
Noname manuscript No.
(will be inserted by the editor)

Temporal Hypergraph Motifs

Geon Lee · Kijung Shin

Received: 29 Jan 2022 / Revised: 16 Dec 2022 / Accepted: 06 Jan 2023

Abstract Group interactions arise in our daily lives (email communications, on-demand
ride sharing, and comment interactions on online communities, to name a few), and they
together form hypergraphs that evolve over time. Given such temporal hypergraphs, how can
we describe their underlying design principles? If their sizes and time spans are considerably
different, how can we compare their structural and temporal characteristics?

In this work, we define 96 temporal hypergraph motifs (TH-motifs) and propose the
relative occurrences of their instances as an answer to the above questions. TH-motifs cate-
gorize the relational and temporal dynamics among three connected hyperedges that appear
within a short time. For scalable analysis, we develop THYME+, a fast and exact algo-
rithm for counting the instances of TH-motifs in massive hypergraphs, and we show that
THYME+ is up to 2,163× faster while requiring less space than baseline approaches. In
addition to exact counting algorithms, we design three versions of sampling algorithms for
approximate counting. We theoretically analyze the accuracy of the proposed methods, and
we empirically show that the most advanced algorithm, THYME-A⋆, is up to 11.1× more
accurate than baseline approaches. Using the algorithms, we investigate 11 real-world tem-
poral hypergraphs from various domains. We demonstrate that TH-motifs provide important
information useful for downstream tasks and reveal interesting patterns, including the strik-
ing similarity between temporal hypergraphs from the same domain.

Keywords Hypergraph · Temporal Hypergraph Motif · Network Motif · Hypergraphlet ·
Graphlet

1 Introduction

Interactions in real-world systems are complex, and in many cases, they are beyond pair-
wise: email communications, on-demand ride sharing, and comment interactions on online

Geon Lee
Kim Jaechul Graduate School of AI, KAIST, Seoul, South Korea
E-mail: geonlee0325@kaist.ac.kr

Kijung Shin (Corresponding Author)
Kim Jaechul Graduate School of AI and School of Electrical Engineering, KAIST, Seoul, South Korea
E-mail: kijungs@kaist.ac.kr



2 Geon Lee, Kijung Shin

communities, to name a few. These group interactions together form a hypergraph, which
consists of a set of nodes and a set of hyperedges (see Fig. 1(a) for an example). Each
hyperedge is a subset of any number of nodes, and by naturally representing a group inter-
action among multiple individuals or objects, it contributes to the powerful expressiveness
of hypergraphs.

Recently, several empirical studies have revealed structural and temporal properties of
real-world hypergraphs. Pervasive structural patterns include (a) heavy-tailed distributions
of degrees, edge sizes, and intersection sizes (Kook et al., 2020); (b) giant connected com-
ponents (Do et al., 2020), and small diameters (Do et al., 2020); and (c) substantial overlaps
of hyperedges with homophily (Lee et al., 2021). Temporal properties observed commonly
in various time-evolving hypergraphs include (a) significant overlaps between temporally
adjacent hyperedges (Benson et al., 2018b); and (b) diminishing overlaps, densification, and
shrinking diameters (Kook et al., 2020).

In addition to these macroscopic properties, local connectivity and dynamics in real-
world hypergraphs have been studied. Benson et al. (2018a) examined the interactions among
a fixed number of nodes, with a focus on their relations with the emergence of a hyperedge
containing all the nodes. Lee et al. (2020) inspected the overlaps between three hyperedges,
which they categorize into 26 patterns called hypergraph motifs (h-motifs). Comparing the
relative counts of each h-motif’s instances revealed that local structures are particularly sim-
ilar between hypergraphs from the same domain but different across domains. In h-motifs,
however, temporal dynamics are completely ignored.

This line of research has also revealed that specialized analysis tools (e.g., h-motifs
(Lee et al., 2020) and multi-level decomposition (Do et al., 2020)) are useful for extracting
unique high-order information that hypergraphs convey and also for coping with additional
complexity due to the flexibility in the size of hyperedges. Simply utilizing graph analysis
tools (e.g., network motifs (Milo et al., 2002)) after converting hypergraphs into pairwise
graphs is often limited in addressing the above challenges (Lee et al., 2020; Yoon et al.,
2020).

Motivated by interesting patterns that temporal network motifs revealed in ordinary
graphs (Paranjape et al., 2017; Li et al., 2018; Kovanen et al., 2011; Gurukar et al., 2015;
Redmond and Cunningham, 2013), we define 96 temporal hypergraph motifs (TH-motifs)
for local pattern analysis of time-evolving hypergraphs. TH-motifs generalize the notion of
static h-motifs, which completely ignore temporal information, and describe both relational
and temporal dynamics among three connected temporal hyperedges that arrive within a
short time. Specifically, given three connected hyperedges ei, e j, and ek, all of which arrive
within δ time units, TH-motifs describe their connectivity based on the emptiness of the
seven subsets of them shown in Fig. 1(b). In the temporal perspective, the relative arrival
orders of ei, e j, and ek are taken into account, and thus patterns that are indistinguishable
using static h-motifs can be characterized using TH-motifs.

Given a temporal hypergraph, where a timestamp is attached to each hyperedge (see
Fig. 1(a) for an example), we summarize its local structural and temporal characteristics
using the relative occurrence of 96 TH-motifs’ instances. That is, we obtain a vector of
length 96 regardless of the sizes and time spans of hypergraphs, and thus local characteristics
of different hypergraphs can be easily compared.

Another focus of this paper is the problem of counting TH-motifs’ instances. Since the
number of three connected hyperedges can be orders of magnitude larger than the number of
hyperedges, directly enumerating all of them is computationally prohibitive, especially for
massive hypergraphs. We develop THYME+ (Temporal Hypergraph Motif Census), which
exactly counts each TH-motif’s instances while avoiding direct enumeration. In our experi-



Temporal Hypergraph Motifs 3

1

e1 = (e!1={1,4,5}, t1=7)

2

4

5 6 8
7

3
e2 = (e!2={2,3,4}, t2=10) e3 = (e!3={4,5,6}, t3=11)

e6 = (e!6={4,5,6}, t6=17)

e4 = (e!4={6,7,8}, t4=12)
e5 = (e!5={6,7,8}, t5=14)

(a) An example temporal hypergraph

(b) 7 regions for defining
TH-motifs

(c) The definition of
TH-motif 77

(d) An instance of
TH-motif 77

Fig. 1: (a) A temporal hypergraph with 8 nodes and 6 temporal hyperedges. (b) The 7
regions in the Venn diagram representation for defining TH-motifs. (c) The definition of TH-
motif 77. ‘F’ and ‘E’ stand for ‘filled’ and ‘empty’, respectively. (d) The sequence ⟨e2,e3,e4⟩
is an instance of TH-motif 77.

ments, THYME+ is up to 2,163× faster than the direct extension of a recent exact temporal
network motif counting algorithm (Paranjape et al., 2017), which enumerates every static h-
motif in the induced static hypergraph. THYME+ makes the best use of our two findings in
real-world hypergraphs that temporal hyperedges tend to be (1) repetitive and (2) temporally
local. These findings about duplicated (i.e., completely overlapped) hyperedges complement
the findings in (Benson et al., 2018b), which focus mainly on partial overlaps.

In addition to exact counting algorithms, we design three different versions of sam-
pling algorithms: THYME-A, THYME-A+, and THYME-A⋆ for approximately counting
the instances of each TH-motif. All versions yield unbiased estimates of the counts by par-
tially exploring the input temporal hypergraph by sampling time intervals. Specifically, we
propose THYME-A⋆, the most accurate sampling algorithm by reducing the variances of
THYME-A and THYME-A+. According to our empirical analyses, THYME-A⋆ is not only
faster than the direct extension of a recent sampling method for counting temporal networks
motifs in pairwise graphs (Liu et al., 2019) but also up to 11.1× more accurate than it.
These experimental results are consistent with our theoretical analyses.

Using TH-motifs, THYME+, and THYME-A⋆, we investigate 11 real-world hyper-
graphs from 5 distinct domains. Our empirical study demonstrates that TH-motifs are infor-
mative, capturing both structural and temporal characteristics. Specifically, using the counts
of incident TH-motifs’ instances as features brings up to 25.7% improvement in the accu-
racy of a hyperedge prediction task, compared to when static h-motifs are used instead of
TH-motifs. Moreover, TH-motifs reveal interesting patterns, including the striking similarity
between hypergraphs from the same domain.

In summary, our contributions are as follows:

1. New concept: We define 96 temporal hypergraph motifs (TH-motifs) for characterizing
local structures and dynamics in hypergraphs of various sizes.

2. Fast and exact algorithms: We develop fast algorithms for exactly counting the in-
stances of TH-motifs, and they are up to 2,163× faster than baseline.



4 Geon Lee, Kijung Shin

Fig. 2: The 96 temporal hypergraph motifs (TH-motifs). In each TH-motif, the red hy-
peredge arrives first followed by the blue one and then the green one. Each of the 7 distinct
regions in the Venn diagram representation is colored white if it is empty, and it is colored
grey if it is filled with at least one node. See Fig. 1(d) for an instance of TH-motif 77.

3. Accurate approximate algorithms: We develop fast but accurate sampling algorithms
for counting the instances of each TH-motif, and they are at most 11.1× more accurate
than baseline.

4. Empirical discoveries: We demonstrate the usefulness of TH-motifs by uncovering the
design principles of 11 real-world temporal hypergraphs from 5 different domains.

Reproducibility: The source code and datasets used in this work are available at https:
//github.com/geon0325/THyMe.

This work is an extended version of (Lee and Shin, 2021), with (a) new sampling algo-
rithms for approximate counting of instances of TH-motifs, (b) theoretical analyses of exact
and approximate algorithms, and (c) additional experimental results.

In Section 2 we review preliminaries and related prior works. In Section 3, we present
the concept of TH-motifs. In Section 4, we develop algorithms for exactly counting the in-
stances of TH-motifs. In Section 5, we develop algorithms for approximately counting the
instances of TH-motifs. In Section 6, we empirically analyze real-world temporal hyper-
graphs through the lens of TH-motifs. Lastly, in Section 7, we offer conclusions.

2 Preliminaries and Related Works

In this section, we first review the concept of hypergraphs. Then, we introduce hypergraph
motifs (h-motifs), which are designed for static hypergraphs. Lastly, we discuss other related
works. Refer to Table 1 for the frequently-used notations.

2.1 Basic Concepts: Static and Temporal Hypergraphs

A hypergraph G = (V,E) consists of a set of nodes V = {v1, ...,v|V |} and a set of hyperedges
E = {ẽ1, ..., ẽ|E|}. Each hyperedge ẽ ∈ E is a non-empty set of an arbitrary number of nodes.
A temporal hypergraph T = (V,E ) on a node set V is an ordered sequence of temporal

https://github.com/geon0325/THyMe
https://github.com/geon0325/THyMe


Temporal Hypergraph Motifs 5

Table 1: Frequently-used notations.

Notation Definition

T = (V,E ) temporal hypergraph with temporal hyperedges E
GT = (V,EE ) induced static hypergraph of the temporal hypergraph T

ei = (ẽi, ti) temporal hyperedge with nodes ẽi arrived at time ti
I(ẽ) set of temporal hyperedges whose nodes are ẽ

h(ẽi, ẽ j, ẽk) TH-motif corresponding to an instance ⟨ei,e j,ek⟩

P = (VP,EP) projected graph in THYME
Q = (VQ,EQ, tQ) projected graph in THYME+

hyperedges. Each ith temporal hyperedge ei = (ẽi, ti) where ẽi ⊆ V is the set of nodes and
ti is the time of arrival. Two distinct temporal hyperedges ei = (ẽi, ti) and e j = (ẽ j, t j) are
duplicated if they share exactly the same set of nodes, i.e., ẽi = ẽ j. We assume the sequence
is ordered and timestamps are unique, i.e., if i < j, then ti < t j. Let tmin and tmax be the first
and the last timestamps of the temporal hypergraph, i.e., tmin = t1 and tmax = t|E |. We denote
the set of temporal hyperedges whose nodes are ẽ (i.e., those inducing ẽ) by I(ẽ) := {ei =
(ẽi, ti) ∈ E : ẽi = ẽ}. The temporal hypergraph T induces a static hypergraph GT = (V,EE )
where timestamps and duplicated temporal hyperedges are ignored. That is, a hyperedge
ẽ ∈ EE in GT exists if and only if I(ẽ) ̸= /0. Notably, the number of temporal hyperedges is
typically much larger than that of static hyperedges in the induced hypergraph, i.e., |E | ≫
|EE |.

2.2 Static Hypergraph Motifs (h-motifs)

Hypergraph motifs (h-motifs) (Lee et al., 2020) are tools for understanding the local struc-
tural properties of static hypergraphs. Given three connected hyperedges, h-motifs describe
their connectivity patterns by the emptiness of each of seven subsets: (1) ẽi \ ẽ j \ ẽk, (2)
ẽ j \ ẽk \ ẽi, (3) ẽk \ ẽi \ ẽ j, (4) ẽi ∩ ẽ j \ ẽk, (5) ẽ j ∩ ẽk \ ẽi, (6) ẽk ∩ ẽi \ ẽ j, and (7) ẽi ∩ ẽ j ∩ ẽk.
While there can exist 27 possible cases of emptiness, 26 cases of them are considered after
excluding symmetric, duplicated, and disconnected ones. Since non-pairwise interactions
among the hyperedges (such as ẽi∩ ẽ j∩ ẽk) are taken into account, h-motifs effectively cap-
ture the high-order information of the overlapping patterns of the hyperedges. It is shown
empirically that their occurrences in the real-world hypergraphs are significantly different
from those in randomized hypergraphs. Moreover, the relative occurrences are particularly
similar between hypergraphs from the same domain, while they are distinct between hyper-
graphs from different domains. Note that h-motifs, which are originally designed for static
hypergraphs, completely ignore the temporal information.

