 1 64.71 60.60 48.46 96.74 99.58 60.62 74.68 77.94 5.62

𝑘′ = 2 65.29 61.59 49.42 96.36 99.57 60.44 74.70 78.18 5.50

𝑘′ = 4 66.64 63.25 50.52 96.33 99.39 60.54 74.77 78.29 5.00

𝑘′ = 8 67.88 65.08 53.22 93.91 99.26 61.29 75.06 78.75 4.50

𝑘′ = 16 70.83 68.28 54.65 94.49 98.86 61.62 74.86 79.12 3.75

𝑘′ = 32 73.20 72.31 55.80 92.57 98.59 61.96 74.68 79.22 4.00

𝑘′ = 64 76.47 76.77 56.42 94.21 98.50 62.42 74.25 78.98 4.00

𝑘′ = 128 77.62 80.63 57.46 88.68 98.09 63.67 74.41 79.37 3.50

enhances the space complexity, as VilLain-M avoids out-of-memory

issues in large hypergraphs like Amazon and Trivago, in contrast to

VilLain-S, which aligns with our complexity analysis in Section 5.

Furthermore, the superior performance of VilLain over VilLain-M

implies that aggregating embeddings from various numbers of v-

labels captures more informative potential structure-label relations.

Effectiveness of Loss Functions. To examine the effectiveness of

the designed loss functions, we consider another variant of VilLain,

VilLain-L, which only uses the local loss L
local

to learn v-label

distributions. As shown in Table 4, VilLain, which jointly optimizes

L
local

and L
global

and thus captures both local and global informa-

tion of the input hypergraph, outperforms VilLain-L, demonstrating

the effectiveness of the proposed loss functions. In [39], we analyze

when L
global

is particularly beneficial.

Effects of Long-Range V-label Propagation. To examine the ef-

fects of the long-range propagation of v-labels, we test how the

number of steps 𝑘 (during loss computation) and 𝑘′ (during embed-

ding generation) affect the performance of VilLain in node classifi-

cation. As shown in Table 5, except for Primary and High, which are

the smallest datasets, adopting long-range propagation of v-labels

is beneficial. In particular, we can see that large datasets (e.g., DBLP,

Trivago, and Amazon) benefit from large 𝑘s and 𝑘′s. This tendency
holds in other tasks (i.e., hyperedge prediction, node clustering, and

node retrieval) as shown in [39]. This implies that the higher-order

label homogeneity, which VilLain aims to reproduce, positively

affects the performance in downstream tasks.

Table 6: VilLain yields informative embeddings even for

unobserved nodes. Fully observed hypergraphs consist of

the entire set 𝑉 of nodes, whereas partially observed hyper-

graphs only contain the subset 𝑉S ⊆ 𝑉 of nodes after remov-

ing 50% of the hyperedges. Despite a performance decrease

compared to its fully observable settings, VilLain outper-

forms its strongest baseline, TriCL [35] in node classification,

even for the set 𝑉 \𝑉S of nodes are not observed in VilLain

but observed in TriCL during training.

Learning/Node Type DB TV AZ CS CR PM

Fully

Observed
VilLain

𝑉S 78.01 80.03 56.77 62.75 75.43 79.21

𝑉 \𝑉S 66.19 76.07 58.74 57.52 73.46 69.62

Partially

Observed
VilLain

𝑉S 76.45 78.66 53.72 62.49 73.79 77.78

𝑉 \𝑉S 65.86 74.71 55.23 56.42 72.27 69.71

Fully

Observed
TriCL

𝑉S 69.20 OOM OOM 60.83 72.94 78.99

𝑉 \𝑉S 55.11 OOM OOM 53.74 70.02 68.60

6.4 Further Analysis of VilLain

In this subsection, we summarize additional experimental results.

Here, we consider the node classification task for evaluation, unless

otherwise stated.

Scalability of VilLain.We test the scalability of VilLain by mea-

suring its training time. In order to test scalability on larger hy-

pergraphs, we upscale Cora using HyperCL [37] by 2
{5.0,5.5,· · · ,8.0}

times. As seen in Figure 4, VilLain scales linearly with the size of the

hypergraph and also the number of propagation steps. In addition,

the training time decreases with an increased number of subspaces,

which is consistent with our time complexity analysis in Section 5.

