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Abstract—Graphs are a universal language for describing
interactions in a variety of complex systems (e.g., the society,
brains, and communication systems), and analyzing such graphs
is crucial to understand and predict these complex systems. Com-
munities (i.e., groups of densely-connected nodes) and anomalies,
are key components of graphs, and identifying them in given
graphs often leads to a much better understanding of the graphs.

In this tutorial, we offer a comprehensive overview of the
techniques for detecting communities and anomalies. Specifically,
we first introduce basic and advanced techniques for detecting
non-overlapping, overlapping, and multi-attribute communities,
and then we introduce those for detecting anomalies based on fea-
tures, spectral properties, and dense sub-structures. Additionally,
we present a number of applications in a wide range of domains,
including social media, e-commerce, and computer security.

I. INTRODUCTION AND OUTLINE

Graphs are omnipresent, representing a wide range of data:
social networks, web graphs, brain networks, to name a few.
Thus, detecting underlying communities and anomalies in
graphs is a vital task with numerous applications. For example,
in brain networks, communities reveal functional organization
of a brain, providing important intuition about its functions. In
online social networks, subgraphs of unusual structure often
indicate fraudulent behavior, such as fake followers on Twitter
and fake ‘Likes’ on Facebook. Due to their importance, nu-
merous algorithms have been developed for rapid and accurate
identification of communities and/or anomalies. In this tutorial,
we focus on providing a comprehensive overview of the state-
of-the-art methods with their successful applications.

During the first half of this tutorial, we introduce some
recent advances in detecting communities, i.e., groups of nodes
that are densely connected internally and sparsely connected
externally. We cover (1) basic clustering (or graph partition-
ing) [1]–[3], which divides a given graph into node-disjoint
subgraphs, (2) overlapping clustering [4]–[7], which identifies
cohesive subgraphs allowing mixed memberships for nodes,
and (3) multi-attribute clustering [8]–[10], which finds mean-
ingful communities of graphs with multiple attributes. Overall,
we introduce various clustering methods with applications.

During the second half, we present the recent techniques
for detecting anomalies, specifically unusual nodes, subgraphs,
and changes in graphs. We cover (1) features-based methods
[11]–[13], which exploit graph-centric features (e.g., degree,

coreness, and triangle counts), (2) spectral-based methods
[14]–[16], which detect anomalies after projecting nodes into
spectral subspaces, and (3) density-based methods [17]–[21],
which identify unusually dense sub-structures often resulted
from synchronized behavior of anomalous nodes. In addition
to their technical details, we present interesting anomalies
identified by the methods from various real-world graphs.

A brief outline of the tutorial is as follows:
• Part I: Introduction
• Part II: Community Detection in Graphs

1) Non-overlapping clustering [1]–[3]
2) Overlapping clustering [4]–[7]
3) Multi-attribute clustering [8]–[10]

• Part III: Anomaly detection in graphs
1) Feature-based approaches [11]–[13]
2) Spectral-based approaches [14]–[16]
3) Density-based approaches [17]–[21]

• Part IV: Conclusions

II. TARGET AUDIENCE

This tutorial is targeted at anyone interested in data mining
for graphs, from researchers to practitioners from industry.
For the audience new to this field, the tutorial will cover
necessary preliminaries and provide an intuitive overview of
recent studies on community detection and anomaly detection
on graphs. The tutorial will also offer in-depth descriptions
of state-of-the-art techniques for the audience with more
experience in this field.
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