2.3 Other Related Works

In this subsection, we review prior works on network motifs and empirical analyses of hy-
pergraphs.

Network Motifs. Network motifs are fundamental building blocks of real-world graphs (Shen-
Orr et al., 2002; Milo et al., 2002). Their relative occurrences in real-world graphs are signif-
icantly different from those in randomized ones (Milo et al., 2002) and unique within each



6 Geon Lee, Kijung Shin

domain (Milo et al., 2004). While they were originally defined on a static graph, they have
been extended to temporal (Paranjape et al., 2017), heterogeneous (Rossi et al., 2020a; Li
et al., 2018), and bipartite (Borgatti and Everett, 1997) graphs, as well as hypergraphs (Lee
et al., 2020). Their usefulness has been demonstrated in a wide range of graph applications
including community detection (Benson et al., 2016; Li et al., 2019; Tsourakakis et al., 2017;
Yin et al., 2017; Arenas et al., 2008), ranking (Zhao et al., 2018), and embedding (Yu et al.,
2019; Rossi et al., 2018a, 2020b; Lee et al., 2019; Rossi et al., 2018b).

Temporal Network Motifs: The notion of network motifs has been extended to temporal
networks to describe patterns in sequences of temporal edges. Several definitions of tem-
poral motifs have been used, and most of them consider the temporal connectivity between
the edges. Kovanen et al. (2011) and Gurukar et al. (2015) consider δ -adjacency between
temporal edges. That is, every consecutive edge should share a node and arrive within δ

time units. Several counting algorithms for such patterns have been proposed (Redmond
and Cunningham, 2013; Kovanen et al., 2011; Gurukar et al., 2015). Another definition of
temporal motifs describes patterns of sequences of temporal edges where all edges arrive
within δ time units (Paranjape et al., 2017) while taking their relative arrival orders into
consideration. In this work, we define TH-motifs based on the notion of temporal motifs
defined in (Paranjape et al., 2017) due to its simplicity and effectiveness.

Hypergraphs: Hypergraphs, which naturally represent group interactions among multiple
individuals or objects, are useful in numerous application areas including computer vi-
sion (Yu et al., 2012), bioinformatics (Hwang et al., 2008), social network analysis (Yang
et al., 2019), and circuit design (Karypis et al., 1999). Using hypergraphs, various analytical
and predictive tasks have been performed, including classification (Yadati et al., 2018; Feng
et al., 2019), clustering (Amburg et al., 2020; Li and Milenkovic, 2017), hyperedge predic-
tion (Benson et al., 2018a; Yoon et al., 2020), and anomaly detection (Lee et al., 2022a). An
extensive studies on local structural patterns (Benson et al., 2018a; Lee et al., 2020; Kim
et al., 2022), global structural patterns (Chodrow, 2020; Do et al., 2020; Choe et al., 2022),
and dynamic patterns (Kook et al., 2020; Benson et al., 2018b; Choo and Shin, 2022; Ko
et al., 2022) have been discovered (see (Lee et al., 2022b)). In this work, we define temporal
hypergraph motifs for describing dynamic and microscopic structural patterns of real-world
temporal hypergraphs.

3 Proposed Concepts

In this section, we propose temporal hypergraph motifs (TH-motifs), which are tools for
understanding the local structural and temporal characteristics of temporal hypergraphs. We
introduce the definition and their relevant concepts.

Definition: TH-motifs describe structural and temporal patterns in sequences of three con-
nected temporal hyperedges that are close in time. Note that three hyperedges are connected
if and only if one among them overlaps with the others. Specifically, given three connected
temporal hyperedges ⟨ei = (ẽi, ti), e j = (ẽ j, t j), ek = (ẽk, tk)⟩where ti < t j < tk and tk−ti ≤ δ

(i.e., they arrive within a predefined time interval δ ), TH-motifs describe the emptiness of
the 7 subsets: (1) ẽi \ ẽ j \ ẽk, (2) ẽ j \ ẽk \ ẽi, (3) ẽk \ ẽi \ ẽ j, (4) ẽi ∩ ẽ j \ ẽk, (5) ẽ j ∩ ẽk \ ẽi,
(6) ẽk ∩ ẽi \ ẽ j, and (7) ẽi ∩ ẽ j ∩ ẽk. That is, in the structural aspect, TH-motifs describe the
emptiness of the seven distinct regions in the Venn diagram representation (see Fig. 1(b)),
effectively capturing the high-order connectivity among three hyperedges. In the temporal
aspects, TH-motifs take the relative arrival orders of three hyperedges and their time inter-



Temporal Hypergraph Motifs 7

val into consideration. While there can exist 27 possible cases of emptiness, we consider 96
cases of them, which are called TH-motif 1 to TH-motif 96, after excluding those describ-
ing disconnected hyperedges. We visualize the 96 TH-motifs in Fig. 2. Recall that static
h-motifs completely ignore temporal information, and also assume that every hyperedge is
unique, while TH-motifs also describe the patterns among duplicated temporal hyperedges.
Thus, while static h-motifs distinguish only 26 different patterns, TH-motifs distinguish 96
different patterns by considering temporal dynamics in addition to the connectivity.

Instance of TH-motifs: A sequence ⟨ei,e j,ek⟩ of three temporal hyperedges is an instance
of TH-motif t if its relational and temporal dynamics are described by TH-motif t (see
Fig. 1(d) for an example). For each instance ⟨ei,e j,ek⟩, we denote its corresponding TH-
motif by h(ẽi, ẽ j, ẽk). We let△(⟨ei,e j,ek⟩) be the duration (the time interval between the ar-
rivals of the first and the last temporal hyperedge) of the instance, i.e.,△(⟨ei,e j,ek⟩)= tk−ti.
In addition, let t(⟨ei,e j,ek⟩) be the closure time (the timestamp of the last temporal hyper-
edge) of the instance, i.e., t(⟨ei,e j,ek⟩) = tk. The time complexity of computing h(ẽi, ẽ j, ẽk)
is given in Lemma 1.

Lemma 1 (Complexity of computing h(ẽi, ẽ j, ẽk)) Given an instance ⟨ei,e j,ek⟩ of a TH-
motif, the time complexity of computing h(ẽi, ẽ j, ẽk) is O(min(|ẽi|, |ẽ j|, |ẽk|)).
Proof. Once we compute |ẽi ∩ ẽ j ∩ ẽk|, by the assumptions above, the cardinalities of the
remaining six subsets are obtained immediately in O(1) time as follows:

(1) |ẽi \ ẽ j \ ẽk|= |ẽi|− |ẽi∩ ẽ j|− |ẽk ∩ ẽi|+ |ẽi∩ ẽ j ∩ ẽk|
(2) |ẽ j \ ẽk \ ẽi|= |ẽ j|− |ẽ j ∩ ẽk|− |ẽi∩ ẽ j|+ |ẽi∩ ẽ j ∩ ẽk|
(3) |ẽk \ ẽi \ ẽ j|= |ẽk|− |ẽk ∩ ẽi|− |ẽ j ∩ ẽk|+ |ẽi∩ ẽ j ∩ ẽk|
(4) |ẽi∩ ẽ j \ ẽk|= |ẽi∩ ẽ j|− |ẽi∩ ẽ j ∩ ẽk|
(5) |ẽ j ∩ ẽk \ ẽi|= |ẽ j ∩ ẽk|− |ẽi∩ ẽ j ∩ ẽk|
(6) |ẽk ∩ ẽi \ ẽ j|= |ẽk ∩ ẽi|− |ẽi∩ ẽ j ∩ ẽk|

Let s= argmint∈{i, j,k} |ẽt |. We can compute |ẽi∩ ẽ j∩ ẽk| in O(|ẽs|) time by checking whether
each node in ẽs is contained in ẽx and ẽy where x ̸= y ̸= s. Thus, the time complexity of
computing h(ẽi, ẽ j, ẽk) is O(|ẽs|) = O(min(|ẽi|, |ẽ j|, |ẽk|)).
Triple, Pair, and Single Inducing TH-motifs: The 96 TH-motifs can be categorized into
three types based on the number of underlying static hyperedges. A TH-motif is triple-
inducing if underlying hyperedges in its instance ⟨ei,e j,ek⟩ are distinct (i.e., ẽi ̸= ẽ j, ẽ j ̸= ẽk,
and ẽk ̸= ẽi), as in TH-motifs 1-86. If two are duplicated while the remaining one is different,
as in TH-motifs 87-95, it is pair-inducing. If all three hyperedges are duplicated, as in TH-
motif 96, it is single-inducing.

4 Exact Counting Algorithms

In this section, we describe methodologies for exactly counting the instances of each TH-
motif in the input temporal hypergraph. We first present DP, which extends a recent exact
counting algorithm (Paranjape et al., 2017) for temporal network motifs. Then, we describe
THYME, a preliminary version of our proposed algorithm THYME+. Lastly, we propose
THYME+ (Temporal Hypergraph Motif Census), a fast and efficient algorithm that ad-
dresses the limitations of the previous ones.

Remarks: The problem of counting TH-motifs has additional technical challenges while it
bears some similarity with counting static h-motifs or temporal network motifs. First, the



8 Geon Lee, Kijung Shin

email-Enron email-Eu contact-primary contact-high threads-ubuntu

0.27 %

0.31 %

(a) email

12 %

29 %

(b) contact

0.0007 %

(c) threads

Fig. 3: Only a small fraction of static h-motifs’ instances in the induced static hypergraphs
are induced by any valid instance of TH-motifs. We report the results in small datasets where
the instances of static h-motifs can be exactly counted.

number of temporal hyperedges is typically much larger than that of hyperedges in the un-
derlying static hypergraph. For example, the 11 considered real-world temporal hypergraphs
(see Section 6.1) have up to 1.2− 22.0× more temporal hyperedges than the underlying
static ones. This incurs significant bottlenecks of enumeration methods, and thus fast algo-
rithms are demanded. Temporal network motifs are defined only by pairwise interactions
among a fixed number of nodes and their timestamps. However, TH-motifs are defined not
just by pairwise interactions but also by non-pairwise interactions among three hyperedges,
in addition to their timestamps.

4.1 DYNAMIC PROGRAMMING (DP): Extension of Paranjape et al. (2017)

We present DYNAMIC PROGRAMMING (DP), which is a baseline approach for counting the
instances of each TH-motif in the input temporal hypergraph T .

Counting in DP: Given an input temporal hypergraph T = (V,E ), DP enumerates the in-
stances of static h-motifs in the induced static hypergraph GT = (V,EE ). This step can be
processed by using an existing algorithm provided in (Lee et al., 2020). For each instance
{ẽi, ẽ j, ẽk} of static h-motif in GT , DP counts the instances of each TH-motif whose tem-
poral hyperedges (a) induce the static h-motif instance and (b) arrive within δ time. To this
end, we adapt the dynamic programming scheme provided by (Paranjape et al., 2017), as
described in detail in Appendix A.

Limitations of DP: Using dynamic programming, DP avoids enumerating over all instances
of TH-motifs. However, it still enumerates all instances of static h-motifs in the induced hy-
pergraph GT , most of which however are not induced by any valid instance of TH-motifs,
as seen in Fig. 3. For example, in threads-ubuntu, only 0.0007% of the static h-motifs
instances are induced by any valid instance of TH-motifs when δ is 5 hours. That is, DP
enumerates every three connected hyperedges in GT , ignoring any temporal information,
while we are interested only in three connected temporal hyperedges that arrive within in a
short period of time.



Temporal Hypergraph Motifs 9

Algorithm 1: THYME: Preliminary Algorithm for Exact Counting of TH-motifs
Input : (1) temporal hypergraph: T = (V,E )

(2) time interval δ

Output: # of each temporal h-motif M’s instances: C[M]

1 C← map initialized to 0
2 P = (VP =∅,EP =∅)
3 ws← 1
4 for each temporal hyperedge ei = (ẽi, ti) ∈ E do
5 insert(ei)
6 while tws +δ < ti do
7 remove(ews)
8 ws← ws +1
9 S←set of three connected temporal hyperedges including ei

10 for each instance ⟨e j,ek,ei⟩ ∈ S do
11 C[h(ẽ j, ẽk, ẽi)]←C[h(ẽ j, ẽk, ẽi)]+1
12 return M

13 Procedure insert(ei = (ẽi, ti))
14 VP←VP ∪{ei}
15 Nei ←{e : e ∈VP \{ei} and ẽi ∩ ẽ ̸=∅}
16 EP← EP ∪{(ei,e) : e ∈ Nei}
17 Procedure remove(ei = (ẽi, ti))
18 VP←VP \{ei}
19 Nei ←{e : e ∈VP and ẽi ∩ ẽ ̸=∅}
20 EP← EP \{(ei,e) : e ∈ Nei}

4.2 THYME: Preliminary Version of the Proposed Algorithm

To address the limitations of DP, we present THYME, a preliminary version of our proposed
algorithm THYME+. THYME directly enumerates each instance of TH-motifs, instead of
those of static h-motifs, to avoid the unnecessary search. To this end, THYME concisely con-
siders the temporal hyperedges that occur in the δ -sized temporal window. In response to the
arrival of a new temporal hyperedge ei at time ti, the temporal window moves to [ti−δ , ti].
It maintains only a succinct projected graph P = (VP,EP) that represents the connectivity
between the temporal hyperedges that occur within the current temporal window. As the
window moves, the projected graph P is incrementally updated, reflecting the changes of
the current temporal hyperedges. Using P, THYME exhaustively enumerates the instances
of TH-motifs.