Performances on Unobserved Nodes. VilLain can generate em-

beddings for nodes that are not observed during training, as dis-

cussed in Section 5.3. Instead of using the original hypergraph

𝐺 = (𝑉 , 𝐸), we evaluate how VilLain, after learning embeddings

for the subset 𝑉S of nodes from a partial hypergraph 𝐺S = (𝑉S, 𝐸S),
effectively generates node embeddings for both sets 𝑉S and 𝑉 \𝑉S
of nodes. Indeed, due to the utilization of reduced structural infor-

mation, it is natural to expect a degraded quality of node embed-

dings for both 𝑉S and 𝑉 \ 𝑉S sets of nodes in this scenario. This

degradation is empirically shown in Table 6 in comparison to the

fully-observable setting. However, VilLain outperforms its strongest

baseline, TriCL, across six datasets,
7
even when utilizing partial

hypergraphs with 50% of hyperedges removed. TriCL, on the other

hand, employs complete hypergraphs to learn embeddings for both

sets of nodes. This demonstrates the effectiveness of VilLain in

7
We did not evaluate on Primary and High. Due to their high density, even removing

90% of their hyperedges did not result in any unobserved nodes.
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Slope = 0.97

Slope = 1

Slope = 0.99

Slope = 1
Slope = -0.63

Figure 4: The training time (for 100 epochs) of VilLain is

linear in the hypergraph size (i.e.,

∑
𝑒∈𝐸 |𝑒 |) and the number

of steps of v-label propagation (i.e., 𝑘). The training time de-

creases with respect to the number 𝐷 of subspaces, implying

the efficiency of multi-space v-label propagation which is

consistent with the complexity analysis in Section 5.

generating informative embeddings for unobserved nodes, as well

as its robustness to the removed hyperedges.

Performance on Less Homophilic Hypergraphs.While VilLain

is rooted in the insights gained from the observations of higher-

order label homogeneity across various real-world hypergraphs (re-

fer to Section 4), it demonstrates a comparable level of performance

also in less homophilic hypergraphs. In Figure 5, we generated

semi-real hypergraphs by (1) selecting two hyperedges uniformly

at random, and (2) interchanging a single node from each.We repeat

this process {100, 200, · · · , 1000} and {1000, 2000, · · · , 10000} times

in Cora and DBLP, respectively, resulting in hypergraphs with a

diverse range of increased hyperedge entropy (i.e., heterophilicity)

and thus less homophilic. From the results, we can observe that the

node classification accuracies of VilLain in Cora and DBLP degrade

with the degree of heterophilicity in the hypergraph. Nonetheless,

its performance remains superior to that of the two strongest base-

lines, Hyper2vec and TriCL, demonstrating its effectiveness in less

homophilic hypergraphs as well.

Sensitivity of Multi-V-label Parameters. We analyze how the

parameters related to multi-v-label propagation affect the perfor-

mance of VilLain, specifically the number 𝐷 of v-label subspaces

and the number ⌈𝑑/𝐷⌉ of v-labels in each subspace. As we can see

in Figure 6, both the number of subspaces (𝐷) and the number of

v-labels in each subspace (⌈𝑑/𝐷⌉) contribute to the improvement in

embedding quality. Empirically, we find that the number of v-labels

per subspace has a stronger impact on the performance of VilLain.

Additional Experiments.More experimental results can be found

in Appendix D including (1) comparisons with task-specific base-

lines (Appendix D.1), (2) effects of J
cls

and J
dst

(Appendix D.2),

and (3) extension of the loss function (Appendix D.3). For additional

experimental results, including (1) a detailed analysis of the loss

functions (e.g., connections to contrastive losses), (2) improvements

from external node features, (3) the usefulness of input features, (4)

alternative aggregation methods for embedding generation, and (5)

comparisons with graph-modeling-based baselines, refer to [39].

