
A

Fast, Accurate and Provable Triangle Counting in Fully Dynamic
Graph Streams

KIJUNG SHIN, KAIST
SEJOON OH, Georgia Institute of Technology
JISU KIM, Inria Saclay
BRYAN HOOI, National University of Singapore
CHRISTOS FALOUTSOS, Carnegie Mellon University

Given a stream of edge additions and deletions, how can we estimate the count of triangles in it? If we can
store only a subset of the edges, how can we obtain unbiased estimates with small variances?

Counting triangles (i.e., cliques of size three) in a graph is a classical problem with applications in a wide
range of research areas, including social network analysis, data mining, and databases. Recently, streaming
algorithms for triangle counting have been extensively studied since they can naturally be used for large
dynamic graphs. However, existing algorithms cannot handle edge deletions or suffer from low accuracy.

Can we handle edge deletions while achieving high accuracy? We propose THINKD, which accurately
estimates the counts of global triangles (i.e., all triangles) and local triangles associated with each node
in a fully dynamic graph stream with additions and deletions of edges. Compared to its best competitors,
THINKD is (a) Accurate: up to 4 .3× more accurate within the same memory budget, (b) Fast: up to 2 .2×
faster for the same accuracy requirements, and (c) Theoretically sound: always maintaining estimates
with zero bias (i.e., the difference between the true triangle count and the expected value of its estimate)
and small variance. As an application, we use THINKD to detect suddenly emerging dense subgraphs, and
we show its advantages over state-of-the-art methods.

CCS Concepts: •Information systems→ Data mining; •Theory of computation→ Dynamic graph
algorithms; Sketching and sampling;

Additional Key Words and Phrases: Triangle Counting, Local Triangles, Edge Deletions

ACM Reference Format:
Kijung Shin, Sejoon Oh, Jisu Kim, Bryan Hooi, and Christos Faloutsos, 2018. Fast, Accurate and Provable
Triangle Counting in Fully Dynamic Graph Streams ACM Trans. Knowl. Discov. Data. V, N, Article A (Jan-
uary YYYY), 40 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Given a fully dynamic graph stream with edge additions and deletions, how can we
accurately estimate the count of triangles in it with fixed memory size?

This work was partly supported by National Research Foundation of Korea (NRF) grant funded by the
Korea government MSIT (No. NRF-2019R1F1A1059755) and Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the Korea government MSIT (No. 2019-0-00075-
001, Artificial Intelligence Graduate School Program (KAIST)). This work was supported by the National
Science Foundation under Grant No. CNS-1314632 and IIS-1408924. Research was sponsored by the Army
Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-09-2-0053.
Author’s addresses: K. Shin (corresponding author), Graduate School of AI & School of Electrical En-
gineering, KAIST, kijungs@kaist.ac.kr, S. Oh, College of Computing, Georgia Institute of Technology,
soh337@gatech.edu, J. Kim, DataShape, Inria Saclay, jisu.kim@inria.fr, B. Hooi, School of Computing, Na-
tional University of Singapore, bhooi@comp.nus.edu.sg, C. Faloutsos, School of Computer Science, Carnegie
Mellon University, christos@cs.cmu.edu,
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 1556-4681/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 K. Shin et al.

The count of triangles (i.e., cliques of size three) is a key primitive in graph anal-
ysis with a wide range of applications, including spam/anomaly detection [Becchetti
et al. 2010; Lim et al. 2018], link recommendation [Epasto et al. 2015b; Tsourakakis
et al. 2011], community detection [Berry et al. 2011], degeneracy estimation [Shin
et al. 2018a], and query optimization [Bar-Yossef et al. 2002]. In particular, many im-
portant metrics in social network analysis, including the clustering coefficient [Watts
and Strogatz 1998], the transitivity ratio [Newman 2003], and the triangle connec-
tivity [Batagelj and Zaveršnik 2007], are based on the count of triangles. We refer
interested readers to [Hu et al. 2014; Chu and Cheng 2012; Kolountzakis et al. 2010;
Suri and Vassilvitskii 2011] for detailed descriptions of the applications.

Many real graphs are best represented as a sequence of edge additions and dele-
tions, and they often need to be processed in real time. For example, many social net-
working service companies aim to detect fraud or spam as quickly as possible in their
online social networks, which evolve indefinitely with both edge additions and dele-
tions. Another example is to examine graphs of data traffic and improve the network
performance in real time.

As a result, there has been great interest in streaming algorithms, which gradually
update their outputs as each edge insertion or deletion is received rather than operat-
ing on the entire graph at once. However, existing streaming algorithms for triangle
counting focus on insertion-only streams [Ahmed et al. 2017; Jha et al. 2013; Lim et al.
2018; Pavan et al. 2013; Tangwongsan et al. 2013; Shin et al. 2018b] or greatly sacri-
fice accuracy to support edge deletions [De Stefani et al. 2017; Han and Sethu 2017;
Kutzkov and Pagh 2014].

Why is it challenging to accurately estimate the count of triangles while handling
deletions? Most existing streaming algorithms for triangle counting are randomized al-
gorithms, whose outputs are random variables. Their accuracy depends on the bias and
variance of the random variables, which are estimates of the triangle counts. State-of-
the-art algorithms [De Stefani et al. 2017; Shin 2017; Lim et al. 2018; Shin et al.
2018b] discover a subset of triangles, within a fixed memory budget, and obtain unbi-
ased estimates1 by dividing the size of the subset by the probability that each triangle
is discovered during the process. To obtain unbiased estimates, the discovery probabil-
ity needs to be computed exactly, while to reduce variances, the discovery probability
needs to be increased. Instead of using only the edges stored in memory, the afore-
mentioned algorithms, which are for triangle counting in insertion-only streams, uses
every arrived edge to improve its estimation, even if the edge is about to be discarded
without being stored. While this idea of utilizing edges to be discarded significantly
increases the discovery probability and thus reduces the variance of estimates, it has
not been applied to triangle counting in graph streams with edge deletions, for which
thus state-of-the-art algorithms [De Stefani et al. 2017] suffer from low accuracy. A
major challenge of the application is to compute the exact discovery probability, which
is necessary to obtain unbiased estimates.

Can we accurately estimate the count of triangles in fully dynamic graph streams
with edge additions and deletions? In this work,2 we propose THINKD (Think before
you Discard), an accurate streaming algorithm for global and local triangle counting in
such a graph stream. That is, THINKD maintains and updates estimates of the counts
of global triangles (i.e., all triangles) and local triangles incident to each node. For this
problem, THINKD is the first algorithm that utilizes edges to be discarded. We first de-

1That is, the expected values of the estimates are equal to the true triangle counts.
2This work is an extended version of [Shin et al. 2018] with proofs, a variance analysis, additional experi-
mental results, an extension of THINKD for multigraph streams, and an application of THINKD to detecting
suddenly emerging dense subgraphs.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams A:3

rive formulas of the exact probability that each added or deleted triangle is discovered
when edges to be discarded are used with two different sampling schemes: Bernoulli
trials and Random Pairing (RP) [Gemulla et al. 2008]. Then, based on the formulas,
THINKD utilizes edges to be discarded while guaranteeing the unbiasedness of its esti-
mates. We formally prove that THINKDFAST and THINKDACC, which are two versions of
THINKD based on Bernoulli trials and RP, respectively, produce unbiased estimates.
We also prove a formula of the variance of estimates given by THINKDFAST; and the
time and space complexities of THINKDFAST and THINKDACC. Additionally, through ex-
tensive experiments using 8 real-world graphs, we demonstrate that the estimates
have smaller variances and thus smaller errors than estimates obtained by state-of-
the-art competitors, which fail to utilize edges to be discarded. Specifically, THINKD
has the following strengths:

— Accurate: THINKD gives up to 4× and 4 .3× smaller estimation errors for global
and local triangle counts, respectively, than its best competitors within the same
memory budget (Fig. 4).