Projected Graph in THYME: The projected graph P = (VP,EP) is a graph where each
node is a temporal hyperedge and two nodes are adjacent by an edge if their corresponding
temporal hyperedges share any nodes. In THYME, P is maintained on the fly, with response
to the temporal hyperedges that either enter or exit the sliding time window. The update
schemes are described as insert and remove, respectively, in Algorithm 1. In insert, a
temporal hyperedge ei is added as a node (line 14) and its neighbors (i.e., those in VP that
are adjacent to ei) are joined by edges (lines 15-16). In remove, a temporal hyperedge ei, as
well as its incident edges are removed from VP and EP, respectively (lines 18-20).

Counting in THYME: The counting procedure of THYME is described in Algorithm 1.
The sets of nodes and edges of the projected graph P are initialized to empty maps, i.e.,
VP =∅ and EP =∅ (line 2). Once a temporal hyperedge ei =(ẽi, ti)∈ E arrives, the temporal
window is moved to [ti−δ , ti] and the projected graph P is updated accordingly, as described
above. Then, it enumerates the instances of three connected nodes in P, which corresponds



10 Geon Lee, Kijung Shin

to the instances of TH-motifs of T containing ei (line 9). For each instance ⟨e j,ek,ei⟩ of
TH-motif M, the corresponding count C[M] is incremented (line 11).

Complexity of THYME: We analyze the time complexity of THYME, and to this end, we
consider two critical steps that are the bottlenecks of THYME: (1) updating the projected
graph P and (2) searching for three connected temporal hyperedges. Here, we assume all
sets and maps are implemented using hash tables, and the projected graph P is a weighted
graph where the weight of edge (ei,e j) ∈ EP is |ẽi∩ ẽ j|.

(1) Updating the projected graph P: The bottleneck of updating the projected graph in
THYME is finding all neighbors of the target hyperedge. Specifically, as described in Al-
gorithm 8 in Appendix C, given a temporal hyperedge ei, the set of temporal hyperedges
in P that share any number of nodes in ei is retrieved in THYME. The time complexity of
Algorithm 8 is given in Lemma 2.

Lemma 2 (Complexity of Algorithm 8 in THYME) The time complexity of Algorithm 1
is O(∑e j∈Nei

|ẽi∩ ẽ j|).
Proof. By the assumptions above, line 4 takes O(1) time, and it is executed |ẽi∩ ẽ j| times for
each e j ∈ Nei . Thus, the time complexity of Algorithm 8 is O(∑e j∈Nei

|ẽi∩ ẽ j|).

(2) Searching three connected temporal hyperedges: Once the projected graph is updated,
THYME searches for new instances of TH-motifs that contain ei. To this end, as described
in Algorithm 10 in Appendix C, the 1-hop and 2-hop neighbors of the target hyperedge in
the projected graph are explored. The time complexity of Algorithm 10 is given in Lemma 3.

Lemma 3 (Complexity of Algorithm 10 in THYME) The time complexity of Algorithm 10
is O(∑e j∈Nei

|Nei ∪Ne j |).
Proof. By the assumptions above, given a temporal hyperedge ei = (ẽi, ti), computing Nei ∪
Ne j for every neighbor e j ∈ Nei takes O(∑e j∈Nei

|Nei ∪Ne j |) time.

Based on the analyses above, we sum up the time complexity of THYME in Theorem 1.

Theorem 1 (Complexity of THYME) The time complexity of THYME to process a tem-
poral hyperedge ei is

O

(
∑

e j∈Nei

∑
ek∈(Nei∪Ne j )

min(|ẽi|, |ẽ j|, |ẽk|)

)
. (1)

Proof. Each temporal hyperedge ei is processed through three steps: (a) insertion into P, (b)
removal from P, and (c) enumeration and counting TH-motifs. The time complexity of each
step is summarized as follows.

(a) The time complexity of inserting the node ei and its adjacent edges to P is O(∑e j∈Nei
|ẽi∩

ẽ j|), as stated in Lemma 2.
(b) The time complexity of removing edges that are adjacent to ei is O(|Nei |), i.e., propor-

tional to the number of its neighbors.
(c) The time complexity of enumerating three connected nodes that contain ei is O(∑e j∈Nei

|Nei∪
Ne j |), as stated in Lemma 3, and for each triple of nodes, it takes O(min(|ẽi|, |ẽ j|, |ẽk|))
time to identify its TH-motif. Thus, the time complexity of this step is bounded by Eq. (1).



Temporal Hypergraph Motifs 11

Algorithm 2: THYME+: Proposed Algorithm for Exact Counting of TH-motifs
Input : (1) temporal hypergraph: T = (V,E )

(2) time interval δ

Output: # of each temporal h-motif M’s instances: C[M]
1 C← map initialized to 0
2 Q = (VQ =∅,EQ =∅, tQ =∅)
3 ws← 1
4 for each temporal hyperedge ei = (ẽi, ti) ∈ E do
5 insert(ei)
6 while tws +δ < ti do
7 remove(ews)
8 ws← ws +1
9 S← set of 3 connected static hyperedges including ẽi

10 for each instance {ẽi, ẽ j, ẽk} ∈ S do
11 comb3(ẽi, ẽ j, ẽk)
12 for each pair (ẽi, ẽ j) ∈ Nẽi do
13 comb2(ẽi, ẽ j)
14 comb1(ẽi)

15 return M

1 Procedure insert(ei = (ẽi, ti))
2 if ẽi /∈VQ then
3 VQ←VQ ∪{ẽi}
4 Nẽi ←{ẽ : ẽ ∈VQ \{ẽi} and ẽi ∩ ẽ ̸=∅}
5 EQ← EQ ∪{(ẽi, ẽ) : ẽ ∈ Nẽi}
6 tQ(ẽi)← t(ẽi)∪{ti}
1 Procedure remove(ei = (ẽi, ti))
2 t(ẽi)← t(ẽi)\{ti}
3 if tQ(ẽi) =∅ then
4 VQ←VQ \{ẽi}
5 Nẽi ←{ẽ : ẽ ∈VQ and ei ∩ e ̸=∅}
6 EQ← EQ \{(ẽi, ẽ) : ẽ ∈ Nẽi}
1 Procedure comb3(ẽi, ẽ j, ẽk)
2 C[h(ẽ j, ẽk, ẽi)]←C[h(ẽ j, ẽk, ẽi)]+∑t∈tQ(ẽ j),t′∈tQ(ẽk)

1[t < t ′]
3 C[h(ẽk, ẽ j, ẽi)]←C[h(ẽk, ẽ j, ẽi)]+∑t∈tQ(ẽ j),t′∈tQ(ẽk)

1[t ′ < t]
1 Procedure comb2(ẽi, ẽ j)
2 C[h(ẽi, ẽ j, ẽi)]←C[h(ẽi, ẽ j, ẽi)]+∑t∈tQ(ẽi)\{ti},t′∈tQ(ẽ j)1[t < t ′]
3 C[h(ẽ j, ẽi, ẽi)]←C[h(ẽ j, ẽi, ẽi)]+∑t∈tQ(ẽi)\{ti},t′∈tQ(ẽ j)1[t

′ < t]

4 C[h(ẽ j, ẽ j, ẽi)]←C[h(ẽ j, ẽ j, ẽi)]+
(|tQ(ẽ j)|

2

)
1 Procedure comb1(ẽi)

2 C[h(ẽi, ẽi, ẽi)]←C[h(ẽi, ẽi, ẽi)]+
(|tQ(ẽi)−{ti}|

2

)

Limitations of THYME: Though THYME avoids the redundant search in the induced static
hypergraph GT , it directly enumerates every instance of TH-motifs in T . Since the size of
the temporal hypergraph is much larger than that of induced static hypergraphs, counting
the instances in temporal hypergraphs can be more computationally challenging, especially
when the time interval δ is large. Each temporal hyperedge within the temporal window cor-
responds to a unique node in the projected graph P even when many temporal hyperedges
are highly duplicated, as in real-world hypergraphs (see Section 6.4).



12 Geon Lee, Kijung Shin

4.3 THYME+: Advanced Version of the Proposed Algorithm

We present THYME+, our proposed algorithm for exactly counting the instances of TH-
motifs. THYME+ is faster and more efficient than DP and THYME, as shown empirically
in Section 6, by addressing their limitations as follows.

– DP enumerates all instances of static h-motifs in the induced hypergraph GT , where most
of them are redundant, not induced by any instance of TH-motifs of the temporal hy-
pergraph T . THYME+ selectively enumerates the h-motif instances and thus reduces the
redundancy.

– THYME exhaustively enumerates all instances of TH-motifs. THYME+ reduces the enu-
meration by introducing an effective counting scheme.

– The projected graph P maintained by THYME can be large since each temporal hyper-
edge is represented as a unique node. THYME+ maintains a projected graph Q that is
typically smaller than P. In Q, the same node can be shared by multiple temporal hyper-
edges. The motivation behind Q is empirically demonstrated in Section 6.4.

Projected Graph in THYME+: THYME+ maintains a projected graph Q = (VQ,EQ, tQ)
composed of a set of nodes VQ, a set of edges EQ, and a map tQ. Each node and edge represent
a static hyperedge and a pair of static hyperedges that share any nodes, respectively. In
addition, tQ maps a set of timestamps of temporal hyperedges inducing a particular static
hyperedge. Notably, while each node in the projected graph P used in THYME is a unique
temporal hyperedge, Q represents the connectivity between hyperedges in the induced static
hypergraph GT . That is, duplicated temporal hyperedges can share the same node in Q, and
thus the size of the graph can be much smaller than P, i.e., |EQ|< |EP|.

The update schemes of Q, insert and remove in Algorithm 2 add or delete nodes
and their adjacent edges, respectively. More specifically, in insert, given a new temporal
hyperedge ei = (ẽi, ti), its set of nodes ẽi is inserted as a new node, only if there do not
exist any temporal hyperedges in the current temporal window whose nodes are ẽi (line 3).
Once the new node is inserted, their incident edges are created as well (lines 4-5). Finally,
the timestamp ti is added in tQ(ẽi) (line 6). In remove, given a temporal hyperedge ei to
be removed, it first deletes its timestamp ti from tQ(ẽi) (line 2). If ei is the only temporal
hyperedge in the current window whose node set is ẽi, then ẽi and its incident edges are
removed from VQ and EQ, respectively (lines 4-6).

Counting in THYME+: The counting procedure of THYME+ is described in Algorithm 2.
The sets of nodes and edges of the projected graph Q are initialized to empty maps, i.e.,
VQ =∅ and EQ =∅ (line 2). For each temporal hyperedge ei = (ẽi, ti), it moves the temporal
window to [ti−δ , ti] as described above. Once Q is updated, THYME+ counts the instances
of TH-motifs that contain ei and any two previous temporal hyperedges. To minimize enu-
meration, THYME+ adapts effective counting schemes, comb3, comb2, and comb1, which
compute the number of instances of triple-inducing, pair-inducing, and single-inducing TH-
motifs, respectively, as follows:

– Triple-inducing TH-motifs (lines 9-11): THYME+ first enumerates the instances of
three connected hyperedges in Q that contains ẽi (line 9). For each set {ẽi, ẽ j, ẽk} of three
connected hyperedges, the number of instances of TH-motifs that contain ei is counted by
timestamp combinations using comb3. That is, since ei is the latest temporal hyperedge,
the set {ẽi, ẽ j, ẽk} can be induced by sequences of either ⟨ex,ey,ei⟩ or ⟨ey,ex,ei⟩ where
ẽx = ẽ j and ẽy = ẽk. Since tx ∈ tQ(ẽ j) and ty ∈ tQ(ẽk), the number of such instances can
be computed by the number of timestamp combinations of tQ(ẽ j) and tQ(ẽk) (lines 2-3).



Temporal Hypergraph Motifs 13

– Pair-inducing TH-motifs (lines 12-13): THYME+ enumerates each edge (ẽi, ẽ j) in Q
that is adjacent to ẽi, which can be induced by three different orders of sequences, ⟨ex,ey,ei⟩,
⟨ey,ex,ei⟩, and ⟨ey,ey,ei⟩where ẽx = ẽi and ẽy = ẽ j. Since tx ∈ tQ(ẽi)\{ti} and ty ∈ tQ(ẽ j),
the number of the sequences can be computed by the number of combinations of the set
of these timestamps (lines 2-3).

– Single-inducing TH-motifs (line 14): Single-inducing TH-motifs, each of which con-
sists of three duplicated temporal hyperedges, can be immediately counted using comb1.
That is, a sequence ⟨ex,ey,ei⟩ where ẽx = ẽi and ẽy = ẽi can be an instance of a single-
inducing TH-motif. Since tx ∈ tQ(ẽi) \ {ti}, ty ∈ tQ(ẽi) \ {ti}, and tx < ty, the number of
such instances is computed immediately (line 2).

In Section 6.4, we share empirical observations supporting the intuition behind THYME+.

Complexity of THYME+: We analyze the time complexity of THYME+, and to this end,
we consider three steps that are bottlenecks of THYME+: (1) updating the projected graph
Q, (2) searching for three connected static hyperedges, and (3) combinatorial counting. We
assume all sets and maps are implemented using hash tables and the projected graph Q is a
weighted graph where the weight of edge (ẽi, ẽ j) is |ẽi∩ ẽ j|.
(1) Updating the projected graph Q: As described in Algorithm 9 in Appendix C, given a
temporal hyperedge ei, the set of induced hyperedges in Q that share any number of nodes
in ẽi is retrieved in THYME+. The time complexity of Algorithm 9 is given in Lemma 4.

Lemma 4 (Complexity of Algorithm 9 in THYME+ ) The time complexity of Algorithm 9
is O(∑ẽ j∈Nẽi

|ẽi∩ ẽ j|).
Proof. By the assumptions above, line 4 takes O(1) time, and it is executed |ẽi∩ ẽ j| times for
each ẽ j ∈ Nẽi . Thus, the time complexity of Algorithm 9 is O(∑ẽ j∈Nẽi

|ẽi∩ ẽ j|).