Furthermore, in [39], we develop VilLainB, a space-efficient variant

of VilLain that generates binary node embeddings for hypergraphs.

Empirical results demonstrate its superior performance compared

to baseline methods while requiring only 1/32 of the bits for encod-

ing the node embedding vectors.
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Figure 5: VilLain consistently outperforms Hyper2vec and

TriCL in node classification across varying levels of average

hyperedge entropy (i.e., heterophilicity).
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Figure 6: Both the number of subspaces (𝐷) and the number

of v-labels in each subspace (⌈𝑑/𝐷⌉) are positively correlated

to the node classification accuracy.

7 CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we propose VilLain for self-supervised node represen-

tation learning on hypergraphs. VilLain learns node embeddings

that reproduce higher-order label homogeneity in real-world hy-

pergraphs, without requiring external node labels or features. We

summarize our contributions as follows:

• Empirical Findings:We discover the higher-order homogeneity

in real-world hypergraphs, which serves as a guiding principle

in the design of VilLain (Section 4).

• Algorithm Design: We develop VilLain, a node embedding

method for hypergraphs that does not require external informa-

tion such as labels or features. It produces versatile embeddings

that are effective for various tasks (Section 5).

• Extensive Experiments: We demonstrate the overall superior-

ity of VilLain over 15 unsupervised and (semi-)supervised com-

petitors on eight datasets in four tasks (Section 6).

While higher-order label homogeneity is observed in a majority

of real-world hypergraphs, this may not hold in certain hypergraphs

with heterophilic characteristics. Extending VilLain for heterophilic

hypergraphs, thus, can be a promising future work.
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A DETAILS ON TIME/SPACE COMPLEXITY

In this section, we provide details of the time and space complexity

analysis provided in Section 5.

A.1 Details on Time Complexity

Time complexity for v-label propagation. Sincewe adoptmean-

pooling aggregation of
𝑑
𝐷

v-labels for both nodes and hyperedges

in each subspace, it takes 𝑂

(
𝑑
𝐷

∑
𝑒∈𝐸 |𝑒 |

)
. Thus, it takes:

𝑂

(
𝑑

∑︁
𝑒∈𝐸
|𝑒 |

)
time (8)

for 𝐷 subspaces, for each step of propagation.

Time complexity for loss computation. In VilLain, there are

three losses, L
local

, J
cls
, and J

dst
that are computed to optimize X̃.

• For L
local

, the entropy of the assignment over
𝑑
𝐷

v-labels at each

node and each hyperedge at each step needs to be computed, and

this takes 𝑂

(
𝑑
𝐷
( |𝑉 | + |𝐸 |)

)
time for each subspace. Thus, for 𝐷

subspaces, it takes:

𝑂 (𝑑 ( |𝑉 | + |𝐸 |)) time (9)

for each propagation step.

• For J
cls
, the entropy of the global assignment over

𝑑
𝐷

v-labels

needs to be computed at each step, and this takes𝑂

(
𝑑
𝐷
( |𝑉 | + |𝐸 |)

)
time for each subspace. Thus, for 𝐷 subspaces, it takes:

𝑂 (𝑑 ( |𝑉 | + |𝐸 |)) time (10)

for each propagation step.

• For J
dst

, x̄(ℓ )
1

, · · · , x̄(ℓ )
𝑑/𝐷 and ȳ(ℓ )

1
, · · · , ȳ(ℓ )

𝑑/𝐷 are required, and it

takes 𝑂

((
𝑑
𝐷

)
2

|𝑉 |
)
time and 𝑂

((
𝑑
𝐷

)
2

|𝐸 |
)
time, respectively, to

compute them for each subspace. Thus, for 𝐷 subspaces, it takes:

𝑂

(
𝑑2

𝐷
( |𝑉 | + |𝐸 |)

)
time (11)

for each propagation step.

Thus, from Eq. (8)-(11), the time complexity including (a) v-label

propagation and (b) loss computation is:

𝑂

(
𝑘𝑑

∑︁
𝑒∈𝐸
|𝑒 | + 𝑘𝑑

2

𝐷
( |𝑉 | + |𝐸 |)

)
.