— Fast: THINKD scales linearly with the size of the input stream (Fig. 3, Corollary 1,
and Theorem 4). Especially, THINKD is up to 2 .2× faster than its best competitors
with similar accuracies.

— Theoretically Sound: We prove the formulas for the bias and variance of the esti-
mates given by THINKD (Theorems 1 and 2). In particular, we show that THINKD
always maintains unbiased estimates with small variances (Fig. 2).

Additionally, as a new application, we use THINKD to detect suddenly emerging dense
subgraphs, and we show its advantages over state-of-the-art methods.

Reproducibility: The source code and datasets used in the paper are available at
http://dmlab.kaist.ac.kr/∼kijungs/codes/thinkd/.

The rest of the paper is organized as follows. In Sect. 2, we review related work. In
Sect. 3, we introduce notations and the problem definition. In Sect. 4, we describe our
proposed algorithm THINKD and analyze its accuracy and complexity. After providing
experimental results in Sect. 5, we conclude in Sect. 6. In Appendix A, we present a
toy example that highlights (dis)advantages of THINKD and its competitors. In Ap-
pendix B, we present a theoretical analysis of the variances of estimates given by
THINKD. In Appendix C, we extend THINKD to triangle counting in fully dynamic
multigraph streams with parallel edges. In Appendix D, we apply THINKD to the task
of detecting suddenly emerging dense subgraphs.

2. RELATED WORK
We review previous work on triangle counting in insertion-only or fully-dynamic graph
streams. See Table I for a comparison of streaming algorithms for triangle counting.

2.1. Triangle Counting in Insertion-only Graph Streams
In DOULION [Tsourakakis et al. 2009], each edge in the input graph is sampled inde-
pendently with probability r. Then, the probability that all three edges in a triangle are
sampled and thus discovered is r3. Based on this fact, DOULION provides 1/r3 times
the triangle count in the graph composed of the sampled edges as an unbiased esti-
mate of the triangle count in the entire graph.3 As in DOULION, once the probability
that each triangle is discovered (i.e., sampled) is known, an unbiased estimate is easily
obtained. Since the variance of such unbiased estimates is roughly inversely propor-

3The expected value of an unbiased estimate is equal to the true value.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dmlab.kaist.ac.kr/~kijungs/codes/thinkd/

A:4 K. Shin et al.

Table I: Comparison of algorithms for triangle counting in graph streams. Note that
THINKD satisfies all the criteria while clearly outperforming TRIESTFD (which also
satisfies all the criteria) in terms of speed and accuracy.

T
H

IN
K

D
(P

ro
po

se
d)

T
R

IE
S

T
F

D
[D

e
St

ef
an

ie
t

al
.2

01
7]

E
S

D
[H

an
an

d
Se

th
u

20
17

]

M
A

S
C

O
T

[L
im

et
al

.2
01

8]

T
R

IE
S

T
IM

P
R

[D
e

St
ef

an
ie

t
al

.2
01

7]

W
R

S
[S

hi
n

20
17

]

F
U

R
L

[J
un

g
et

al
.2

01
6]

P
A

R
T

IT
IO

N
C

T
[W

an
g

et
al

.2
01

7]

O
th

er
s*

Counting Global Triangles 3 3 3 3 3 3 3 3
Counting Local Triangles 3 3 3 3 3 3

Handling Large Graphs** 3 3 3 3 3 3 3 3
Handling Edge Insertions 3 3 3 3 3 3 3 3 3
Handling Edge Deletions 3 3 3
Handling Parallel Edges 3 3 3 3 3 3

Guaranteeing Unbiasedness*** 3 3 3 3 3 3 3 3

* [Ahmed et al. 2017; Ahmed et al. 2014; Tangwongsan et al. 2013; Jha et al. 2013; Pavan et al. 2013]
* graphs that do not fit in memory
** giving estimates whose expected values are equal to the true triangle counts.

tional to the probability that each triangle is discovered,4 many studies have focused
on increasing the probability to reduce such variance. COLORFUL TRIANGLE SAM-
PLING [Pagh and Tsourakakis 2012] increases the probability to r2 in a non-streaming
setting by (a) coloring each node in the input graph with a color chosen uniformly at
random among 1/r colors and (b) sampling the edges connecting nodes with the same
color. MASCOT [Lim et al. 2018] increases the probability to r2 in insertion-only graph
streams by (a) sampling each incoming edge independently with probability r but (b)
discovering (i.e., counting) triangles with each incoming edge before sampling or dis-
carding it. Note that, in MASCOT, each triangle is discovered if and only if the first two
edges of the triangle are sampled (with probability r2). TRIESTIMPR [De Stefani et al.
2017] further increases the probability in insertion-only graph streams by sampling
edges using the reservoir sampling [Vitter 1985], which uniformly samples as many
edges as possible within a given memory budget, while MASCOT may discard edges
even when memory is underutilized. Other approaches for increasing the probability
include (a) sampling wedges (i.e., paths of length two) in addition to edges [Jha et al.
2013; Pavan et al. 2013; Tangwongsan et al. 2013] and (b) sampling edges with differ-
ent probabilities that depend on the counts of incident triangles and adjacent sampled
edges [Ahmed et al. 2014; Ahmed et al. 2017].

In addition, regarding triangle counting in insertion-only streams, handling dupli-
cated edges [Wang et al. 2017]5, exploiting temporal dependencies of edges [Shin 2017],
utilizing a computer cluster [Shin et al. 2018b], reducing variances of estimates by
combining past estimates with the current one (at the expense of losing unbiasedness)

4For example, in THINKDFAST, each triangle is discovered with probability r2 in Lemma 5 and the variance
of the estimate is O(1/r2) in Theorem 2.
5Unlike in Appendix C, [Wang et al. 2017] aims to count triangles while ignoring duplicated edges.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams A:5

[Jung et al. 2016], and semi-streaming algorithms requiring multiple passes over data
[Kolountzakis et al. 2010; Tsourakakis 2008] were discussed.

2.2. Triangle Counting in Fully-dynamic Graph Streams
The first algorithm for triangle counting in fully dynamic graph streams with edge
deletions was proposed in [Kutzkov and Pagh 2014]. This algorithm adapts COLOR-
FUL TRIANGLE SAMPLING, described in the previous subsection, to obtain sparsified
graphs in a fully dynamic graph stream. Then, the ratio of 2-paths that are completed
to triangles is estimated from these graphs. This estimated ratio is multiplied with
an estimate of the total number of 2-paths in the input graph to estimate the total
number of triangles. This algorithm, however, is inapplicable to real-time applications
since it expensively computes an estimate once at the end of the stream instead of
always maintaining an estimate. Moreover, in the worst case, the algorithm requires
more memory than what is needed to store the entire input graph, as pointed out in
[De Stefani et al. 2017]. ESD [Han and Sethu 2017] maintains the current snapshot
of the input graph, which is given as a fully dynamic graph stream. For each change
({u, v},±) in the input graph, ESD tosses a (biased) coin. If the head comes up, ESD
estimates the changes in the triangle count, instead of exactly computing them, by
checking whether a random neighbor of node u (or v) is also a neighbor of node v (or
u), and updates its estimate of the triangle count. Otherwise, ESD does not update its
estimate of the triangle count.

