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ABSTRACT

Group interactions are prevalent in various complex systems (e.g.,
collaborations of researchers and group discussions on online Q&A
sites), and they are commonly modeled as hypergraphs. Hyper-
edges, which compose a hypergraph, are non-empty subsets of any
number of nodes, and thus each hyperedge naturally represents
a group interaction among entities. The higher-order nature of
hypergraphs brings about unique structural properties that have
not been considered in ordinary pairwise graphs.

In this tutorial, we offer a comprehensive overview of a new
research topic called hypergraph mining. We first present recently
revealed structural properties of real-world hypergraphs, including
(a) static and dynamic patterns, (b) global and local patterns, and (c)
connectivity and overlapping patterns. Together with the patterns,
we describe advanced data mining tools used for their discovery.
Lastly, we introduce simple yet realistic hypergraph generative
models that provide an explanation of the structural properties.
Materials and details of this tutorial can also be found at https:
/Isites.google.com/view/hypergraph-tutorial.
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1 MOTIVATION

Group interactions are omnipresent in real-world complex sys-
tems: collaborations of researchers, joint interactions of proteins,
co-purchases of items, to name a few. Such group interactions
among entities are commonly modeled as a hypergraph, which
consists of nodes and hyperedges. A hyperedge, which is a non-
empty subset of nodes, naturally models a group interaction among
any number of entities. Thanks to the powerful expressiveness of
hypergraphs, they have been used in a wide range of fields, includ-
ing recommender systems [34], natural language processing [11],
social network analysis [32], and circuit designs [16].

Motivated by the successful investigation of structural patterns
in real-world pairwise graphs (e.g., power-law degree distribu-
tion [1, 14] and network motifs [25, 26]) and their wide range of
applications, such patterns in real-world hypergraphs have been
extensively studied recently. The flexibility in the size of each hy-
peredge, which provides the expressiveness of hypergraphs, brings
about unique structural properties that have not been considered
in pairwise graphs, and specialized tools have been developed to
analyze their structural patterns. Moreover, several efforts have

been made to reproduce and thus explain the patterns through
intuitive hypergraph generative models.

2 OUTLINE

We provide a comprehensive overview of structural patterns dis-
covered in real-world hypergraphs, advanced data mining tools,
and hypergraph generative models based on the patterns.

e Part I: Introduction

o Group interactions in the real-world

o Power of hypergraph modeling [30, 33]

o Data repositories and open-source software
e Part II: Static Structural Patterns

o Basic patterns

¢ Node-level properties [5, 12, 19, 20]
o Hyperedge-level properties [19, 20, 27]
¢ Hypergraph-level properties [3, 12, 19, 29]
o Advanced patterns (sub-hypergraph-level properties)
(3, 15, 17, 20, 21, 24]
e Part III: Dynamic Structural Patterns in Hypergraphs
o Basic patterns
¢ Node-level properties [4, 9]
¢ Hyperedge-level properties [4, 6, 22]
o Hypergraph-level properties [19]
o Advanced patterns (sub-hypergraph-level properties)
[3, 10, 22, 23]
e Part IV: Generative Models of Hypergraphs
o Full-hypergraph generation
o Static hypergraphs [7, 20, 28, 29]
¢ Dynamic hypergraphs [2, 12, 13, 17-19, 31]
o Sub-hypergraph generation
o Static sub-hypergraphs [8]
¢ Dynamic sub-hypergraphs [4, 10]

Note that this tutorial is an extension of the tutorials given by the
same presenters at ACM CIKM 2022, IEEE ICDM 2022, and WebConf
2023. This updated version of the tutorial provides more compre-
hensive coverage, incorporating recent advances in the topic.

3 POTENTIAL IMPACTS

While this topic hypergraph mining is in its infant stage, we be-
lieve it will be of interest of a much larger group of researchers,
especially those interested in graphs, when considering the rep-
resentational power, usability, and omnipresence of hypergraphs.
Moreover, patterns and generative models of hypergraph data will
have a huge impact on our understanding of complex systems and
also on various applications, including algorithm design, simula-
tion, and anomaly detection, as those of graph data do. This tutorial
aims to provide a starting point for further studies on this topic.
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