Time complexity for embedding generation.To generate node

embeddings using Eq. (3), which requires the mean-pooling propa-

gation of v-labels for 𝑘′ steps, it takes:

𝑂
(
𝑘′𝑑 ( |𝑉 | + |𝐸 |)

)
time.

A.2 Details on Space Complexity

Space complexity for v-label propagation. During its v-label

propagation, VilLain stores assignment matrices of nodes X(ℓ )

and hyperedges Y(ℓ ) of 𝑑
𝐷

v-labels in 𝐷 subspaces which requires:

𝑂 (𝑘𝑑 ( |𝑉 | + |𝐸 |)) space

for ℓ = 1, · · · , 𝑘 steps.

Space complexity for loss computation. The losses L (ℓ )
local

and

J (ℓ )
cls

at the ℓ th step can be computed directly from X(ℓ ) and Y(ℓ ) ,
without requiring additional storage space. On the other hand, to

compute J (ℓ )
dst

at the ℓ th step, x̄(ℓ )
1

and ȳ(ℓ )
1

are used, which are

computed based on the pairwise cosine similarity between 𝑑/𝐷
v-labels, requiring 𝑂

(
𝑑2

𝐷
( |𝑉 | + |𝐸 |)

)
space for 𝐷 subspaces. Thus,

the total space required for ℓ = 1, · · · , 𝑘 steps is;

𝑂

(
𝑘𝑑2

𝐷
( |𝑉 | + |𝐸 |)

)
.

Note that unlike GNN-based methods [16, 20], VilLain does not

have any additional learnable parameters in each layer.
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Algorithm 1 VilLain’s Embedding Generation Scheme

Input: (1) Hypergraph𝐺 = (𝑉 , 𝐸 ) , (2) embedding dimension𝑑 , (3) number

of subspaces 𝐷 , (4) propagation step 𝑘 ′

Output: Node embeddings Z
1: for each subspace 𝑡 = 1, · · · , 𝐷 in parallel do

2: X(0) ← Softmax(X̃) ∈ [0, 1] |𝑉 |×⌈𝑑/𝐷⌉
3: Z⟨𝑡 ⟩ ← 0|𝑉 |×⌈𝑑/𝐷⌉

4: for each step ℓ = 1, · · · , 𝑘 ′ do
5: Y(ℓ ) ← D−1

𝐸
H𝑇X(ℓ−1)

6: X(ℓ ) ← D−1

𝑉
H𝑇 Y(ℓ−1)

7: Z⟨𝑡 ⟩ ← Z⟨𝑡 ⟩ + X(ℓ )
8: Z⟨𝑡 ⟩ ← Z⟨𝑡 ⟩/ 𝑘 ′

9: Z← Aggregate(Z⟨1⟩, · · · ,Z⟨𝐷⟩ )
10: return Z

Space complexity for embedding generation.To generate node

embeddings,X(ℓ ) and hyperedge embeddings Y(ℓ ) for ℓ = 1, · · · , 𝑘′
steps are used, and thus 𝑂 (𝑘′𝑑 ( |𝑉 | + |𝐸 |)) space is required.

B PSEUDOCODE OF VILLAIN

In Algorithm 1, we present the pseudocode of VilLain, specifically

outlining its method for generating embeddings during inference.

The embedding for each 𝑡 th subspace is designed to be produced in

parallel. Within each subspace, the probability assignment vector

of ⌈𝑑/𝐷⌉ v-labels X(0) is initialized by applying the Softmax to the

learnable embedding X̃. Over 𝑘′ steps, the v-labels are propagated
across nodes and hyperedges, where the intermediate node prob-

ability assignment vectors are averaged to obtain the subspace’s

node embedding Z⟨𝑡 ⟩ . Once 𝐷 embeddings, Z⟨1⟩ , · · · ,Z⟨𝐷 ⟩ , from
𝐷 subspaces, they are concatenated and then PCA is applied, to

produce the final embedding Z.

C DETAILS ON EXPERIMENTAL SETTINGS

Here, we provide detailed information on experimental settings.

C.1 Details of Datasets

The statistics of the datasets we used are shown in Table 1.