(2) Searching three connected static hyperedges: Once the projected graph is updated,
THYME+ searches for new instances of TH-motifs. To this end, THYME+ searches for
the set of three connected induced static hyperedges that contain ẽi. As described in Al-
gorithm 11 in Appendix C, the 1-hop and 2-hop neighbors of the target hyperedge in the
projected graph are explored. The time complexity of Algorithm 11 is given in Lemma 5.

Lemma 5 (Complexity of Algorithm 11 in THYME+) The time complexity of Algorithm 11
is O(∑ẽ j∈Nẽi

|Nẽi ∪Nẽ j |).
Proof. By the assumptions above, given a temporal hyperedge ei = (ẽi, ti), computing Nẽi ∪
Nẽ j for every neighbor ẽ j ∈ Nẽi takes O(∑ẽ j∈Nẽi

|Nẽi ∪Nẽ j |) time.

(3) Combinatorial counting: In THYME+, we introduce comb3, comb2, and comb1 (de-
scribed in Algorithm 2), which efficiently count the number of triple-inducing, pair-inducing,
and single-inducing TH-motifs, respectively, without directly enumerating instances of them.
The time complexities of comb3, comb2, and comb1 are given in Lemma 6, Lemma 7, and
Lemma 8, respectively. We assume that, for each hyperedge ẽi ∈ VQ in the projected graph
Q, tQ(ẽi) is maintained sorted in increasing order, and |tQ(ẽi)| is maintained and thus imme-
diately obtainable.

Lemma 6 (Complexity of comb3 in THYME+) The time complexity of comb3 is O(|tQ(ẽ j)|+
|tQ(ẽk)|).
Proof. Line 2 and line 3 in Algorithm 2 can be computed by sorting tQ(ẽ j)∪ tQ(ẽk) in in-
creasing order and summing up the ranks of the elements of tQ(ẽ j) and those of tQ(ẽk), re-
spectively. By the assumptions above, tQ(ẽ j) and tQ(ẽk) are sorted, and thus sorting tQ(ẽ j)∪
tQ(ẽk) takes O(|tQ(ẽ j)|+ |tQ(ẽk)|) time.



14 Geon Lee, Kijung Shin

Lemma 7 (Complexity of comb2 in THYME+) The time complexity of comb2 is O(|tQ(ẽi)|+
|tQ(ẽ j)|).
Proof. Line 2 and line 3 in Algorithm 2 can be computed by sorting tQ(ẽi)∪ tQ(ẽ j) in in-
creasing order and summing up the ranks of the elements of tQ(ẽi) and those of tQ(ẽ j), re-
spectively. By the assumptions above, tQ(ẽi) and tQ(ẽ j) are sorted, and thus sorting tQ(ẽi)∪
tQ(ẽ j) takes O(|tQ(ẽi)|+ |tQ(ẽ j)|) time. In addition, by the assumptions above, the size of tQ
is immediately obtainable, and thus line 4 is computed in constant time. Hence, comb2 takes
O(|tQ(ẽi)|+ |tQ(ẽ j)|) time.

Lemma 8 (Complexity of comb1 in THYME+) The time complexity of comb1 is O(1).
Proof. By the assumptions above, the size of tQ is immediately obtainable. From |tQ(ẽi)−
{ti}|= |tQ(ẽi)|−1, we can compute

(|tQ(ẽi)−{ti}|
2

)
in constant time.

Based on the analyses above, we sum up the time complexity of THYME+ in Theorem 2.

Theorem 2 (Complexity of THYME+) The time complexity of THYME+ to process a tem-
poral hyperedge ei is

O

(
∑

ẽ j∈Nẽi

∑
ẽk∈(Nẽi∪Nẽ j )

(
max(|tQ(ẽi)|, |tQ(ẽ j)|, |tQ(ẽk)|)+min(|ẽi|, |ẽ j|, |ẽk|)

))
. (2)

Proof. Each temporal hyperedge ei is processed through three steps: (a) insertion into Q,
(b) removal from Q, and (c) enumeration of the three connected nodes in Q that contain ẽi.
The time complexity of each step is summarized as follows.

(a) The time complexity of inserting the node ẽi and its adjacent edges to Q is O(∑ẽ j∈Nẽi
|ẽi∩

ẽ j|), as stated in Lemma 4.
(b) The time complexity of removing edges that are adjacent to ẽi is O(|Nẽi |), i.e., propor-

tional to the number of its neighbors.
(c) The time complexity of enumerating three connected nodes that contain ẽi is O(∑ẽ j∈Nẽi

|Nẽi∪
Nẽ j |). For each instance (ẽi, ẽ j, ẽk), it takes O(max(|tQ(ẽi)|, |tQ(ẽ j)|, |tQ(ẽk)|)) time from
Lemmas 6, 7, and 8. Additionally, identifying the corresponding TH-motif takes O(min(|ẽi|, |ẽ j|, |ẽk|))
time. Thus, the time complexity of this step is bounded by Eq. (2).

5 Approximate Counting Algorithms

In this section, we describe three versions of THYME-A (THYME Approximate), which ap-
proximately count the instances of each TH-motif in the input temporal hypergraph. Specif-
ically, all versions repeatedly sample time intervals of length △ from the considered time
period. Then, they exactly count the number of instances of each TH-motif whose closure
time is within the sampled time interval. Lastly, based on the counts, they estimate the counts
over the entire time interval. By partially exploring the given temporal hypergraph, all ver-
sions rapidly yield unbiased estimates of the number of TH-motifs.

Remarks: The problem of sampling temporal hypergraphs has additional challenges com-
pared to the exact counting problem. A straightforward approach is to partition the consid-
ered period of time into intervals and count the number of instances of TH-motifs that oc-
curred within each interval, as in sampling temporal network motifs in pairwise graphs (Liu
et al., 2019). This approach, however, requires careful consideration of the instances that



Temporal Hypergraph Motifs 15

cross interval boundaries, which can degrade the scalability of the method, as described be-
low. Instead, in this work, we sample time intervals and use THYME+ to exactly count the
number of instances whose closure time is within the interval, which effectively addresses
the above challenges.

5.1 DISCRETE TIME PARTITIONING (DTP): Extension of Liu et al. (2019)

We present DISCRETE TIME PARTITIONING (DTP), which is a baseline approach for ap-
proximately counting the instances of each TH-motif in the input temporal hypergraph.

Counting in DTP: Given an input temporal hypergraph T = (V,E ), DTP partitions the pe-
riod of considered time (i.e., from tmin to tmax) into discrete time intervals. For each interval,
whose length is cδ (c > 0 is an integer), DTP exactly counts the instances that occurred
within the interval. Since it may omit a large number of instances that cross interval bound-
aries, counts are incremented by the inverse of the probability that the instance is completely
contained in the interval. To this end, the duration of every enumerated instance should be
traced. Furthermore, DTP incorporates an importance sampling to enhance the estimator by
probabilistically sampling intervals and thus reduce the variance. That is, DTP selects an
interval with probability proportional to the number of temporal hyperedges arriving within
the interval. Refer to Appendix B for details.

Limitations of DTP: While DTP yields unbiased estimation by carefully considering the
duration of TH-motifs’ instances, it has limited scalability due to its instance-level enumer-
ation. That is, DTP traces the duration of every instance that occurs within the sampled time
intervals, and this can be inefficient in temporal hypergraphs whose size is typically much
larger than that of induced static hypergraphs. Even worse, this limits the utilization of our
most advanced exact counting method, THYME+, which avoids direct enumeration of the
instances but counts the number of instances of TH-motifs based on combinations of a set
of timestamps.

5.2 THYME-A: Preliminary Version of Approximate Counting Algorithm

We present THYME-A, a preliminary version of our approximate counting algorithm. In-
stead of partitioning the period of time into discrete time intervals, THYME-A samples
△-sized time intervals and exactly counts the number of each TH-motif’s instances whose
closure times are within the intervals. It yields unbiased estimation based on our fastest and
most scalable exact counting method, THYME+.

Counting in THYME-A: The counting procedure of THYME-A is described in Algo-
rithm 3. It samples a△-sized time interval by selecting an initial timestamp t j of the interval
from an ordered set Tnaive = {tmin−△+ 1, · · · , tmax} uniformly at random (line 3). Then
using THYME+, it counts the instances of each TH-motif whose closure time is within
the sampled time interval {t j, · · · , t j +△− 1} (line 4), and these are added to the total
counts C̃ (line 6). Specifically, THYME+ scans temporal hyperedges that arrived within
{t j − δ + 1, · · · , t j +△− 1} and selectively counts the number of instances of TH-motifs
whose closure time is within {t j, · · · , t j +△−1}. These procedures are repeated s times to
reduce the variance of the estimation. Lastly, each estimate C̃[M] of TH-motif M is rescaled
by multiplying |Tnaive|

s△ (line 8). This rescaling step ensures that each estimate C̃[M] is unbi-
ased, as formalized in Theorem 3.



16 Geon Lee, Kijung Shin

Algorithm 3: THYME-A: Preliminary Version of the Proposed Algorithm for Ap-
proximate Counting of TH-motifs

Input : (1) temporal hypergraph: T = (V,E )
(2) time interval δ

(3) number of samples s
(4) sampling time interval△
(5) sampling space Tnaive

Output: approximated # of each temporal h-motif M’s instances: C̃[M]

1 C̃← map initialized to zero
2 for each sample n = 1, · · · ,s do
3 t j ← sample a uniformly random timestamp from Tnaive
4 C j ← exact counts of instances of TH-motifs whose closure time is within {t j, · · · , t j +△−1}

using THYME+

5 for each TH-motif M do
6 C̃[M]← C̃[M]+C j[M]

7 for each TH-motif M do
8 C̃[M]← C̃[M] · |Tnaive|

s△
9 return C̃

Theorem 3 (Bias and variance of THYME-A) For every TH-motif M, THYME-A pro-
vides an unbiased estimate C̃[M] of the count C[M] of its instances, i.e.,

E[C̃[M]] =C[M]. (3)

The variance of the estimate is

Var[C̃[M]] =
1

s△2

{
(|Tnaive|−1) ∑

t j∈Tnaive

X j[M]2− ∑
j ̸= j′

X j[M]X j′ [M]

}
(4)

where X j[M] is the number of instances of TH-motif M whose closure time is within {t j, · · · , t j+
△−1}.

Proof. Let Wi j be a random variable indicating whether the ith (i ∈ {1, · · · ,s}) sampled time
interval is the jth time interval (out of |Tnaive| possible samples). That is, Wi j = 1 if the jth

time interval is sampled for the ith sample, and Wi j = 0 otherwise. Let c̃[M] be the number
of times that TH-motif M’s instances are counted while processing s sampled time intervals.
That is,

c̃[M] :=
s

∑
i=1

∑
t j∈Tnaive

Wi jX j[M].

Then, by the scaling scheme,

C̃[M] = c̃[M] · |Tnaive|
s△

.

Proof of the Bias of C̃[M] (Eq. (3)): Since any time interval is sampled from Tnaive uni-

formly at random,

P[Wi j = 1] = E[Wi j] =
1

|Tnaive|
.

In addition, since each instance of TH-motif M is included in△ different time intervals,

∑
t j∈Tnaive

X j[M] =△C[M].



Temporal Hypergraph Motifs 17

From linearity of expectation,

E[̃c[M]] =
s

∑
i=1

∑
t j∈Tnaive

E [Wi jX j[M]] =
s

∑
i=1

∑
t j∈Tnaive

X j[M]·E[Wi j] =
s

∑
i=1

∑
t j∈Tnaive

X j[M]

|Tnaive|
= s△C[M].

Then, by the scaling term,

E[C̃[M]] =
|Tnaive|

s△
E [̃c[M]] =C[M].

Proof of the Variance of C̃[M] (Eq. (4)): Since Wi j =W 2
i j, the variance of Wi j is

Var[Wi j] = E[W 2
i j]−E[Wi j]

2 =
1

|Tnaive|
− 1
|Tnaive|2

.

Consider the covariance between Wi j and Wi′ j′ . If i = i′, then

Cov(Wi j,Wi′ j′) = E[Wi j,Wi j′ ]−E[Wi j] ·E[Wi j′ ] =−
1

|Tnaive|2
.

Since time intervals are sampled independently, if i ̸= i′, then Cov(Wi j,Wi′ j′) = 0.
These imply

Var[̃c[M]] = Var

[
s

∑
i=1

∑
t j∈Tnaive

Wi jX j[M]

]

=
s

∑
i=1

∑
t j∈Tnaive

Var [Wi jX j[M]]+
s

∑
i=1

∑
j ̸= j′

Cov
(
Wi jX j[M],Wi j′X j′ [M]

)
=

s

∑
i=1

∑
t j∈Tnaive

X j[M]2Var[Wi j]+
s

∑
i=1

∑
j ̸= j′

X j[M]X j′ [M]Cov(Wi j,Wi j′)

=
s(|Tnaive|−1)
|Tnaive|2 ∑

t j∈Tnaive

X j[M]2− s
|Tnaive|2 ∑

j ̸= j′
X j[M]X j′ [M].

Thus, from C̃[M] = c̃[M] · |Tnaive|
s△ ,

Var[C̃[M]] =
|Tnaive|2

s2△2 Var[̃c[M]] =
1

s△2

{
(|Tnaive|−1) ∑

t j∈Tnaive

X j[M]2−∑
j ̸= j′

X j[M]X j′ [M]

}
.

Limitations of THYME-A: Despite the simplicity of THYME-A, it samples time intervals
from Tnaive = {tmin−△+1, · · · , tmax}, which covers the entire period of time. This can be
particularly inefficient in temporal hypergraphs whose arrival times of temporal hyperedges
are extremely sparse, i.e., there are many time units when none of the temporal hyperedges
arrive. In such cases, THYME-A rarely counts any instances of TH-motifs even if it samples
a large number of intervals and thus gives inaccurate estimation.