Unlike the previous algorithm, ESD always maintains its estimate of the triangle
count. However, its scalability is limited since ESD maintains the entire input graph
in memory. TRIESTFD [De Stefani et al. 2017] maintains edges uniformly sampled
within a given memory budget in a fully dynamic graph by employing Random Pairing
[Gemulla et al. 2008] (see Sect. 4.1). TRIESTFD also maintains unbiased estimates of
global and local triangle counts in the input graph, which are obtained by multiplying
(a) the triangle counts in the graph consisting of the sampled edges and (b) the recip-
rocal of the probability that each triangle is sampled. While TRIESTFD simply discards
unsampled edges without utilizing them to update its estimates, our proposed algo-
rithm, THINKD, utilizes these unsampled edges to update estimates before discarding
them to minimize information loss, and thus it obtains more accurate estimates than
TRIESTFD. Although this idea of using unsampled edges was first used in MASCOT
[Lim et al. 2018] and TRIESTIMPR [De Stefani et al. 2017], which are described in the
previous subsection, for triangle counting in insertion-only streams, applying the idea
to fully dynamic graph streams has remained unexplored.

In addition, semi-streaming algorithms, which require multiple passes over data,
were developed for triangle counting in fully dynamic graph streams [Becchetti et al.
2010].

3. NOTATIONS AND PROBLEM DEFINITION
In this section, we first introduce notations and concepts. Then, we formally define the
problem of triangle counting in fully-dynamic graph streams.

3.1. Notations
Table II lists the symbols frequently used in the paper. Consider an undirected graph
G = (V, E) with nodes V and edges E . Each edge {u, v} ∈ E connects two distinct nodes
u 6= v ∈ V. We say a subset {u, v, w} ⊂ V of size 3 is a triangle if every pair of distinct
nodes u, v, and w is connected by an edge in E . We denote the set of global triangles
(i.e., all triangles) in G by T and the set of local triangles of each node u ∈ V (i.e., all
triangles containing u) by T [u] ⊂ T .

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 K. Shin et al.

Table II: Table of frequently-used symbols.

Symbol Definition

Notations for
Fully Dynamic
Graph Streams

(Sect. 3)

e(t) = ({u, v}, δ) change in the input graph G at time t
G(t) = (V(t), E(t)) graph G at time t
{u, v} edge between nodes u and v
{u, v, w} triangle with nodes u, v, and w
T (t) set of global triangles in G(t)
T (t)[u] set of local triangles of node u in G(t)

Notations for
Algorithms

and Analyses
(Sect. 4)

S set of sampled edges
N̂ [u] set of neighbors of node u in S
c̄ estimate of the count of global triangles
c[u] estimate of the count of local triangles of node u
r sampling probability in THINKDFAST

k maximum number of sampled edges in THINKDACC

A(t) set of added triangles at time t
D(t) set of deleted triangles at time t

Assume the graph G evolves from the empty graph. We consider the fully dynamic
graph stream representing the sequence of changes in G, and denote the stream by
(e(1), e(2), ...). For each t ∈ {1, 2, ...}, the pair e(t) = ({u, v}, δ) of an edge {u, v} and a
sign δ ∈ {+,−} denotes the change in G at time t. Specifically, ({u, v},+) indicates the
addition of a new edge {u, v} /∈ E , and ({u, v},−) indicates the deletion of an existing
edge {u, v} ∈ E . That is, we assume that only new edges can be added (see Appendix C
for triangle counting in a multigraph stream with parallel edges), and only existing
edges can be deleted. We use G(t) = (V(t), E(t)) to indicate G at time t. That is,

E(0) = ∅ and E(t) =

{
E(t−1) ∪ {{u, v}}, if e(t) = ({u, v},+),

E(t−1) \ {{u, v}}, if e(t) = ({u, v},−).

Lastly, we let T (t) denote the set of global triangles in G(t) and T (t)[u] ⊂ T (t) denote
the set of local triangles of each node u ∈ V(t) in G(t).

3.2. Problem Definition
In this work, we address the problem of estimating the counts of global and local tri-
angles in a fully dynamic graph stream. We assume the standard data stream model
where the changes in the input stream, which may not fit in memory, can be accessed
once in the given order unless they are explicitly stored in memory.

Problem 1 (Global and Local Triangle Counting in a Fully Dynamic Graph Stream).
— Given: a fully dynamic graph stream (e(1), e(2), ...)

(i.e., sequence of edge additions and deletions in graph G)
— Maintain: estimates of global triangle count |T (t)| and local triangle counts

{(u, |T (t)[u]|)}u∈V(t) of graph G(t) for current t ∈ {1, 2, ...}
— to Minimize: the estimation errors.

We follow a general approach of reducing the biases and variances of estimates si-
multaneously rather than minimizing a specific measure of estimation error.

4. PROPOSED METHOD: THINK BEFORE YOU DISCARD (THINKD)
We propose THINKD (Think before you Discard), which estimates the counts of global
and local triangles in a fully dynamic graph stream. For estimation with limited mem-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams A:7

StoreToss a
Coin

Receive

Head

DeleteIs
Stored?

Type?

Addition

Deletion

Update
Estimates

Update
Estimates

Tail

No

Yes

(a) TRIEST-FD [De Stefani et al. 2017]

Tail

StoreToss a
Coin

Receive Update
Estimates

Head

DeleteIs
Stored?

Yes
Type?

Addition

Deletion
No

(b) ThinkD (Proposed):

Fig. 1: Description of THINKD and its best competitor TRIESTFD, which support global
and local triangle counting in a fully dynamic graph stream. (a) In TRIESTFD, each in-
coming change goes through a test step (colored blue) and then an update step (colored
green). The changes not passing the test step are simply discarded (see red arrows)
without being utilized to update estimates. Due to this information loss, TRIESTFD pro-
duces inaccurate estimates. (b) However, in THINKD (proposed), each incoming change
goes through the update step (colored green) and then a test step. This guarantees
that every change is used to update estimates (see the red arrow). THINKDFAST and
THINKDACC are distinguished by their testing scheme: tossing a biased coin or Ran-
dom Pairing (see Sect. 4.1).

ory, THINKD samples edges and maintains those sampled edges, while discarding the
other edges. The main idea of THINKD is to fully utilize unsampled edges before they
are discarded, as illustrated in Fig. 1. Specifically, whenever each change in the input
stream arrives, THINKD first updates its estimates using the change and previously
sampled edges as follows:

— For each observed triangle addition, increase corresponding estimates by the recip-
rocal of the probability that the triangle addition is observed.

— For each observed triangle deletion, decrease corresponding estimates by the recip-
rocal of the probability that the triangle deletion is observed.

After that, if the change is an addition of an edge, THINKD decides whether to sample
the edge or not.

Estimates provided by THINKD are random variables, and its estimation error de-
pends on the bias (i.e., the difference between the true triangle count and the expected
value of its estimate) and variance of the estimates. Compared to using only sampled
edges, utilizing unsampled edges increases the probability that each triangle addition
or deletion is observed and thus decreases the variance of estimates, which is roughly
inversely proportional to the probability (see Theorem 2). Moreover, increasing or de-
creasing estimates by the reciprocal of the probability, for each triangle addition or

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 K. Shin et al.

deletion, makes the biases of estimates zero and thus enables THINKD provide un-
biased estimates, whose expected values are equal to the true triangle counts (see
Theorem 1).