Preprocessing. For all datasets, we use the largest connected com-

ponent of the original hypergraph. We process the huge Amazon

by remaining nodes that are from the 10 most frequently appeared

labels. Then, we randomly sample 1% of the nodes from each label.

Ground-truth labels. Here, we provide how the ground-truth la-

bels of each dataset are assigned. In Primary and High, each node

is a person (e.g., student or teacher), and each hyperedge indicates

a group interaction among them. If a person is a teacher, then he

or she is labeled as a teacher. Otherwise, students are labeled based

on the classroom they belong to. In Citeseer, Cora, and Pubmed,

which are co-citation hypergraphs, each node is a paper and each

hyperedge is a paper that cited the paper. In these hypergraphs,

nodes are assigned by their categories. In DBLP, which is a collabo-

ration hypergraph, each node is a paper and each hyperedge is the

set of papers written by the same author. Nodes are labeled by their

categories. In Trivago, each node is a hotel and each hyperedge is a

set of hotels that were clicked in aWeb browsing session. Each node

is labeled by the location, specifically, the country where the hotel

is located. In Amazon, each node is a product, and each hyperedge

Table 7: Open source links to the baseline source codes.

Method Github Link

GCN https://pytorch-geometric.readthedocs.io

GAT https://pytorch-geometric.readthedocs.io

Deepwalk https://github.com/benedekrozemberczki/karateclub

Node2vec https://github.com/benedekrozemberczki/karateclub

DGI https://github.com/PetarV-/DGI

GRACE https://github.com/CRIPAC-DIG/GRACE

GMI https://github.com/zpeng27/GMI

HGNN https://github.com/iMoonLab/HGNN

HNHN https://github.com/twistedcubic/HNHN

AllSet https://github.com/jianhao2016/AllSet

UniGNN https://github.com/OneForward/UniGNN

HyperGCL https://github.com/weitianxin/HyperGCL

Hyper2vec https://github.com/jeffhj/NHNE

TriCL https://github.com/wooner49/TriCL

is a set of products that were co-purchased. Labels of the nodes are

assigned by the product categories.

C.2 Baselines & Hyperparameters

In this subsection, we discuss the hyperparameters that are used

for each method. The implementations we used to run baseline

methods are listed in Table 7. Since we consider the unsupervised

setting, specifically, without using any labels, the models used for

evaluation should be selectedwithout validating on hold-out labeled

data. Thus, for unsupervised baseline methods, we either used

their default hyperparameter settings or tried to find the settings

that generally work well across all datasets. For (semi-)supervised

methods, we use the validation set to tune their hyperparameters.

• In VilLain, we fix the number of propagation steps for training

to 𝑘 = 4, and for inference, we use 𝑘′ = 10 for small datasets (i.e.,

Primary, High, Cora, Citeseer, Pubmed) and 𝑘′ = 100 for large

datasets (i.e., DBLP, Amazon, and Trivago). The learning rate is

fixed to 0.01, and the explained variance ratio of the PCA used

in VilLain is fixed to 0.99, throughout the experiments.

• For Deepwalk [53] and Node2vec [23], we use the default hyper-

parameters. Specifically, we set the number of walks to 10, the

length of each walk to 80, the window size to 5, and the learning

rate to 0.05. For 𝑝 and 𝑞 in Node2vec, we use 1 for both.

• For DGI [63], we use the PReLu for the activation function and

set the learning rate to 0.001, as given as default.

• For GRACE [85], we use the ReLU for the activation function,

and the number of GCN layers is set to 2. The learning rate and

the weight decay rate are set to 0.001 and 0.00001, respectively.

Regarding augmentations (e.g., edge drop and feature drop), all

rates are set to 0.2. The dimension of the projection head is set

to be the same as the hidden dimension.

• For GMI [52], we use the PReLU for the activation function. The

learning rate is set to 0.001 without weight decaying. There are

three additional hyperparameters 𝛼 , 𝛽 , and 𝛾 that determine the

weights of the local and global mutual information, and they are

set to 𝛼 = 0.8, 𝛽 = 1.0, and 𝛾 = 1.0, which are default values

provided by the authors.