18 Geon Lee, Kijung Shin

Algorithm 4: THYME-A+: Advanced Version of the Proposed Algorithm for Ap-
proximate Counting of TH-motifs

Input : (1) temporal hypergraph: T = (V,E )
(2) time interval δ

(3) number of samples s
(4) sampling time interval△
(5) sampling space Tadv

Output: approximated # of each temporal h-motif M’s instances: Ĉ[M]

1 Ĉ← map initialized to zero
2 for each sample n = 1, · · · ,s do
3 t j ← sample a uniformly random timestamp from Tadv
4 C j ← exact counts of instances of TH-motifs whose closure time is within {t j, · · · , t j +△−1}

using THYME+

5 for each TH-motif M do
6 Ĉ[M]← Ĉ[M]+C j[M]

7 for each TH-motif M do
8 Ĉ[M]← Ĉ[M] · |Tadv|

s△
9 return Ĉ

5.3 THYME-A+: Advanced Version of Approximated Counting Algorithm

In order to reduce the variance of THYME-A, we propose THYME-A+, which yields more
accurate estimates of the number of instances of TH-motifs by reducing the sampling space
of the time intervals. Intuitively speaking, sampling informative intervals and knowing more
instances are helpful to accurately estimate the count. To this end, THYME-A+ samples△-
sized time interval from Tadv =

⋃
e=(ẽ,t){t−△+ 1, · · · , t}, which is the union of the valid

intervals of each timestamp attached to hyperedges, and in this way, we can ensure that at
least one temporal hyperedge is associated with the sampled interval.

Counting in THYME-A+: The counting procedure of THYME-A+ is described in Algo-
rithm 4. The only difference from THYME-A is the sampling space of the intervals; it sam-
ples time intervals from Tadv, which is empirically much smaller than Tnaive in real-world
temporal hypergraphs. Once the exact counts of TH-motifs during the s sampled intervals
are obtained, they are rescaled by multiplying |Tadv|

s△ (line 8), which makes each estimate

Ĉ[M] of TH-motif M unbiased, as formalized in Theorem 4.

Theorem 4 (Bias and variance of THYME-A+) For every TH-motif M, THYME-A pro-
vides an unbiased estimate Ĉ[M] of the count C[M] of its instances, i.e.,

E[Ĉ[M]] =C[M]. (5)

The variance of the estimate is

Var[Ĉ[M]] =
1

s△2

{
(|Tadv|−1) ∑

t j∈Tadv

Yj[M]2− ∑
j ̸= j′

Yj[M]Yj′ [M]

}
(6)

where Yj[M] is the number of instances of TH-motif M whose closure time is within {t j, · · · , t j+
△−1}



Temporal Hypergraph Motifs 19

Proof. We can prove Theorem 4 by substituting Tnaive, X j[M], and C̃ in the proof of Theo-
rem 3 with Tadv, Yj[M], and Ĉ, respectively.

Comparison with THYME-A: Empirically, THYME-A+ provides a better trade-off be-
tween speed and accuracy than THYME-A, as presented in Section 6. This is theoretically
supported by comparing their variances. First, since the sampling space Tadv of THYME-
A+ is a subset of Tnaive of THYME-A (specifically it consists of only valid time intervals),

∑
j∈Tnaive

X j[M]2 = ∑
j∈Tadv

Yj[M]2 and ∑
j ̸= j′

X j[M]X j′ [M] = ∑
j ̸= j′

Yj[M]Yj′ [M]

hold. The difference between the variance of THYME-A (Eq.(4)) and that of THYME-A+

(Eq.(6)) is in the scalar terms (|Tnaive|−1) and (|Tadv|−1). Since |Tnaive|−1≥ |Tadv|−1,
the variance of THYME-A+ is smaller than or equal to that of THYME-A, i.e., Var[Ĉ[M]]≤
Var[C̃[M]]. In Section 6.5, we empirically confirm our theoretical analyses.

5.4 THYME-A⋆: Even Better Version of THYME-A+

In this subsection, we propose THYME-A⋆ (described in Algorithm 5), which is even better
than our advanced sampling algorithm, THYME-A+. THYME-A⋆ incorporates weighted
sampling into THYME-A+ to reduce the variance of the unbiased estimator. That is, each
time interval is sampled with probability proportional to the number of temporal hyperedges
arriving within the interval.

Counting in THYME-A⋆: While THYME-A+ samples an initial timestamp t j of the in-
terval {t j, · · · , t j +△− 1} from Tadv uniformly at random, THYME-A⋆ makes use of the
temporal distribution of the input temporal hypergraph by sampling t j with the probability
q j, which is proportional to the number n j of temporal hyperedges that arrived within the
interval. That is, THYME-A⋆ first samples a temporal hyperedge e = (ẽ, t) ∈ E uniformly
at random (line 3). This is followed by sampling an initial timestamp t j of the interval from
{t −△+ 1, · · · , t} uniformly at random (line 4). These processes sample t j with a bias,
specifically with the probability proportional to n j, where n j is additionally obtainable from
THYME+ without affecting its time complexity. Specifically, the probability q j of the times-
tamp t j being sampled is n j

△|E | , as shown in Lemma 9.

Lemma 9 (Sampling probability of time interval in THYME-A⋆) The sampling proba-
bility q j of time interval {t j, · · · t j +△−1} in THYME-A⋆ (lines 3 and 4 in Algorithm 5) is

n j
△|E | .
Proof. In line 3, a temporal hyperedge is sampled uniformly at random, and thus the prob-
ability of any temporal hyperedge whose arrival time is within {t j, · · · , t j +△− 1} being
sampled is n j

|E | . Once such a temporal hyperedge e = (ẽ, t) is sampled, in line 4, t j is sampled
from {t−△+1, · · · , t} uniformly at random, and thus the probability of t j being sampled is
1
△ . These imply q j =

n j
|E | ·

1
△ =

n j
△|E | .

Since t j is sampled with probability q j, the number C[M] of instances counted in the
sampled interval is rescaled by multiplying it with the inverse of q j (line 8). In addition,
the total number of instances C[M] of TH-motif M is rescaled once more by multiplying

1
s△ (line 10). These make each estimate C[M] of TH-motif M unbiased, as formalized in
Theorem 5.



20 Geon Lee, Kijung Shin

Algorithm 5: THYME-A⋆: Even Better Version of the Proposed Algorithm for
Approximate Counting of TH-motifs

Input : (1) temporal hypergraph: T = (V,E )
(2) time interval δ

(3) number of samples s
(4) sampling time interval△

Output: approximated # of each temporal h-motif M’s instances: C[M]

1 C← map initialized to zero
2 for each sample n = 1, · · · ,s do
3 e = (ẽ, t)← sample a uniformly random temporal hyperedge from E
4 t j ← sample a uniformly random timestamp from {t−△+1, · · · t}
5 C j ← exact counts of instances of TH-motifs whose closure time is within {t j, · · · , t j +△−1}

using THYME+

6 q j ←
n j
△|E | where n j is the number of temporal hyperedges arriving within {t j, · · · , t j +△−1}

7 for each TH-motif M do
8 C[M]←C[M]+C j[M] · 1

q j

9 for each TH-motif M do
10 C[M]←C[M] · 1

s△
11 return C

Theorem 5 (Bias and variance of THYME-A⋆) For every TH-motif M, THYME-A⋆ pro-
vides an unbiased estimate C[M] of the count C[M] of its instances, i.e.,

E[C[M]] =C[M]. (7)

The variance of the estimate is

Var[C[M]] =
1

s△2

{
∑

t j∈Tadv

Yj[M]2(1−q j)

q j
− ∑

j ̸= j′
Yj[M]Yj′ [M].

}
(8)

where Yj[M] is the number of instances of TH-motif M whose closure time is within {t j, · · · , t j+
△−1}, and q j is the probability that t j is sampled.

Proof. Let Qi j be a random variable indicating whether the ith sampled time interval is the
jth time interval (out of |Tadv| possible samples). That is, Qi j = 1 if the jth time interval
is sampled for the ith sample, and Qi j = 0 otherwise. Let c[M] be the number of weighted
counts of TH-motif M’s instances while processing s sampled time intervals. That is,

c[M] =
s

∑
i=1

∑
t j∈Tadv

Qi j
Yj[M]

q j
.

Then, by the scaling scheme,

C[M] = c[M] · 1
s△

.

Proof of the Bias of C[M] (Eq. (7)): From Lemma 9, since the jth time interval is sampled

with probability q j,
P[Qi j = 1] = E[Qi j] = q j.

In addition, since each instance of TH-motif M is included in△ time intervals,

∑
t j∈Tadv

Yj[M] =△C[M].



Temporal Hypergraph Motifs 21

From linearity of expectation,

E[c[M]] =
s

∑
i=1

∑
t j∈Tadv

E
[

Qi j
Yj[M]

q j

]
=

s

∑
i=1

∑
t j∈Tadv

Yj[M]

q j
E[Qi j] =

s

∑
i=1

∑
t j∈Tadv

Yj[M] = s△C[M].

Then, by the rescaling term,

E[C[M]] =
1

s△
E[c[M]] =C[M].

Proof of the Variance of C[M] (Eq. (8)): Since Qi j = Q2
i j, the variance of Qi j is

Var[Qi j] = E[Q2
i j]−E[Qi j]

2 = q j−q2
j .

Consider the covariance between Qi j and Qi′ j′ . If i = i′, then

Cov(Qi j,Qi′ j′) = E[Qi j,Qi j′ ]−E[Qi j] ·E[Qi j′ ] =−q jq j′ .

Since time intervals are sampled independently, if i ̸= i′, then Cov(Qi j,Qi′ j′) = 0.
These imply

Var[c[M]] = Var

[
s

∑
i=1

∑
t j∈Tadv

Qi j
Yj[M]

q j

]

=
s

∑
i=1

∑
t j∈Tadv

Var
[

Qi j
Yj[M]

q j

]
+

s

∑
i=1

∑
j ̸= j′

Cov
(

Qi j
Yj[M]

q j
,Qi j′

Yj′ [M]

q j′

)

=
s

∑
i=1

∑
t j∈Tadv

Yj[M]2

q2
j

Var[Qi j]+
s

∑
i=1

∑
j ̸= j′

Yj[M]Yj′ [M]

q jq j′
Cov(Qi j,Qi j′)

= s

{
∑

t j∈Tadv

Yj[M]2(1−q j)

q j
− ∑

j ̸= j′
Yj[M]Yj′ [M]

}
.

Thus, from the scaling term C[M] = 1
s△c[M],

Var[C[M]] =
1

s2△2 Var[c[M]] =
1

s△2

{
∑

t j∈Tadv

Yj[M]2(1−q j)

q j
− ∑

j ̸= j′
Yj[M]Yj′ [M]

}
.

Comparison with THYME-A+: The variance of THYME-A⋆ (Eq. (8)) is a generaliza-
tion of that of THYME-A+ (Eq. (6)), and if the sampling probability of each interval is
set to q j =

1
|Tadv|

consistently for j = 1, · · · , |Tadv| (i.e., sampling uniformly at random),
then the variances of THYME-A+ and THYME-A⋆ become the same. However, different
from THYME-A+, THYME-A⋆ prioritizes intervals where many temporal hyperedges are
closed. This is expected to reduce the variance by multiplying smaller weights 1−q j

q j
to inter-

vals with many instances (i.e., intervals with large Yj[M]) and larger weights to those with
fewer instances. One might hypothesize that directly utilizing 1

Y j [M] as the weight can be
better. However, Yj[M] is not known in advance, and computing Yj[M] for every j is com-
putationally expensive. Note that q j is obtained during the process of THYME-A⋆ without
incurring additional computational cost, and THYME-A⋆ even does not require q j in ad-
vance for sampling intervals. Moreover, as shown in Fig. 4, 1−q j

q j
tends to be negatively



22 Geon Lee, Kijung Shin

100 101 102 103 104

Number of Instances

1011

1012

(1
 - 

q)
 / 

q

corr. = -0.614

(a) email-Enron

101 102 103 104 105 106 107

Number of Instances
107

108

109

1010

(1
 - 

q)
 / 

q

corr. = -0.744

(b) email-Eu

102 104 106 108

Number of Instances

105

106

(1
 - 

q)
 / 

q

corr. = -0.326

(c) contact-primary

101 102 103 104 105 106 107 108

Number of Instances

105

106

107

(1
 - 

q)
 / 

q

corr. = -0.088

(d) contact-high

100 101 102 103 104

Number of Instances
1011

1012

1013

(1
 - 

q)
 / 

q

corr. = -0.565

(e) threads-ubuntu

100 101 102 103 104

Number of Instances
1011

1012

1013

(1
 - 

q)
 / 

q

corr. = -0.746

(f) threads-math

100 101 102 103 104 105

Number of Instances
1011

1012

1013

(1
 - 

q)
 / 

q

corr. = -0.907

(g) tags-ubuntu

100 101 102 103 104 105

Number of Instances

1011

1012

1013

(1
 - 

q)
 / 

q

corr. = -0.846

(h) tags-math

1016 × 100 2 × 101 3 × 1014 × 101

Number of Instances
2 × 105

3 × 105

4 × 105

6 × 105

(1
 - 

q)
 / 

q

corr. = 0.067

(i) coauth-DBLP

100 2 × 100 3 × 100

Number of Instances

106

(1
 - 

q)
 / 

q

corr. = -0.661

(j) coauth-Geology

103 104

Number of Instances

104

8 × 103

9 × 103(1
 - 

q)
 / 

q

corr. = -0.497

(k) coauth-History

Fig. 4: The weighted sampling scheme in THYME-A⋆ is effective. The number of instances
in each interval [t j, t j +△) and the term 1−q j

q j
tend to be negatively correlated, which theo-

retically reduces the variance of the estimate of THYME-A⋆. We set δ to 96 hours, 8 hours,
4 hours, 4 hours, and 3 years for the datasets from the email, contact, threads, tags,
and coauthorship domains, respectively.

correlated with Yj[M] (i.e., positively correlated with 1
Y j [M] ), and this supports the claim that

using q j for weighted sampling can reduce the variance of THYME-A⋆. In Section 6.5, we
demonstrate that empirical results from real-world temporal hypergraphs meet our theoreti-
cal analyses.