In this section, we present two versions of THINKD: THINKDFAST and THINKDACC.
THINKDFAST uses a simple and fast edge sampling scheme based on Bernoulli trials,
while THINKDACC is based on Random Pairing (RP), an advanced sampling scheme for
fully utilizing memory within a given budget.6 Specifically, we focus on (a) the detailed
procedures of both versions of THINKD and (b) the probabilities that each triangle
is discovered during the procedures. Then, based on the probabilities, we prove the
unbiasedness of both versions of THINKD and provide a variance analysis. Next, we
analyze their time and space complexities. Throughout this section, we use c̄ to denote
the maintained estimate of the count of global triangles. Likewise, for each node u, we
use c[u] to denote the maintained estimate of the count of local triangles of node u. In
addition, we let S be the set of currently sampled edges, and for each node u, we let
N̂ [u] be the set of neighbors of u in the graph composed of the edges in S. For each
variable (e.g., c̄), we use superscript (t) (e.g., c̄(t)) to denote the value of the variable
after the t-th element e(t) is processed by THINKD.

4.1. Preliminaries: Random Pairing (RP)
We first introduce Random Pairing (RP) [Gemulla et al. 2008], a sampling method that
THINKD is based on. Then, we prove its several properties.

RP is a uniform random sampling scheme that maintains a bounded sample size
under an arbitrary sequence of insertions and deletions. The dataset R of interest is
understood as a finite set of distinguishable items, and the sample S is understood
as a subset of R. The dataset R is initially empty, and evolves over time as items
are inserted and deleted. In general, items that are deleted may be subsequently re-
inserted. Following [Brown and Haas 2006], a sampling scheme is called uniform if the
scheme producing the sample S from the dataset R satisfies that,

Pr[S = A] = Pr[S = B], ∀A 6= B ⊂ R s.t. |A| = |B|. (1)

RP is a uniform random sampling scheme with maintaining a bounded sample size,
i.e., given the sample size bound k > 0, |S| ≤ k always holds.

To efficiently utilize the bounded memory space, RP keeps two counters for “uncom-
pensated” deletions. First, the counter nb enumerates “bad” uncompensated deletions
where the sample included the deleted item so that the sample size was decremented
by 1 for the deletion. Second, the counter ng enumerates “good” uncompensated dele-
tions where the sample excluded the deleted item so that the sample size remained the
same for the deletion. Obviously, nb+ng represents the total uncompensated deletions.

RP is described in Algorithm 1. Initially, both the dataset and the sample are empty
(line 2). For the deletion, if the sample includes the deleted item, RP removes the item
from the sample and increments nb (line 13). If the sample excludes the deleted item,
RP increments ng (line 14). For the insertion, if nb + ng = 0, then there is no deletion
to compensate, and the insertion is processed by Reservoir Sampling [Vitter 1985].
That is, if the sample size has not reached its upper bound (i.e., |S| < k), RP adds
the inserted item to S (line 5); otherwise, RP replaces a random item in S with the
inserted item by a certain probability (lines 6-7). If nb + ng > 0, then RP tosses a coin
with probability nb/(nb+ng) (line 8). If the head comes up with probability nb/(nb+ng),

6Using RP increases the probability that each triangle addition or deletion is observed and thus further
decreases the variances of estimates. The variances are roughly inversely proportional to the probability, as
stated in Theorem 2.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams A:9

Algorithm 1: Random Pairing: Sampling method that THINKD uses
Inputs : a dataset: R, a sample: S, an item to be added or deleted: a
Outputs: a sample after addition or deletion: S

1 Procedure INITIALIZE():
2 S ← ∅, R← ∅, nb ← 0, ng ← 0

3 Procedure INSERT(a):
4 if nb + ng = 0 then
5 if |S| < k then S ← S ∪ {a}
6 else if a random number in Bernoulli(k/|R|) is 1 then
7 replace a random item in S with a

8 else if a random number in Bernoulli(nb/(nb + ng)) is 1 then
9 S ← S ∪ {a}, nb ← nb − 1

10 else ng ← ng − 1

11 Procedure DELETE(a):
12 if a ∈ S then
13 S ← S \ {a}, nb ← nb + 1

14 else ng ← ng + 1

RP adds the inserted item to the sample and decrements nb (line 9). If the tail comes
up with probability ng/(nb + ng), RP decrements ng (line 10).

In high level, RP pairs the inserted item with an uncompensated deletion if possible,
and adds the inserted item to the sample if and only if the paired item was in the
sample at the time of its deletion. Suppose we have nb + ng > 0 so that there are
uncompensated deletions. Then for the insertion, RP pairs the inserted item with a
randomly selected uncompensated deletion, called the “partner” deletion. RP adds the
inserted item to the sample if and only if the partner was in the sample at the time
of its deletion so that the deletion was “bad”. Since the partner is chosen among nb
“bad” deletions and ng “good” deletions, the “bad” deletion is chosen as the partner
with probability nb/(nb + ng). To implement this, rather than tracing each partner,
only the probability nb/(nb + ng) needs to be traced. Hence, maintaining the counters
nb and ng suffices.

The uniformity of RP and the distribution of the sample size can be theoretically
computed. For these, we let R(t) be the dataset and S(t) be the sample at time t. Simi-
larly, let n(t)b and n(t)g be nb and ng at time t. Also let y(t) = min(k, |R(t)|+ n

(t)
b + n

(t)
g).

The weak uniformity of RP in Lemma 1 is direct from Theorem 1 in [Gemulla et al.
2008], and we show the strong uniformity of RP in Lemma 2.

Lemma 1 (Weak Uniformity of Random Pairing). At each fixed time t, all equal-sized
subsets of the dataset have the same probability to be the set of samples maintained in
Algorithm 1. Formally,

Pr[S(t) = A] = Pr[S(t) = B], ∀t ≥ 1, ∀A 6= B ⊂ R(t) s.t. |A| = |B|. (2)

Lemma 2 (Strong Uniformity in Random Pairing). At each fixed time, all equal-sized
subsets of the dataset have the same probability to be a subset of the samples maintained
in Algorithm 1. Formally,

Pr[A ⊂ S(t)] = Pr[B ⊂ S(t)], ∀t ≥ 1, ∀A 6= B ⊂ R(t) s.t. |A| = |B|. (3)

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 K. Shin et al.

Algorithm 2: THINKDFAST: Simple and Fast Version of THINKD
Inputs : fully dynamic graph stream: (e(1), e(2), ...), sampling probability: R
Outputs: estimate of the global triangle count: c̄

estimates of the local triangle counts: c[u] for each node u
1 S ← ∅
2 for each element e(t) = ({u, v}, δ) in the input stream do
3 UPDATE({u, v}, δ)
4 if δ = + then INSERT({u, v})
5 else if δ = − then DELETE({u, v})
6 Procedure UPDATE({u, v}, δ): . update global and local triangle counts
7 compute N̂ [u] ∩ N̂ [v] . N̂ [u] and N̂ [v] are obtained from current S
8 for each common neighbor w ∈ N̂ [u] ∩ N̂ [v] do
9 if δ = + then increase c̄, c[u], c[v], and c[w] by 1/r2

10 else if δ = − then decrease c̄, c[u], c[v], and c[w] by 1/r2

11 Procedure INSERT({u, v}):
12 if a random number in Bernoulli(r) is 1 then S ← S ∪ {{u, v}}
13 Procedure DELETE({u, v}):
14 if {u, v} ∈ S then S ← S \ {{u, v}}

Proof. Let eAi be the family of size-i subsets ofR(t) includingA, and let eBi be the family
of size-i subsets of R(t) including B. Then, Eq. (3) is obtained as follows:

Pr[A ⊂ S(t)] =
∑
i

∑
C∈eAi

Pr[C = S(t)]

=
∑
i

∑
C∈eBi

Pr[C = S(t)] = Pr[B ⊂ S(t)],

where the second equality is from Eq. (2) in Lemma 1 and |eAi | = |eBi |.