• For HyperGCL [66], we use their default hyperparameters. The

number of epochs is set to 500, the augmentation ratio is set to

0.3, the temperature is set to 0.3, and the dropout is set to 0.2.

https://pytorch-geometric.readthedocs.io
https://pytorch-geometric.readthedocs.io
https://github.com/benedekrozemberczki/karateclub
https://github.com/benedekrozemberczki/karateclub
https://github.com/PetarV-/DGI
https://github.com/CRIPAC-DIG/GRACE
https://github.com/zpeng27/GMI
https://github.com/iMoonLab/HGNN
https://github.com/twistedcubic/HNHN
https://github.com/jianhao2016/AllSet
https://github.com/OneForward/UniGNN
https://github.com/weitianxin/HyperGCL
https://github.com/jeffhj/NHNE
https://github.com/wooner49/TriCL
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Table 8: VilLain outperforms specialized baselines, Hyper-

SAGNN [84] and NHP [74] in hyperedge prediction.

DB TV AZ PM HG CS CR PM Rank

Hyper-SAGNN 55.7 OOM OOM 80.2 84.5 76.9 76.8 76.8 2.50

NHP 78.6 73.5 74.3 67.6 72.7 85.9 78.8 68.1 2.25

VilLain 81.6 95.1 94.9 83.2 87.8 82.1 79.0 82.8 1.12

Table 9: VilLain outperforms specialized baselines,

GRAC [19] and AHCKA [42] in node clustering.

DB TV AZ PM HG CS CR PM Rank

GRAC 43.9 OOM 22.6 91.6 99.9 32.8 46.3 34.6 1.85

AHCKA 43.3 OOM 32.0 93.1 98.7 32.6 41.8 13.1 2.42

VilLain 46.6 69.4 35.2 85.7 98.7 34.5 50.4 32.7 1.50

• For Hyper2vec [27], the number of walks is set to 10 and the

length of each walk is set to 20. The size of the window is 5 and

two additional parameters 𝑝 and 𝑞 are both set to 1.

• For LBSN [75], the number of negative samples and the learning

rate are set to 10 and 0.01, respectively.

• For TriCL [35], we set the number of GCN layers to 1 since it

was given as default hyperparameters for most datasets. The

learning rate and the weight decaying rate are set to 0.0005 and

0.00001. Regarding the data augmentation, the drop rates for

node features and the incidence matrix are both set to 0.4. Three

temperature hyperparameters, 𝜏𝑛 , 𝜏𝑔 , and 𝜏𝑚 are all set to 0.5,

and two weight hyperparameters𝑤𝑔 and𝑤𝑚 are set to 4 and 1.

C.3 Node Retrieval Protocol

To perform the node retrieval task, we sample min( |𝑉 |, 1000) query
nodes from the hypergraph uniformly at random. For each query

node, we rank the nodes, excluding the query node, based on the

cosine similarity between their learned embeddings and that of

the query node. Then, we measure the Mean Average Precision

(MAP), which is commonly employed in information retrieval tasks

(e.g., computer vision [7, 40] or natural language processing [3, 61]).

Here, we define nodes with labels same as that of the query node as

the ground-truth. Thus, the MAP yields a higher score when nodes

belonging to the same class as the query node are ranked highly.

C.4 Hyperedge Prediction Protocol

To perform the hyperedge prediction task, we first split the orig-

inal hypergraph 𝐺 = (𝑉 , 𝐸) into two sub-hypergraphs 𝐺train =

(𝑉train, 𝐸train) and 𝐺test = (𝑉test, 𝐸test) where 𝐸 = 𝐸train ∪ 𝐸test and
𝐸train ∩ 𝐸test = ∅. We also ensure that all nodes are contained in

𝐺train (i.e., 𝑉train = 𝑉 ) so that embeddings of all nodes in 𝐺 are

learned. Given a train ratio 𝛾 , we set the number of hyperedges

in 𝐺train and 𝐺test to be divided based on it, i.e., |𝐸train | : |𝐸test | =
𝛾 : 1 − 𝛾 . Specifically, we set 𝛾 = 0.80 for all datasets except for

Amazon, which is relatively very sparse, and thus we set 𝛾 = 0.95.