6 Empirical Studies

In this section, we review experiments to answer Q1-Q4.

Q1. Discoveries: Which findings do TH-motifs bring?
Q2. Comparison with Static H-motifs: Are TH-motifs more informative than static hy-

pergraph motifs (Lee et al., 2020)?
Q3. Performance of Exact Algorithms: How fast and efficient is THYME+? Why is

THYME+ fast and efficient?
Q4. Performance of Approximate Algorithms: How fast and accurate are THYME-A,

THYME-A+, and THYME-A⋆? Do they perform better than the baseline approach?

We first describe the settings where the experiments are conducted. Then, we provide
some empirical observations using the proposed concepts and algorithms. Next, we test the



Temporal Hypergraph Motifs 23

Real-world Hypergraph Random Hypergraph

1 96
TH-motif Index

101

Co
un

ts

(a) email-Enron

1 96
TH-motif Index

103

Co
un

ts

(b) email-Eu

1 96
TH-motif Index

104

Co
un

ts

(c) contact-primary

1 96
TH-motif Index

104

Co
un

ts

(d) contact-high

1 96
TH-motif Index

102
Co

un
ts

(e) threads-ubuntu

1 96
TH-motif Index

102

Co
un

ts

(f) threads-math

1 96
TH-motif Index

102

Co
un

ts

(g) tags-ubuntu

1 96
TH-motif Index

102

Co
un

ts

(h) tags-math

1 96
TH-motif Index

104

Co
un

ts

(i) coauth-DBLP

1 96
TH-motif Index

104

Co
un

ts

(j) coauth-Geology

1 96
TH-motif Index

105

Co
un

ts

(k) coauth-History

Fig. 5: The distribution of the numbers of TH-motifs’ instances in real-world temporal hy-
pergraphs and that in randomized temporal hypergraphs are significantly different. We set
δ to 1 hour in all datasets from the email, contact, threads, and tags domains. For all
datasets from the coauth domain, we set δ to 2 years.

scalability of the methods. Finally, we provide possible reasons why THYME+ is efficient
based on the observations on real-world temporal hypergraphs.

6.1 Experimental Settings

Machines: We conducted all the experiments on a machine with i9-10900K CPU and 64GB
RAM.

Implementation: We implemented DP, THYME, and THYME+ commonly in C++.

Datasets: We used eleven real-world temporal hypergraphs from five different domains.
Refer to Table 2 for the summarized statistics of the hypergraphs. The details of each dataset
are as follows:

– email: Each node is an email account, and each hyperedge is a set of sender and receivers
of the email.

– contact: Each node is a person, and each hyperedge is a group interaction among people.
– threads: Each node is a user, and each hyperedge is a group of users working in a thread.



24 Geon Lee, Kijung Shin

Similarity = 0.874
(Avg. similarity of all pairs = 0.407) 𝛿 = 24 hours

email-Eu
email-Enron

(a) email domain

Similarity = 0.997
(Avg. similarity of all pairs = 0.205) 𝛿 = 30 minutes

contact-high
contact-primary

(b) contact domain

Similarity = 0.724
(Avg. similarity of all pairs = 0.162) 𝛿 = 10 minutes

threads-math
threads-ubuntu

(c) threads domain

Similarity = 0.932
(Avg. similarity of all pairs = 0.381) 𝛿 = 12 hours

tags-math
tags-ubuntu

(d) tags domain

Similarity = 0.965
(Avg. similarity of all pairs = 0.407) 𝛿 = 2 years

coauth-Geology
coauth-DBLP

coauth-History

(e) coauthorship domain

Fig. 6: Characteristic profiles (CPs) (i.e., normalized significance of each TH-motif) accu-
rately capture the patterns of real-world temporal hypergraphs. The CPs of the temporal
hypergraphs from the same domain are similar in terms of the Pearson correlation coeffi-
cients, which are the reported numbers, while they are different across domains. Grey lines
indicate CPs of the temporal hypergraphs from other domains.

– tags: Each node is a tag, and each hyperedge is a set of tags attached to the question.
– coauthorship: Each node is an author, and each hyperedge is a set of authors of the

publication.



Temporal Hypergraph Motifs 25

Table 2: Statistics of the 11 real-world hypergraphs from 5 different domains: the number of
nodes |V |, the number of temporal hyperedges |E |, the number of induced static hyperedges
|EE |, and the maximum hyperedge size maxe∈E |e|.

Dataset |V ||V ||V | |E ||E ||E | |EE ||EE ||EE | maxe∈E |e|maxe∈E |e|maxe∈E |e|

email-Enron 143 10,885 1,514 37
email-Eu 986 235,263 25,148 40

contact-primary 242 106,879 12,704 5
contact-high 327 172,035 7,818 5

threads-ubuntu 90,054 192,947 166,999 14
threads-math 153,806 719,792 595,749 21

tags-ubuntu 3,021 271,233 147,222 5
tags-math 1,627 822,059 170,476 5

coauth-DBLP 1,836,596 3,700,681 2,467,389 280
coauth-Geology 1,091,979 1,591,166 1,204,704 284
coauth-History 503,868 1,813,147 896,062 925

While we assume that timestamps of temporal hyperedges are unique, in some dataset, this
may not hold. In such cases, we randomly order the temporal hyperedges whose timestamps
are identical.

6.2 Q1. Discoveries

In this subsection, we present several observations that TH-motifs reveal in the 11 real-world
hypergraphs. TH-motifs provide a new perspective in analyzing temporal hypergraphs.

Obs 1. Real hypergraphs are not ‘random’: For an accurate characterization, we compare
the number of instances of TH-motifs in real-world temporal hypergraphs against that in
randomized ones. To this end, we randomize the real-world temporal hypergraph using Hy-
perCL (Lee et al., 2021), a random hypergraph generator that preserves node degrees and
hyperedge sizes. Once the randomized hypergraph is generated, we randomly assign the
timestamps of its temporal hyperedges. In Fig. 5, we compare the distribution of the num-
ber of instances of each TH-motif in real-world temporal hypergraphs and those in ran-
domized ones. The distributions are clearly different, and the total number of instances is
greater in real-world hypergraphs than in random hypergraphs. Specifically, the total num-
ber of TH-motifs’ instances in real-world hypergraphs are 6.42×, 1.44×, 46.69×, 4.30× of
that in randomized hypergraphs in the email-Eu, contact-primary, threads-math, and
tags-ubuntu datasets, respectively.

Obs 2. TH-motifs distinguish domains: Network motifs have demonstrated their power to
distinguish graphs based on their domains. In addition, the count distributions of h-motifs in
static hypergraphs are particularly similar within domains but different across domains. To
confirm that TH-motifs also possess such distinguishing power, we obtain the characteristic
profile (CP) of each hypergraph, a normalized 96-dimensional vector that concatenates the
relative significance of each TH-motif, as suggested in (Lee et al., 2020). As seen in Fig. 6,
CPs accurately capture patterns of real-world temporal hypergraphs. That is, while CPs
of the temporal hypergraphs from the same domain are similar, they are different across



26 Geon Lee, Kijung Shin

email-Enron email-Eu contact-primary contact-high

threads-ubuntu threads-math tags-ubuntu tags-math

coauth-DBLP coauth-geology coauth-history

Random ratio

(a) TH-motifs 87-89

90 91 92
TH-motif Index

0.0

0.2

0.4

0.6

Ra
tio

(b) TH-motifs 90-92

93 94 95
TH-motif Index

0.0

0.2

0.4

0.6

Ra
tio

(c) TH-motifs 93-95

Fig. 7: The numbers of instances of nine pair-inducing TH-motifs depend on the ordering
of the temporal hyperedges. The ratio of the occurrences of TH-motifs 89, 92, and 95 are
significantly low compared to the other TH-motifs with the same structures.

domains. These results support that TH-motifs play a key role in capturing structural and
temporal patterns of real-world temporal hypergraphs.

Obs 3. Orders of hyperedges matter: TH-motifs are asymmetric with respect to the arrival
order of the temporal hyperedges, and thus instances that are indistinguishable from static h-
motifs can be categorized as different TH-motifs. We are interested in how the orders of the
hyperedges affect the occurrences of TH-motifs, and to this end, we statistically investigate
nine pair-inducing ones, ranging from TH-motif 87 to 95. TH-motifs in each triple, TH-
motifs 87−89, TH-motifs 90−92, and TH-motifs 93−95 share the same structural pattern,
but they are distinguished by the orders of the hyperedges. Consider an instance ⟨ei,e j,ek⟩
of the pair-inducing TH-motif. The pair-inducing TH-motifs, by definition, consist of a pair
of duplicated hyperedges and thus enables three different orderings O1: ẽi = ẽ j ̸= ẽk, O2:
ẽi ̸= ẽ j = ẽk, and O3: ẽi ̸= ẽ j ̸= ẽk, ẽi = ẽk,. In O1 and O2, duplicated temporal hyperedges
occur consecutively, whereas in O3, the first and last hyperedges are duplicated. TH-motifs
87, 90, and 93 are O1, TH-motifs 88, 91, and 94 are O2, and TH-motifs 89, 92, and 95
are O3. As seen in Fig. 7, this difference indeed affect the occurrences of the TH-motifs
in real-world temporal hypergraphs. The ratio of the TH-motifs whose ordering is O3 are
significantly small, compared to that of O1 and O2. That is, duplicated temporal hyperedges
tend to occur in a short time and thus affect the count distributions of TH-motifs.

6.3 Q2. Comparison with Static H-motifs

In this subsection, we demonstrate the usefulness of TH-motifs. We compare TH-motifs and
static h-motifs as input features for a hyperedge prediction task.

Obs 4. TH-motifs help predict future hyperedges: To verify the usefulness of temporal
h-motifs, we consider the problem of hyperedge prediction, a binary classification problem
of predicting whether the given hyperedge is true or not. Given a temporal hypergraph T =
(V,E ), we generate a set E ′ of fake hyperedges, whose number is the same as the true
ones (i.e., |E | = |E ′|). Fake hyperedges are generated by using HyperCL (Lee et al., 2021)
which preserves the degrees of the nodes and the sizes of the hyperedges. The timestamps of
the fake hyperedges are randomly assigned. We sort the entire temporal hyperedges E ∪E ′



Temporal Hypergraph Motifs 27

THM96 SHM26THM26

13.4 %

(a) email-Enron

25.7 %

(b) email-Eu

11.4 %

(c) contact-primary

4.7 %

(d) contact-high

Fig. 8: TH-motifs provide informative features of temporal hyperedges. THM96 and
THM26, which use the counts of TH-motifs’ instances as features, are more accurate than
SHM26, which uses the counts of static h-motifs’ instances, in predicting future temporal
hyperedges. Results in small datasets where the instances of static h-motifs can be exactly
counted are reported.

based on their timestamps and split them into train and test sets in a ratio 8:2. Then we train
a logistic regression classifier using the train set with the following three different features
of each temporal hyperedge:

– THM96 (∈ R96): Each dimension represents the number of instances of TH-motifs that
contain the hyperedge.

– THM26 (∈ R26): The 26 TH-motifs whose occurrences have the highest variance are
selected.

– SHM26 (∈ R26): Each dimension represents the number of instances of static h-motifs
that contain the hyperedge. Temporal information is ignored.

As seen in Fig. 8, THM96 and THM26, which are based on the TH-motifs counts, are
more accurate than STM26. While h-motifs only represent structural patterns, TH-motifs
incorporate temporal information in addition to them, and thus they are more informative.

6.4 Q3. Performance of Exact Algorithms

We evaluate the speed and efficiency of the proposed algorithms DP, THYME, and THYME+.
As seen in Fig. 9, while DP and THYME run out of memory in some datasets or with partic-
ular δ values, THYME+ is fast and space efficient enough in all considered settings. Specif-
ically, THYME+ is up to 2,163× faster than DP and 16× faster than THYME. As described
in Section 4, THYME+ maintains a small projected graph Q and thus reduces enumeration
over the instances in Q. In the next subsection, we provide empirical findings that support
the effectiveness of THYME+. Why is THYME+ faster and more space efficient compared
to DP and THYME? What properties of real-world temporal hypergraphs make THYME+

efficient? To answer these questions, we examine structural and temporal patterns of tem-
poral hyperedges in real-world temporal hypergraphs and summarize common properties
observed as follows.

– (Obs. 5) Repetitive behavior: Duplicated temporal hyperedges tend to appear repeatedly,
and the distribution of the numbers of repetitions is heavy-tailed.

– (Obs. 6) Temporal locality: Future temporal hyperedges are more likely to repeat recent
hyperedges than older ones.



28 Geon Lee, Kijung Shin

THYME+ (Proposed) THYME DP

20 30 40
Time Interval 

0

2

4

Ru
nt

im
e 

(s
ec

.)

(a) email-Enron

2,163 X

THYME+ is 5.7 X faster

(b) email-Eu

27 X
16 X

(c) contact-primary

1 2 3
Time Interval 

0

500

1000

Ru
nt

im
e 

(s
ec

.)

(d) contact-high

2 4
Time Interval 

0

2000

4000

Ru
nt

im
e 

(s
ec

.)