Moreover, the boundedness, the expectation, and the variance of the sample size of
RP in Lemma 3 directly follow from Theorem 2 in [Gemulla et al. 2008].

Lemma 3 (Boundedness, Expectation, and Variance of the sample size of Random
Pairing). At each fixed time t in Algorithm 1, the sample size always satisfies

0 ≤ |S(t)| ≤ k, ∀t ≥ 1.

Also, the expected value and the variance of the sample size are as follows:

E[|S(t)|] =
|R(t)| · y(t)

|R(t)|+ n
(t)
b + n

(t)
g

, ∀t ≥ 1. (4)

V ar[|S(t)|] =
(n

(t)
b + n

(t)
g) · y(t) · (|R(t)|+ n

(t)
b + n

(t)
g − y(t)) · |R(t)|

(|R(t)|+ n
(t)
b + n

(t)
g)2 · (|R(t)|+ n

(t)
b + n

(t)
g − 1)

,∀t ≥ 1. (5)

4.2. Simple and Fast Version of THINKD: THINKDFAST

THINKDFAST, which is a simple and fast version of THINKD, is described in Algo-
rithm 2. THINKDFAST initially has no sampled edges (line 1). Whenever each element
({u, v}, δ) of the input stream arrives (line 2), THINKDFAST first updates its estimates by

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams A:11

calling the procedure UPDATE (line 3). Then, if the element is an addition (i.e., δ = +),
THINKDFAST samples the edge {u, v} with a given sampling probability R (line 12)
by calling the procedure INSERT (line 4). If the element is a deletion (i.e., δ = −),
THINKDFAST removes the edge {u, v} from the existing samples (line 14) by calling the
procedure DELETE (line 5).

In the procedure UPDATE, THINKDFAST finds the triangles connected by the arrived
edge {u, v} and two edges from the existing samples S (line 7). To this end, THINKD
uses the fact that each common neighbor w of the nodes u and v in the graph composed
of the sampled edges in S indicates the existence of such a triangle {u, v, w}. In the
case of additions (i.e., δ = +), since such triangles are new triangles added to the input
stream, THINKDFAST increases the estimates of the global count and the corresponding
local counts (line 9). In the case of deletions (i.e., δ = −), since such triangles are those
removed from the input stream, THINKDFAST decreases the estimates of the global
count and the corresponding local counts (line 10).

As explained in detail in Sect. 4.4, for unbiased estimates, the amount of change per
triangle discovered in lines 9 and 10 should be the reciprocal of the probability that
each added or deleted triangle is discovered. This is because this makes the expected
amount of changes in the corresponding estimates for each triangle be exactly one. In
THINKDFAST, each such triangle {u, v, w} is discovered if and only if {w, u} and {v, w}
are in S, and thus the probability is r2, as formalized in Lemma 5, which is based on
Lemma 4. In both lemmas, we let X(t) be the random number in Bernoulli(r) drawn
in line 12 while the t-th element e(t) is processed, and we let S(t) be S after the t-th
element e(t) is processed. For each edge {u, v}, we let l(t)uv be the last time that {u, v} is
added to or removed from G at time t or earlier. That is,

l(t)uv := max({1 ≤ s ≤ t : e(s) = ({u, v},+) or e(s) = ({u, v},−)}). (6)

Lemma 4. In Algorithm 2, for each time t ≥ 1 and any edge {u, v} ∈ E(t), {u, v} ∈ S(t)

if and only if X(l(t)uv) = 1. That is,

{u, v} ∈ S(t) ⇐⇒ X(l(t)uv) = 1, ∀t ≥ 1, ∀{u, v} ∈ E(t) (7)

Proof. Note that {u, v} ∈ E(t) implies that e(l
(t)
uv) = ({u, v},+), i.e. the edge {u, v} is

added at time l(t)uv . Then {u, v} /∈ E(l(t)uv−1), and since S(s) ⊂ E(s) for all s ≥ 1, {u, v} /∈
S(l(t)uv−1) as well. Therefore,

{u, v} ∈ S(l
(t)
uv) ⇐⇒ X(l(t)uv) = 1. (8)

Also, from Eq. (6), e(s) 6= ({u, v}, δ) if l(t)uv < s ≤ t, and hence {u, v} is not added after
time l(t)uv in Algorithm 1. Hence for all s ∈ [l

(t)
uv , t],

{u, v} ∈ S(s) ⇐⇒ {u, v} ∈ S(l
(t)
uv). (9)

Combining Eq. (8) and Eq. (9) with s = t gives Eq. (7).

Lemma 5 (Discovery Probability of Triangles in THINKDFAST). In THINKDFAST, any
two distinct edges in graph G(t) = (V(t), E(t)) are sampled with probability r2. That is,

Pr[{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)] = r2, ∀t ≥ 1, ∀{u, v} 6= {w, x} ∈ E(t). (10)

Proof. Applying Lemma 4 to the edges {u, v} and {w, x} gives

{u, v} ∈ S(t) ⇐⇒ X(l(t)uv) = 1 and {w, x} ∈ S(t) ⇐⇒ X(l(t)wx) = 1. (11)

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 K. Shin et al.

Then, since X(s)’s are independent Bernoulli(r) and l
(t)
uv 6= l

(t)
wx, applying Eq. (11) with

independence of X(l(t)uv) and X(l(t)wx) gives

Pr
[
{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)

]
= Pr

[
X(l(t)uv) = 1 ∩X(l(t)wx) = 1

]
= Pr

[
X(l(t)uv) = 1

]
Pr
[
X(l(t)wx) = 1

]
= r2.

(Dis)advantages of THINKDFAST : Due to its simplicity, THINKDFAST is faster than
its competitors, as shown empirically in Sect. 5.4. However, it is less accurate than
THINKDACC, described in the following subsection, since it may discard edges even
when memory is not full, leading to avoidable loss of information.

4.3. Accurate Version of THINKD: THINKDACC

THINKDACC, which is an accurate version of THINKD, is described in Algorithm 3. Un-
like THINKDFAST, which may discard edges even when memory is not full, THINKDACC

maintains as many samples as possible within a given memory budget k (≥ 2) to min-
imize information loss.

To this end, THINKDACC uses a sampling method called Random Pairing (RP), de-
scribed in detail in Sect. 4.1. Given a fully dynamic stream with deletions, and a mem-
ory budget k, RP maintains at most k samples while satisfying the uniformity of the
samples. Specifically, if we let E be the set of edges remaining (without being deleted)
in the input stream so far and S ⊂ E be the set of samples being maintained by RP,
then the following equations hold, as shown in Lemma 2:

|S| ≤ k and Pr[A ⊂ S] = Pr[B ⊂ S], ∀A 6= B ⊂ E s.t. |A| = |B|.
This uniformity makes the probability that each triangle is discovered simple and com-
putationally inexpensive, as shown below.

Updating the set S of samples using RP is described in lines 11-24. Whenever a
deletion of an edge arrives, RP increases nb or ng depending on whether the edge is in
S or not (lines 23 and 24). Roughly speaking, nb and ng denote the number of deletions
that need to be “compensated” by additions (lines 17-19). If there is no deletion to
compensate, RP processes each addition of an edge as in Reservoir Sampling [Vitter
1985]. That is, if memory is not full (i.e., |S| < k), RP adds the new edge to S (line 14),
while otherwise, RP replaces a random edge in S with the new edge with a certain
probability (lines 15-16). See Sect. 4.1 for the definition of nb and ng, the details of RP,
and the intuition behind the compensation; and we focus on how to use RP for triangle
counting in the rest of this section.