Once we obtain node embeddings of all nodes 𝑉 , we generate

sets of fake hyperedges 𝐸fake
train

and 𝐸fake
test

as counterparts of true

hyperedges 𝐸train and 𝐸test. Specifically, for each true hyperedge

𝑒 ∈ 𝐸train (or 𝐸test), we randomly sample |𝑒 | nodes from 𝑉 and

create 𝑒′ ∈ 𝐸fake
train

(or 𝐸fake
test

). Then, a logistic regression classifier is

trained on the 𝐸train ∪ 𝐸fake
train

and the performance of the hyperedge

prediction is evaluated on 𝐸test ∪ 𝐸fake
test

.

Table 10: The two constituent losses, J
cls

and J
dst

, are effec-

tive in capturing the global information of the hypergraph,

and thus using both loss terms (J
cls
+ J

dst
) leads to the best

performance in node classification.

DB TV AZ PM HG CS CR PM Rank

J
cls

only 76.42 79.30 57.49 92.52 99.22 61.06 74.96 78.96 1.75

J
dst

only 76.27 79.26 57.35 92.52 99.22 60.85 74.95 78.95 2.50

J
cls
+ J

dst
77.16 79.43 57.95 93.66 99.19 61.53 75.03 78.82 1.50

Table 11: The optimal value of 𝜆 for L = L
local

+ 𝜆L
global

varies across datasets w.r.t. node classification performance.

DB TV AZ PM HG CS CR PM Rank

𝜆 = 0 76.94 79.33 56.73 64.54 97.63 61.93 74.13 78.14 3.37

𝜆 = 0.5 76.64 79.52 57.74 92.02 99.32 61.32 74.54 78.49 2.87

𝜆 = 1 77.16 79.43 57.95 93.66 99.19 61.53 75.03 78.82 1.50

𝜆 = 2 76.73 79.67 57.90 94.87 99.10 61.37 74.70 78.86 2.00

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experimental results that are

not covered in the main context.

D.1 Task-Specific Baselines

Note that VilLain is designed to generate versatile node embed-

dings applicable to various downstream tasks, rather than being

tailored for a single task. Thus, the used baselines in Table 2 are

those that can generate versatile embeddings (e.g., Hyper2Vec and

TriCL). Nonetheless, VilLain outperforms additional baselines that

are not necessarily versatile. In Table 8, we compare VilLain with

Hyper-SAGNN [84] and NHP [74], which are specifically designed

for hyperedge prediction. In addition, in Table 9, we compare Vil-

Lain with GRAC [19] and AHCKA [42], which are designed for

node clustering. In both tasks, VilLain outperforms the baselines,

demonstrating its effectiveness and versatility in diverse down-

stream tasks.

D.2 Effects of Jcls and Jdst in Lglobal

To compute L
global

(Eq. (7)), we simply add J
cls

and J
dst

. We fur-

ther analyze how the two losses contribute to the final performance

by comparing when training VilLain using (1) J
cls

only, (2) J
dst

only, and (3) both J
cls

and J
dst

. As shown in Table 10, for most

datasets, using both J
cls

and J
dst

yields superior performance than

using either one of them, implying that both J
cls

and J
dst

con-

tribute in learning well-distributed v-labels.

D.3 Extension of the Loss Function

Since we assume a scenario where external information is strictly

restricted, even for hyperparameter tuning, we simply add the

two losses L
local

and L
global

. However, the final loss function can

be extended to L = L
local
+ 𝜆L

global
where 𝜆 is a controllable

hyperparameter that balances the two loss terms. Note that 𝜆 = 1 is

used for VilLain as default. As shown in Table 11, utilizing 𝜆 > 0 (i.e.,

integrating L
global

) is beneficial across most datasets, particularly

in Primary. However, the optimal 𝜆 value varies across datasets,

and the results suggest that VilLain’s performance can be further

improved by fine-tuning 𝜆, if the situation allows.
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