(e) threads-ubuntu

1.4 X

Out of memory

(f) threads-math

2.7 X

Out of memory

(g) tags-ubuntu

Out of memory

(h) tags-math

1.9 X

Out of memory

Out of memory (𝛿 ≥ 2)

(i) coauth-DBLP

Out of memory

(j) coauth-Geology

Out of memory

(k) coauth-History

Fig. 9: THYME+ is faster and more space efficient than DP and THYME.

Table 3: The log-likelihood ratio when fitting the distributions to each of three heavy-tailed
distributions against exponential distributions is positive in all real-world hypergraphs.

Dataset power-law truncated power-law log normal

email-Enron 7.930 8.965 8.878
email-Eu 3.702 3.865 3.838

contact-primary 3.626 5.720 5.453
contact-high 22.278 23.464 23.340

threads-ubuntu 3.353 3.355 3.257
threads-math 15.003 16.171 16.027
tags-ubuntu 12.633 12.714 12.698
tags-math 15.447 15.503 15.507

coauth-DBLP 25.164 26.287 26.157
coauth-Geology 18.010 19.233 18.965
coauth-History 8.148 8.169 8.183

Obs. 5. Repetitive behavior: We first investigate the repeating patterns (i.e., duplication) of
temporal hyperedges in real-world temporal hypergraphs. As seen in Table 2, the number
of induced hyperedges (|EE |) is significantly smaller than that of temporal hyperedges (|E |),
implying that temporal hyperedges are frequently repeated. Surprisingly, in the contact-high
dataset, the number of induced hyperedges is only 4.5% of that of temporal hyperedges, im-
plying that most temporal hyperedges consist of predefined set of nodes. Note that due to



Temporal Hypergraph Motifs 29

100 101 102

# Repetitions

100

101

102

# 
Hy

pe
re

dg
es

(a) email-Enron

101 103

# Repetitions

101

103

# 
Hy

pe
re

dg
es

(b) email-Eu

100 101 102

# Repetitions

100

101

102

103

# 
Hy

pe
re

dg
es

(c) contact-primary

101 103

# Repetitions

100

101

102

103

# 
Hy

pe
re

dg
es

(d) contact-high

101 103

# Repetitions

101

103

105

# 
Hy

pe
re

dg
es

(e) threads-ubuntu

100 101 102

# Repetitions

101

103

105

# 
Hy

pe
re

dg
es

(f) threads-math

101 103

# Repetitions

101

103

105

# 
Hy

pe
re

dg
es

(g) tags-ubuntu

101 103

# Repetitions

101

103

105

# 
Hy

pe
re

dg
es

(h) tags-math

100 101 102

# Repetitions

101

103

105

# 
Hy

pe
re

dg
es

(i) coauth-DBLP

100 101 102

# Repetitions

101

103

105

# 
Hy

pe
re

dg
es

(j) coauth-Geology

101 103

# Repetitions

101

103

105

# 
Hy

pe
re

dg
es

(k) coauth-History

Fig. 10: Temporal hyperedges in real-world hypergraphs are repetitive, and the number of
repetitions follows a near power-law distribution. This claim is supported numerically in
Table 3.

the flexibility of hyperedge sizes, a hyperedge can be generated from O(2|V |), and thus is
extremely unlikely to repeat the exact set of nodes. In addition, we discover that the distri-
butions of hyperedge repetitions in real-world temporal hypergraphs are generally heavy-
tailed and close to power-law distributions, as seen in Fig. 10. This claim is supported by
the log-likelihood ratios when fitting three representative heavy-tailed distributions (power-
law, truncated power-law, and log normal) against the exponential distribution (Clauset
et al., 2009; Alstott et al., 2014). As reported in Table 3, all datasets have positive ratios
in all heavy-tailed distributions, indicating that the distributions of hyperedge repetitions are
heavy-tailed and close to power-law distributions. Among the three heavy-tailed distribu-
tions, truncated power-law distribution is the best candidate in most datasets.

Obs. 6. Temporal locality: Now that we have observed the structural behaviors of the tem-
poral hyperedges, we turn our attention to the temporal aspect. The temporal locality of
temporal hyperedges is the tendency that recent hyperedges are more likely to be repeated
in the near future than the older ones. To show the temporal locality, we investigate the time
intervals of the N consecutive identical temporal hyperedges, i.e., the time it takes for a
hyperedge to be repeated N times. Fig. 11 shows the average time intervals of all the hyper-
edges in the real-world hypergraphs and randomly shuffled hypergraphs, where timestamps
of the hyperedges are randomly shuffled while preserving the underlying structure. In every
dataset, the time intervals within N consecutive hyperedges are shorter in real-world hyper-
graphs than in randomized ones. That is, future hyperedges are more likely to repeat the
recent hyperedges than older ones.



30 Geon Lee, Kijung Shin

Real-world Hypergraph Random Hypergraph

2 3 4 5 6 7 8
N

1

2

3

Ti
m

e 
In

te
rv

al

1e3

(a) email-Enron

2 3 4 5 6 7 8
N

0.5

1.0

1.5

Ti
m

e 
In

te
rv

al

(b) email-Eu

2 3 4 5 6 7 8
N

1
2
3
4
5

Ti
m

e 
In

te
rv

al

(c) contact-primary

2 3 4 5 6 7 8
N

2

4

6

Ti
m

e 
In

te
rv

al

(d) contact-high

2 3 4 5 6 7 8
N

0.4

0.6

0.8

1.0

Ti
m

e 
In

te
rv

al

1e4

(e) threads-ubuntu

2 3 4 5 6 7 8
N

0.5

1.0

Ti
m

e 
In

te
rv

al

(f) threads-math

2 3 4 5 6 7 8
N

4

6

8

Ti
m

e 
In

te
rv

al

1e3

(g) tags-ubuntu

2 3 4 5 6 7 8
N

1.5

2.0

2.5

3.0

Ti
m

e 
In

te
rv

al

1e3

(h) tags-math

2 3 4 5 6 7 8
N

2

4

6

8

Ti
m

e 
In

te
rv

al

(i) coauth-DBLP

2 3 4 5 6 7 8
N

0.5

1.0

1.5

Ti
m

e 
In

te
rv

al

1e1

(j) coauth-Geology

2 3 4 5 6 7 8
N

0.5

1.0

1.5

2.0

Ti
m

e 
In

te
rv

al
1e1

(k) coauth-History

Fig. 11: Temporal hyperedges in real-world temporal hypergraphs are temporally local. The
time interval of N consecutive duplicated temporal hyperedges tends to be shorter in real-
world hypergraphs than in randomized ones. The units of time intervals in all datasets from
the email, contact, threads, and tags domains are hours. The time unit in all datasets
from the coauth domain is years.

Intuition behind THYME+: How do these properties of real-world temporal hypergraphs
provide efficiency to THYME+? Here, we provide some reasons why we expect THYME+

to be faster and more space-efficient than THYME and DP.

– Connection to Obs. 5: Each node in the projected graph P used in THYME represents
a unique temporal hyperedge, and its size heavily depends on δ . On the other hand, the
nodes in the projected graph Q maintained in THYME+ represent induced hyperedges,
and several temporal hyperedges can share the same node. Thus, more repetitions of tem-
poral hyperedges provide higher efficiency of THYME+, as observed in real-world tem-
poral hypergraphs.

– Connection to Obs. 6: The benefits of the temporal locality of temporal hyperedges are
two-fold: (1) The tendency of temporal hyperedges to repeat within a short period of time
indicates that duplicated temporal hyperedges are more likely to co-appear in the temporal
window in THYME+, which reduces the size of the projected graph Q. (2) If duplicated
temporal hyperedges reappear within the temporal window, insertion/deletion of nodes
and edges of Q are skipped, which is beneficial in terms of speed.



Temporal Hypergraph Motifs 31

6.5 Q4. Performance of Approximate Algorithms

We evaluate the speed and accuracy of the proposed algorithms, DTP, THYME-A, THYME-
A+, and THYME-A⋆. To this end, we measure the elapsed time and the relative error, de-
fined as:

∑
96
M=1 |C[M]−Capprox[M]|

∑
96
M=1 C[M]

,

where Capprox[M] is an approximated count of TH-motif M (C̃, Ĉ, or C). For THYME-A,
THYME-A+, and THYME-A⋆, we fix the sampling time interval to △ = 0.001 · (tmax−
tmin). The number s of samples is set differently across datasets: s ∈ {1,2,3,4,5} for the
datasets from the coauthorship domain, s∈{50,100,150,200,250} for the threads-ubuntu,
and s ∈ {20,40,60,80,100} for the remaining datasets. For DTP, we perform experiments
on the number of shifts b ∈ {1,2,3,4,5}, the window size parameter c = 10, and the con-
stant r = {0.001,0.01,0.1,1.0}. Empirically, the performance of DTP is very sensitive to
these hyperparameters, and thus we report the results where relative errors are less than 0.8
while being faster than THYME+. As seen in Fig. 12, THYME-A⋆ yields the best trade-offs
between speed and accuracy, which is consistent with our theoretical analyses. For example,
in email-Eu, THYME-A⋆ provides 11.1× lower relative error compared to DTP. Notably,
DTP performs poorly in most datasets due to the limitations discussed in Section 5.1.

7 Conclusion

In this work, we propose (a) temporal hypergraph motifs (TH-motifs), which are tools for
analyzing design principles of time-evolving hypergraphs, (b) THYME+, which is a fast
algorithm for exactly counting TH-motifs’ instances, and (c) THYME-A⋆, which is a fast
and accurate algorithm for approximately counting TH-motifs’ instances. Using them, we
investigate 11 real-world hypergraphs from 5 domains. Our contributions are summarized
as follows.

– New concept: We define 96 temporal hypergraph motifs (TH-motifs) that describe local
relational and temporal dynamics in time-evolving hypergraphs.

– Fast and exact algorithm: We develop THYME+, a fast and exact algorithm for counting
the instances of TH-motifs. It is at most 2,163× faster than the baseline approach.

– Accurate approximate algorithm: We develop THYME-A⋆, an accurate sampling al-
gorithm for approximately counting the instances of TH-motifs. THYME-A⋆ yields up
to 11.1× more accurate estimates rapidly, compared to the baseline approach.

– Empirical discoveries: TH-motifs reveal interesting structural and temporal patterns in
real-world hypergraphs. TH-motifs also provide informative features that are useful in
predicting future hyperedges.

Reproducibility: The source code and datasets used in this work are available at https:
//github.com/geonlee0325/THyMe.

Acknowledgements This work was supported by National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. NRF-2020R1C1C1008296) and Institute of Information &
Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT)
(No. 2019-0-00075, Artificial Intelligence Graduate School Program (KAIST)).

https://github.com/geonlee0325/THyMe
https://github.com/geonlee0325/THyMe


32 Geon Lee, Kijung Shin

(a) email-Enron (b) email-Eu (c) contact-primary (d) contact-high

(e) threads-ubuntu (f) threads-math (g) tags-ubuntu (h) tags-math

(i) coauth-DBLP (j) coauth-Geology (k) coauth-History

Fig. 12: THYME-A⋆ gives the best trade-off between speed and accuracy. It yields up to
11.1× more accurate estimation than DTP, and it is up to 18.1× faster than THYME+. The
results where the relative error is higher than 0.8 or the running time is greater than that
of THYME+ are not shown in the figure. We set δ to 96 hours, 8 hours, 4 hours, 4 hours,
and 3 years for the datasets from the email, contact, threads, tags, and coauthorship

domains, respectively.

References

Alstott J, Bullmore E, Plenz D (2014) powerlaw: a python package for analysis of heavy-
tailed distributions. PloS one 9(1):e85777

Amburg I, Veldt N, Benson A (2020) Clustering in graphs and hypergraphs with categorical
edge labels. In: WWW

Arenas A, Fernandez A, Fortunato S, Gomez S (2008) Motif-based communities in complex
networks. Journal of Physics A: Math Theor 41(22):224001

Benson AR, Gleich DF, Leskovec J (2016) Higher-order organization of complex networks.
Science 353(6295):163–166

Benson AR, Abebe R, Schaub MT, Jadbabaie A, Kleinberg J (2018a) Simplicial closure
and higher-order link prediction. Proceedings of the National Academy of Sciences
115(48):E11221–E11230

Benson AR, Kumar R, Tomkins A (2018b) Sequences of sets. In: KDD
Borgatti SP, Everett MG (1997) Network analysis of 2-mode data. Social networks

19(3):243–269



Temporal Hypergraph Motifs 33

Chodrow PS (2020) Configuration models of random hypergraphs. Journal of Complex Net-
works 8(3):cnaa018

Choe M, Yoo J, Lee G, Baek W, Kang U, Shin K (2022) Midas: Representative sampling
from real-world hypergraphs. In: WWW

Choo H, Shin K (2022) On the persistence of higher-order interactions in real-world hyper-
graphs. In: SDM

Clauset A, Shalizi CR, Newman ME (2009) Power-law distributions in empirical data.
SIAM review 51(4):661–703

Do MT, Yoon Se, Hooi B, Shin K (2020) Structural patterns and generative models of real-
world hypergraphs. In: KDD

Feng Y, You H, Zhang Z, Ji R, Gao Y (2019) Hypergraph neural networks. In: AAAI
Gurukar S, Ranu S, Ravindran B (2015) Commit: A scalable approach to mining communi-

cation motifs from dynamic networks. In: SIGMOD
Hwang T, Tian Z, Kuangy R, Kocher JP (2008) Learning on weighted hypergraphs to inte-

grate protein interactions and gene expressions for cancer outcome prediction. In: ICDM
Karypis G, Aggarwal R, Kumar V, Shekhar S (1999) Multilevel hypergraph partitioning:

Applications in vlsi domain. TLVLSI 7(1):69–79
Kim S, Choe M, Yoo J, Shin K (2022) Reciprocity in directed hypergraphs: Measures, find-

ings, and generators. In: ICDM
Ko J, Kook Y, Shin K (2022) Growth patterns and models of real-world hypergraphs. Knowl-

edge and Information Systems 64(11):2883–2920
Kook Y, Ko J, Shin K (2020) Evolution of real-world hypergraphs: Patterns and models

without oracles. In: ICDM
Kovanen L, Karsai M, Kaski K, Kertész J, Saramäki J (2011) Temporal motifs in

time-dependent networks. Journal of Statistical Mechanics: Theory and Experiment
2011(11):P11005

Lee G, Shin K (2021) Thyme+: Temporal hypergraph motifs and fast algorithms for exact
counting. In: ICDM

Lee G, Ko J, Shin K (2020) Hypergraph motifs: concepts, algorithms, and discoveries.
PVLDB 13:2256–2269

Lee G, Choe M, Shin K (2021) How do hyperedges overlap in real-world hypergraphs?–
patterns, measures, and generators. In: WWW

Lee G, Choe M, Shin K (2022a) Hashnwalk: Hash and random walk based anomaly detec-
tion in hyperedge streams. In: IJCAI

Lee G, Yoo J, Shin K (2022b) Mining of real-world hypergraphs: Patterns, tools, and gener-
ators. In: CIKM

Lee JB, Rossi RA, Kong X, Kim S, Koh E, Rao A (2019) Graph convolutional networks
with motif-based attention. In: CIKM

Li P, Milenkovic O (2017) Inhomogoenous hypergraph clustering with applications. In:
NIPS

Li PZ, Huang L, Wang CD, Lai JH (2019) Edmot: An edge enhancement approach for
motif-aware community detection. In: KDD

Li Y, Lou Z, Shi Y, Han J (2018) Temporal motifs in heterogeneous information networks.
In: MLG Workshop

Liu P, Benson AR, Charikar M (2019) Sampling methods for counting temporal motifs. In:
WSDM

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs:
simple building blocks of complex networks. Science 298(5594):824–827



34 Geon Lee, Kijung Shin

Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U
(2004) Superfamilies of evolved and designed networks. Science 303(5663):1538–1542

Paranjape A, Benson AR, Leskovec J (2017) Motifs in temporal networks. In: WSDM
Redmond U, Cunningham P (2013) Temporal subgraph isomorphism. In: ASONAM
Rossi RA, Ahmed NK, Koh E (2018a) Higher-order network representation learning. In:

WWW Companion
Rossi RA, Zhou R, Ahmed NK (2018b) Deep inductive graph representation learning. IEEE

TKDE 32(3):438–452
Rossi RA, Ahmed NK, Carranza A, Arbour D, Rao A, Kim S, Koh E (2020a) Heterogeneous

graphlets. ACM TKDD 15(1):1–43
Rossi RA, Ahmed NK, Koh E, Kim S, Rao A, Abbasi-Yadkori Y (2020b) A structural graph

representation learning framework. In: WSDM
Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional reg-

ulation network of escherichia coli. Nature Genetics 31(1):64–68
Tsourakakis CE, Pachocki J, Mitzenmacher M (2017) Scalable motif-aware graph cluster-

ing. In: WWW
Yadati N, Nimishakavi M, Yadav P, Nitin V, Louis A, Talukdar P (2018) Hypergcn: A

new method of training graph convolutional networks on hypergraphs. arXiv preprint
arXiv:180902589

Yang D, Qu B, Yang J, Cudre-Mauroux P (2019) Revisiting user mobility and social rela-
tionships in lbsns: A hypergraph embedding approach. In: WWW

Yin H, Benson AR, Leskovec J, Gleich DF (2017) Local higher-order graph clustering. In:
KDD

Yoon Se, Song H, Shin K, Yi Y (2020) How much and when do we need higher-order
information in hypergraphs? a case study on hyperedge prediction. In: WWW

Yu J, Tao D, Wang M (2012) Adaptive hypergraph learning and its application in image
classification. TIP 21(7):3262–3272

Yu Y, Lu Z, Liu J, Zhao G, Wen Jr (2019) Rum: Network representation learning using
motifs. In: ICDE

Zhao H, Xu X, Song Y, Lee DL, Chen Z, Gao H (2018) Ranking users in social networks
with higher-order structures. In: AAAI

A Details of DYNAMIC PROGRAMMING (DP)

In this subsection, we provide details of the DYNAMIC PROGRAMMING (DP), a straightforward extension
of temporal network motif counting (Paranjape et al., 2017). As shown in Algorithm 6, it utilizes a dynamic
programming approach to reduce the redundant enumeration of every instance of TH-motifs of the input
temporal hypergraph T . The procedure count (lines 9-19) counts the instances of TH-motifs that induce a
set of ℓ connected static hyperedges. That is, given a set s = {ẽ1, . . . , ẽℓ} of ℓ connected static hyperedges,
count first constructs a time-sorted sequence e(s) of temporal hyperedges whose nodes is one of s (line 10).
It also introduces a map C that maintains the counts of ordered hyperedges of length at most ℓ. Then count
scans through the temporal hyperedges in e(s) and tracks the subsequences that occur within the temporal
window that spans temporal hyperedges within δ time units. As the temporal window slides through the
temporal hyperedges e(s), the count of the sequences are computed based on the subsequences counted in C.
Refer to (Paranjape et al., 2017) for more intuition behind this dynamic programming formulation.

B Details of DISCRETE TIME PARTITIONING (DTP)

In this subsection, we provide details of the DISCRETE TIME PARTITIONING (DTP), a straightforward ex-
tension of sampling algorithm for approximate temporal network motif counting (Liu et al., 2019). As shown



Temporal Hypergraph Motifs 35

Algorithm 6: DP: Preliminary Algorithm for Exact Counting of TH-motifs
Input : (1) temporal hypergraph: T = (V,E )

(2) time interval δ

Output: # of each temporal h-motif t’s instances: M[t]

1 S← set of instances of static h-motifs in GT
2 for each instance {ẽi, ẽ j, ẽk} ∈ S do
3 count({ẽi, ẽ j, ẽk})
4 for each pair of overlapping hyperedges {ẽi, ẽ j} ∈ ∧E do
5 count({ẽi, ẽ j})
6 for each hyperedge ẽi ∈ EE do
7 count({ẽi})
8 return M

9 Procedure count(s = {ẽ1, . . . , ẽℓ})
10 e(s)← sorted(I(ẽ1)∪·· ·∪ I(ẽℓ))
11 ws← 1
12 C← map initialized to 0
13 for each temporal hyperedge ei = (ẽi, ti) ∈ e(s) do
14 while tws +δ < ti do
15 decrement(ẽws)
16 ws← ws +1
17 increment(ẽi)

18 for each ⟨ei,e j,ek⟩ ∈ permutations({ẽi, ẽ j, ẽk}) do
19 M[h(ẽi, ẽ j, ẽk)] += C[concat(ẽi, ẽ j, ẽk)]

20 Procedure increment(ẽ)
21 for each prefix in C.keys.reverse of length < ℓ do
22 C[concat(prefix, ẽ)] += C[prefix]
23 C[ẽ]←C[ẽ]+1

24 Procedure decrement(ẽ)
25 C[ẽ]←C[ẽ]−1
26 for each suffix in C.keys of length < ℓ−1 do
27 C[concat(ẽ,suffix)] -= C[suffix]

in Algorithm 7, it begins with randomly drawing a shift s from {−cδ + 1, · · · ,0} for the predefined input
integer c > 0 that controls the size of the sampling windows (line 3). Then, based on the selected shift s, the
time is discretely partitioned into cδ -sized intervals:

Is = {[s+( j−1)cδ ,s+ j · cδ −1], j = 1,2, ...}.

The probability of an instance ⟨ei,e j,ek⟩ of TH-motif to be completely contained within an interval Is is:

1−
△(⟨ei,e j,ek⟩)

cδ
.

Then, for each interval I ∈ Is, DTP constructs a sub-temporal hypergraph that consists of temporal hyper-
edges within I (line 6). From the partial temporal hypergraph, it uses THYME to exhaustively discover the
instances of TH-motifs. It associates a weighted count of the number of instances of TH-motifs by incre-
menting the counts by the inverse of the probability to be completely contained in the interval I. By adding
up the weighted counts of all intervals, it yields an unbiased estimation of the number of instances of each
TH-motif.

To speed up the estimation, DTP incorporates importance sampling to pick only a subset of intervals
and combines the counts from them. Let I j be the j-th interval. Specifically, it samples an interval I j ∈ Is
independently with the predefined probability z j (line 5). Here, DTP uses the ratio of the number of temporal
hyperedges that arrived within the interval, which can be easily obtained from the input temporal hypergraph.
Formally, the ratio z j is

z j = r ·
|{e = (ẽ, t) ∈ E : t ∈ I j}|

|E |



36 Geon Lee, Kijung Shin

Algorithm 7: DTP: Preliminary Algorithm for Approximate Counting of TH-
motifs

Input : (1) temporal hypergraph: T = (V,E )
(2) time interval δ

(3) sampling probabilities q
(4) number of shifts b
(5) window size parameter c

Output: approximated # of each temporal h-motif M’s instances: C̈[M]

1 C̈← map initialized to zero
2 for each shift k = 1, · · · ,b do
3 s← random integer from {−cδ +1, · · · ,0}
4 for each interval index j = 1, · · · ,1+ ⌈ tmax

cδ
⌉ do

5 if Uniform(0,1) ≤ z j then
6 Tj ←{e = (ẽ, t) ∈ E : t ∈ [s+( j−1) · cδ ,s+ j · cδ −1]}
7 m j ← set of instances discovered in Tj using THYME
8 for each instance ⟨ei,e j,ek⟩ ∈ m j do
9 C̈[h(ẽi, ẽ j, ẽk)] += 1(

1−
△(⟨ei ,e j ,ek ⟩)

cδ

)
·z j

10 for each TH-motif M do
11 C̈[M]← 1

bC̈[M]

12 return M̃

Algorithm 8: Finding the neighbors Nei of a temporal hyperedge ei in the projected
graph P in THYME.

Input : (1) projected graph P = (VP,EP)
(2) target temporal hyperedge ei = (ẽi, ti)

Output: set of neighbors Nei

1 Nei ←∅
2 for each node v ∈ ẽi do
3 for each temporal hyperedge e j ∈VP where v ∈ ẽ j do
4 Nei ← Nei ∪{e j}
5 return Nei

Algorithm 9: Finding the neighbors Nẽi of an induced hyperedge ẽi in the projected
graph Q in THYME+.

Input : (1) projected graph Q = (VQ,EQ, tQ)
(2) target induced hyperedge ẽi

Output: set of neighbors Nẽi

1 Nẽi ←∅
2 for each node v ∈ ẽi do
3 for each induced hyperedge ẽ j ∈VQ where v ∈ ẽ j do
4 Nẽi ← Nẽi ∪{ẽ j}
5 return Nẽi

where r is a constant that controls the magnitude of the probability. Then, the number of instances counted
in the interval is additionally weighted by 1

z j
(line 9). These computations are repeated b times to reduce the

variance of the estimation. Refer to (Liu et al., 2019) for details of the original algorithm.



Temporal Hypergraph Motifs 37

Algorithm 10: Finding the set of three connected temporal hyperedges in P that
contain ei in THYME.

Input : (1) projected graph P = (VP,EP)
(2) target temporal hyperedge ei

Output: set of three connected temporal hyperedges S
1 S←∅
2 for each temporal hyperedge e j ∈ Nei do
3 for each temporal hyperedge ek ∈ (Nei ∪Ne j \{ei,e j}) do
4 if ek /∈ Nei or j < k then
5 if t j < tk then
6 S← S∪{⟨e j,ek,ei⟩}
7 else
8 S← S∪{⟨ek,e j,ei⟩}

9 return S

Algorithm 11: Finding the set of three connected static hyperedges in Q that con-
tain ẽi in THYME+.

Input : (1) projected graph Q = (VQ,EQ)
(2) target static hyperedge ẽi

Output: set of three connected static hyperedges S
1 S←∅
2 for each static hyperedge ẽ j ∈ Nẽi do
3 for each static hyperedge ẽk ∈ (Nẽi ∪Nẽ j \{ẽi, ẽ j}) do
4 if ẽk /∈ Nẽi or j < k then
5 S← S∪{{ẽk, ẽ j, ẽk}}
6 return S

C Sub-algorithms of THYME and THYME+

In this subsection, we provide pseudocode of four sub-algorithms of THYME and THYME+ . These algo-
rithms are used for analyzing the time complexity of THYME and THYME+ in Section 4.



38 Geon Lee, Kijung Shin

Author Biographies

Geon Lee is a Ph.D. student at the Kim Jaechul Graduate School of AI at
KAIST. He received his B.S. degree in Computer Science and Engineering
from Sungkyunkwan University in 2019. His research interests include graph
mining and its applications. Especially, his studies of hypergraphs have ap-
peared in major data mining venues, including VLDB, WWW, and ICDM.

Kijung Shin is an Ewon Endowed Assistant Professor in the Kim Jaechul
Graduate School of AI and the School of Electrical Engineering at KAIST.
He received his Ph.D. in Computer Science from Carnegie Mellon University
in 2019 and his B.S. in Computer Science and Engineering from Seoul Na-
tional University in 2015. He has published over 50 referred articles, and his
work has appeared in top-tier data mining conferences and journals, includ-
ing KDD, WWW, ICDM, and ICDE. His research involves designing scalable
data mining algorithms, with emphasis on graphs, hypergraphs, and tensors,
and applying those algorithms to real-world problems.


	Introduction
	Preliminaries and Related Works
	Proposed Concepts
	Exact Counting Algorithms
	Approximate Counting Algorithms
	Empirical Studies
	Conclusion
	Details of Dynamic Programming (DP)
	Details of Discrete Time Partitioning (DTP)
	Sub-algorithms of THyMe and THyMe+