Updating the estimates in THINKDACC is the same as that in THINKDFAST except for
the amount of change per triangle discovered in lines 9 and 10. As in THINKDFAST,
for unbiased estimates, the amount should be reciprocal of the probability that each
added or deleted triangle is discovered. When each element e(t) = ({u, v}, δ) arrives,
each added or deleted triangle {u, v, w} is discovered if and only if {w, u} and {v, w} are
in S. As shown in Lemma 7, if we let y = min(k, |E| + nb + ng), then the probability of
such an event is

p(|E|, nb, ng) :=
y

|E|+ nb + ng
× y − 1

|E|+ nb + ng − 1
. (12)

Lemma 7 is based on Lemma 6, and in both lemmas, we let E(t) be the set of edges
remaining (without being deleted) in the input graph stream after the t-th element is
processed. We also let S(t) ⊂ E(t) and y(t) be S and y after the t-th element is processed.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams A:13

Lemma 6 (Sampling Probability of Each Edge). The probability that each edge is sam-
pled in Algorithm 3 is as follows:

Pr[{u, v} ∈ S(t)] =
y(t)

|E(t)|+ n
(t)
b + n

(t)
g

, ∀t ≥ 1, ∀{u, v} ∈ E(t). (13)

Proof. Let 1({u, v} ∈ S(t)) be a random variable which is 1 if {u, v} ∈ S(t) and 0 other-
wise. By definition,

|S(t)| =
∑

{u,v}∈E(t)
1({u, v} ∈ S(t)). (14)

Then, by linearity of expectation and Eq. (14),

E[|S(t)|] =
∑

{u,v}∈E(t)
E[1({u, v} ∈ S(t))] =

∑
{u,v}∈E(t)

Pr[{u, v} ∈ S(t)]. (15)

Then, Eq. (13) is obtained as follows:

Pr[{u, v} ∈ S(t)] =
1

|E(t)|
∑

{w,x}∈E(t)
Pr[{w, x} ∈ S(t)]

=
E[|S(t)|]
|E(t)|

=
y(t)

|E(t)|+ n
(t)
b + n

(t)
g

,

where the first, second, and last equalities are from Eq. (3), Eq. (15), and Eq. (4) in
Lemma 3, respectively.

Lemma 7 (Discovery Probability of Triangles in THINKDACC). In THINKDACC, any two
distinct edges in graph G(t) = (V(t), E(t)) are sampled with probability as in Eq. (12).
That is, if we let p(t) and S(t) be the values of Eq. (12) and S, resp., in Algorithm 3 after
the t-th element e(t) is processed, then

Pr[{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)] = p(t), ∀t ≥ 1, ∀{u, v} 6= {w, x} ∈ E(t). (16)

Proof. Let 1({u, v} ∈ S(t)) be a random variable which is 1 if {u, v} ∈ S(t) and 0 other-
wise. For calculating Pr[{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)], we expand the covariance sum∑
{u,v}6={w,x} Cov(1({u, v} ∈ S(t)),1({w, x} ∈ S(t))) in two ways and compare them.
First, we use the expansion of the variance of S(t). From Eq. (14),

V ar[|S(t)|] =
∑

{u,v}∈E(t)
V ar[1({u, v} ∈ S(t))]

+
∑

{u,v}6={w,x}

Cov(1({u, v} ∈ S(t)),1({w, x} ∈ S(t))),

and hence the covariance sum can be expanded as∑
{u,v}6={w,x}

Cov(1({u, v} ∈ S(t)),1({w, x} ∈ S(t)))

= V ar[|S(t)|]−
∑

{u,v}∈E(t)
V ar[1({u, v} ∈ S(t))]. (17)

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 K. Shin et al.

Algorithm 3: THINKDACC: Accurate Version of THINKD
Inputs : fully dynamic graph stream: (e(1), e(2), ...), memory budget: k (≥ 2)
Outputs: estimate of the global triangle count: c̄

estimates of the local triangle counts: c[u] for each node u
1 S ← ∅, |E| ← 0, nb ← 0, ng ← 0

2 for each element e(t) = ({u, v}, δ) in the input stream do
3 UPDATE({u, v}, δ)
4 if δ = + then INSERT({u, v})
5 else if δ = − then DELETE({u, v})
6 Procedure UPDATE({u, v}, δ): . update global and local triangle counts
7 compute N̂ [u] ∩ N̂ [v] . N̂ [u] and N̂ [v] are obtained from current S
8 for each common neighbor w ∈ N̂ [u] ∩ N̂ [v] do
9 if δ = + then increase c̄, c[u], c[v], and c[w] by 1/p(|E|, nb, ng)

10 else if δ = − then decrease c̄, c[u], c[v], and c[w] by 1/p(|E|, nb, ng)

11 Procedure INSERT({u, v}):
12 |E| ← |E|+ 1
13 if nb + ng = 0 then
14 if |S| < k then S ← S ∪ {{u, v}}
15 else if a random number in Bernoulli(k/|E|) is 1 then
16 replace a random edge in S with {u, v}

17 else if a random number in Bernoulli(nb/(nb + ng)) is 1 then
18 S ← S ∪ {{u, v}}, nb ← nb − 1

19 else ng ← ng − 1

20 Procedure DELETE({u, v}):
21 |E| ← |E| − 1
22 if {u, v} ∈ S then
23 S ← S \ {{u, v}}, nb ← nb + 1

24 else ng ← ng + 1

For the second term of Eq. (17), V ar[x] = E[x2]− (E[x])2 implies

V ar[1({u, v} ∈ S(t))] = Pr[{u, v} ∈ S(t)]− Pr[{u, v} ∈ S(t)]2. (18)

Hence applying Eq. (13) and Eq. (18) to Eq. (17) gives the covariance sum as

∑
{u,v}6={w,x}

Cov(1({u, v} ∈ S(t)),1({w, x} ∈ S(t)))

= V ar[|S(t)|]−
∑

{u,v}∈E(t)
V ar[1({u, v} ∈ S(t))]

= V ar[|S(t)|]−
∑

{u,v}∈E(t)

(
Pr[{u, v} ∈ S(t)]− Pr[{u, v} ∈ S(t)]2

)

= V ar[|S(t)|]− |E(t)| ·
y(t) · (|E(t)|+ n

(t)
b + n

(t)
g − y(t))

(|E(t)|+ n
(t)
b + n

(t)
g)2

. (19)

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams A:15

Second, we directly expand the covariance sum. Expanding the covariance sum with
Cov(x, y) = E[xy]− E[x] · E[y] and applying Eq. (13) give∑
{u,v}6={w,x}

Cov(1({u, v} ∈ S(t)),1({w, x} ∈ S(t)))

=
∑

{u,v}6={w,x}

(
Pr[{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)]− Pr[{u, v} ∈ S(t)] · Pr[{w, x} ∈ S(t)]

)

=
∑

{u,v}6={w,x}

Pr[{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)]−(y(t)

|E(t)|+ n
(t)
b + n

(t)
g

)2


=
∑

{u,v}6={w,x}

(
Pr[{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)]

)
− y(t) · y(t) · |E(t)| · (|E(t)| − 1)

(|E(t)|+ n
(t)
b + n

(t)
g)2

. (20)

Now, the probability sum
∑
{u,v}6={w,x} Pr[{u, v} ∈ S(t)∩{w, x} ∈ S(t)] can be obtained

by comparing two expansions Eq. (19) and Eq. (20) of the covariance sum and applying
Eq. (5) in Lemma 3 as∑
{u,v}6={w,x}

Pr[{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)]

=
∑

{u,v}6={w,x}

Cov(1({u, v} ∈ S(t)),1({w, x} ∈ S(t))) +
y(t) · y(t) · |E(t)| · (|E(t)| − 1)

(|E(t)|+ n
(t)
b + n

(t)
g)2

= V ar[|S(t)|]− |E(t)| ·
y(t) · (|E(t)|+ n

(t)
b + n

(t)
g − y(t))

(|E(t)|+ n
(t)
b + n

(t)
g)2

+
y(t) · y(t) · |E(t)| · (|E(t)| − 1)

(|E(t)|+ n
(t)
b + n

(t)
g)2

=
y(t) · (y(t) − 1) · |E(t)| · (|E(t)| − 1)

(|E(t)|+ n
(t)
b + n

(t)
g) · (|E(t)|+ n

(t)
b + n

(t)
g − 1)

. (21)

Then, Eq. (16) is obtained by Eq. (21) as follows:

Pr[{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)]

=
1

|E(t)| · (|E(t)| − 1)

 ∑
{u,v}6={w,x}

Pr[{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)]


=

1

|E(t)| · (|E(t)| − 1)
· y(t) · (y(t) − 1) · |E(t)| · (|E(t)| − 1)

(|E(t)|+ n
(t)
b + n

(t)
g) · (|E(t)|+ n

(t)
b + n

(t)
g − 1)

=
y(t)

|E(t)|+ n
(t)
b + n

(t)
g

· y(t) − 1

|E(t)|+ n
(t)
b + n

(t)
g − 1

= p(t),

where the first equality is from Eq. (3).

(Dis)advantages of THINKDACC: Within the same memory budget, THINKDACC is
slower than THINKDFAST since THINKDACC maintains and processes more samples on
average. However, THINKDACC is more accurate than THINKDFAST by utilizing more
samples. These are shown empirically in Sect. 5.3 and Sect. 5.4.
Reducing estimation errors by sacrificing unbiasedness: The estimates (i.e., c̄
and c[u] for each node u) in Algorithms 2 and 3 can have negative values. Since true
triangle counts are always non-negative, lower bounding the estimates by zero always

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 K. Shin et al.

reduces the estimation errors. However, the estimates become biased, and Theorem 1
in the following section does not hold anymore.

4.4. Accuracy Analyses
We prove that THINKDFAST and THINKDACC maintain unbiased estimates, whose ex-
pected values are equal to the true global and local triangle counts. Then, we analyze
the variances of the estimates that THINKDFAST maintains. To this end, for each vari-
able (e.g., c̄) in Algorithms 2 and 3, we use superscript (t) (e.g., c̄(t)) to denote the value
of the variable after the t-th element e(t) is processed.

We first define added triangles and deleted triangles in Definitions 1 and 2.

Definition 1 (Added Triangles). Let A(t) be the set of triangles that have been added
to graph G at time t or earlier. Formally,

A(t) := {({u, v, w}, s) : 1 ≤ s ≤ t and {u, v, w} /∈ T (s−1) and {u, v, w} ∈ T (s)},

where addition time s is for distinguishing triangles composed of the same nodes but
added at different times.7

Definition 2 (Deleted Triangles). Let D(t) be the set of triangles that have been re-
moved from graph G at time t or earlier. Formally,

D(t) := {({u, v, w}, s) : 1 ≤ s ≤ t and {u, v, w} ∈ T (s−1) and {u, v, w} /∈ T (s)},

where deletion time s is for distinguishing triangles composed of the same nodes but
deleted at different times.2

Similarly, for each node u ∈ V(t), we use A(t)[u] ⊂ A(t) and D(t)[u] ⊂ D(t) to denote
the added and deleted triangles with node u, respectively. Lemma 8 formalizes the
relationship between these concepts and the number of triangles.

Lemma 8 (Count of Triangles in the Current Graph). The count of triangles in the
current graph equals the count of added triangles subtracted by the count of deleted
triangles. Formally,

|T (t)| = |A(t)| − |D(t)|, ∀t ≥ 1, (22)

|T (t)[u]| = |A(t)[u]| − |D(t)[u]|, ∀t ≥ 1, ∀u ∈ V(t). (23)

Proof. When t = 1, then T (1) = A(1) = D(1) = ∅ holds, and hence Eq. (22) trivially
holds. Hence we assume that t ≥ 2 from now on. First, we show that for each time
s ≥ 2,

|T (s)| − |T (s−1)| = |A(s)\A(s−1)| − |D(s)\D(s−1)|. (24)

To show this, we show the following relations,

|A(s)\A(s−1)| = |T (s)\T (s−1)|, (25)

|D(s)\D(s−1)| = |T (s−1)\T (s)|. (26)

For Eq. (25), note that

A(s)\A(s−1) =
{

({u, v, w}, s) : {u, v, w} /∈ T (s−1) and {u, v, w} ∈ T (s)
}

7Note that triangles composed of the same nodes can be added multiple times (and thus can be removed
multiple times) only if deleted edges are added again.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams A:17

and

T (s)\T (s−1) =
{
{u, v, w} : {u, v, w} /∈ T (s−1) and {u, v, w} ∈ T (s)

}
hold, and hence Eq. (25) holds. Similarly,

D(s)\D(s−1) =
{

({u, v, w}, s) : {u, v, w} ∈ T (s−1) and {u, v, w} /∈ T (s)
}

and

T (s−1)\T (s) =
{
{u, v, w} : {u, v, w} ∈ T (s−1) and {u, v, w} /∈ T (s)

}
hold, and hence Eq. (26) holds. Then, Eq. (25) and Eq. (26) imply

|A(s)\A(s−1)|+ |T (s−1)| = |T (s)\T (s−1)|+ |T (s−1)| = |T (s−1) ∪ T (s)|
= |T (s−1)\T (s)|+ |T (s)| = |D(s)\D(s−1)|+ |T (s)|,

and hence Eq. (24) holds. Then, summing up Eq. (24) from s = 2 to t yields

|T (t)| − |T (1)| =
t∑

s=2

|A(s)\A(s−1)| −
t∑

s=2

|D(s)\D(s−1)|. (27)

Then,
{
A(s)\A(s−1)}t

s=2
being disjoint over s implies

t∑
s=2

|A(s)\A(s−1)| =

∣∣∣∣∣
t⋃

s=2

(A(s)\A(s−1))

∣∣∣∣∣ = |A(t)\A(1)|, (28)

and similarly,
t∑

s=2

|D(s)\D(s−1)| = |D(t)\D(1)|. (29)

holds. Then, applying Eq. (28), Eq. (29), and T (1) = A(1) = D(1) = ∅ to Eq. (27) yields
that for all t ≥ 2,

|T (t)| = |A(t)| − |D(t)|,
which completes the proof of Eq. (22).

For Eq. (23), replacing T (s) by T (s)[u], A(s) by A(s)[u], and D(s) by D(s)[u] and repeat-
ing above give a proof.

Based on these concepts, we prove that THINKDFAST and THINKDACC maintain un-
biased estimates in Theorem 1. For the unbiasedness of the estimate c̄ of the global
count, we show that the expected amount of change in c̄ for each added triangle is +1,
while that for each deleted triangle is −1. This follows from the fact that the amount of
change in estimates for each observed triangle addition or deletion is the reciprocal of
the probability that each triangle addition or deletion is observed. Then, by Lemma 8,
the expected value of c̄ equals the true global count. Likewise, we show the unbiased-
ness of the estimate of the local triangle count of each node by considering only the
added and deleted triangles incident to the node.

Theorem 1 (‘Any Time’ Unbiasedness of THINKD). THINKD gives unbiased estimates
at any time. Formally, in Algorithms 2 and 3,

E[c̄(t)] = |T (t)|, ∀t ≥ 1, (30)

E[c(t)[u]] = |T (t)[u]|, ∀t ≥ 1, ∀u ∈ V(t). (31)

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 K. Shin et al.

Proof. Consider a triangle ({u, v, w}, s) ∈ A(t), and let e(s) = ({u, v},+) without loss
of generality. The amount α(s)

uvw of change in each of c̄, c[u], c[v], and c[w] due to the
discovery of ({u, v, w}, s) in line 9 of Algorithm 2 or Algorithm 3 is

α(s)
uvw =


1/r2 if{v, w} ∈ S(s−1) and {w, u} ∈ S(s−1) in Algorithm 2
1/p(s−1) if{v, w} ∈ S(s−1) and {w, u} ∈ S(s−1) in Algorithm 3
0 otherwise.

Then, from Eq. (10) and Eq. (16), the following equation holds:

α(s)
uvw =

{
1

Pr[{v,w}∈S(s−1)∩{w,u}∈S(s−1)]
if{v, w} ∈ S(s−1) and {w, u} ∈ S(s−1)

0 otherwise.

Hence,

E[α(s)
uvw] = 1. (32)

Consider a triangle ({u, v, w}, s) ∈ D(t), and let e(s) = ({u, v},−) without loss of gen-
erality. The amount β(s)

uvw of change in each of c̄, c[u], c[v], and c[w] due to the discovery
of ({u, v, w}, s) in line 10 of Algorithm 2 or Algorithm 3 is

β(s)
uvw =


−1/r2 if{v, w} ∈ S(s−1) and {w, u} ∈ S(s−1) in Algorithm 2
−1/p(s−1) if{v, w} ∈ S(s−1) and {w, u} ∈ S(s−1) in Algorithm 3
0 otherwise.

Then, from Eq. (10) and Eq. (16), the following equation holds:

β(s)
uvw =

{
−1

Pr[{v,w}∈S(s−1)∩{w,u}∈S(s−1)]
if{v, w} ∈ S(s−1) and {w, u} ∈ S(s−1)

0 otherwise.

Hence,

E[β(s)
uvw] = −1. (33)

By definition, the following holds:

c̄(t) =
∑

({u,v,w},s)∈A(t)

α(s)
uvw +

∑
({u,v,w},s)∈D(t)

β(s)
uvw.

By linearity of expectation, Eq. (32), Eq. (33), and Lemma 8, the following holds:

E[c̄(t)] =
∑

({u,v,w},s)∈A(t)

E[α(s)
uvw] +

∑
({u,v,w},s)∈D(t)

E[β(s)
uvw]

=
∑

({u,v,w},s)∈A(t)

1 +
∑

({u,v,w},s)∈D(t)

(−1) = |A(t)| − |D(t)| = |T (t)|.

Likewise, for each node u ∈ V(t), the following holds:

c(t)[u] =
∑

({u,v,w},s)∈A(t)[u]

α(s)
uvw +

∑
({u,v,w},s)∈D(t)[u]

β(s)
uvw.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams A:19

By linearity of expectation, Eq. (32), Eq. (33), and Lemma 8, the following holds:

E[c(t)[u]] =
∑

({u,v,w},s)∈A(t)[u]

E[α(s)
uvw] +

∑
({u,v,w},s)∈D(t)[u]

E[β(s)
uvw]

=
∑

({u,v,w},s)∈A(t)[u]

1 +
∑

({u,v,w},s)∈D(t)[u]

(−1) = |A(t)[u]| − |D(t)[u]| = |T (t)[u]|.

In Appendix B, we prove the formulas for the variances of estimates given by
THINKDFAST. Theorem 2 is implied by the formulas. Note that r2 in Eq. (34) and
Eq. (35) is the discovery probability shown in Lemma 5.

Theorem 2 (Variance of THINKDFAST). Given an input graph stream, the variances of
estimates maintained by THINKDFAST with the sampling probability R is proportional
to 1/r2. Formally, in Algorithm 2,

V ar[c̄(t)] = O(1/r2), ∀t ≥ 1, (34)

V ar[c(t)[u]] = O(1/r2), ∀t ≥ 1, ∀u ∈ V(t). (35)

Proof. See Theorem 5 in Appendix B.

4.5. Complexity Analyses
We analyze the time and space complexities of THINKDFAST and THINKDACC. In our
analyses, we use V̄(t) :=

⋃t
s=1 V(s) to denote the set of nodes that appear in the t-th or

earlier elements in the input stream.
Space Complexity: To process the first t elements in the input graph stream,
THINKDFAST and THINKDACC maintain one estimate for the global triangle count and
at most |V̄(t)| estimates for the local triangle counts. In addition, THINKDFAST main-
tains |E(t)| · r edges on average, while THINKDACC maintains up to k edges. Thus, the
average space complexities of THINKDFAST and THINKDACC are O(|E(t)| · r + |V̄(t)|) and
O(k+ |V̄(t)|), respectively. The complexities become O(|E(t)| · r) and O(k) when only the
global triangle count needs to be estimated.
Time Complexity: We prove the average time complexity of THINKDFAST in Theo-
rem 3, which implies Corollary 1, and the worst-case time complexity of THINKDACC

in Theorem 4. Corollary 1 and Theorem 4 state that, given a fixed memory budget k,
THINKDFAST and THINKDACC scale linearly with the number of elements in the input
stream.

Theorem 3 (Time Complexity of THINKDFAST). Algorithm 2 takes O(t+t2r) on average
to process the first t elements in the input stream.

Proof. In Algorithm 2, the most expensive step in processing each element e(s) =

({u, v}, δ) is to intersect N̂ [u] and N̂ [v] (line 7), which takes O(1 + E[|N̂ [u]|+ |N̂ [v]|]) =
O(1 + E[|S|]) = O(1 + sr) on average. Hence, processing the first t elements takes∑t
s=1O(1 + sr) = O(t+ t2r) on average.

Collorary 1 (Time Complexity of THINKDFAST with Fixed Memory k). If r = O(k/t)
for a constant k (≥ 1), then Algorithm 2 takes O(tk) on average to process the first t
elements in the input stream.

Theorem 4 (Time Complexity of THINKDACC). Algorithm 3 takes O(tk) to process the
first t elements in the input stream.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 K. Shin et al.

Table III: Summary of the real-world and synthetic graph streams used in our exper-
iments. B: billion, M: million, K: thousand.

Name #Nodes #Edges Type
Friendster [Yang and Leskovec 2015] 65.6M 1.81B Friendship
Orkut [Mislove et al. 2007] 3.07M 117M Friendship
Flickr [Mislove et al. 2007] 2.30M 22.8M Friendship
Patent [Hall et al. 2001] 3.77M 16.5M Citation
Youtube [Mislove et al. 2007] 3.22M 9.38M Friendship
BerkStan [Leskovec et al. 2009] 685K 6.65M Web
Facebook [Viswanath et al. 2009] 63.7K 817K Friendship
Epinion [Massa and Avesani 2005] 132K 711K Trust
Random (≈ 800GB)* 1M 0.1B-100B Synthetic
* We used 4 bytes, 8 bytes, and 1 bit to represent a node, an edge, and a sign in the stream, respectively.
If 20 bits and 40 bits were used to represent a node and an edge, the stream would become about 500GB.

Proof. In Algorithm 3, the most expensive step in processing each element e(s) =

({u, v}, δ) is to intersect N̂ [u] and N̂ [v] (line 7), which takesO(1+|N̂ [u]|+|N̂ [v]|) = O(k).
Thus, processing the first t elements takes O(tk).

5. EXPERIMENTS
In this section, we review our experiments for answering the following questions:

— Q1. Illustration of Theorems: Does THINKD give unbiased estimates? Does
THINKD scale linearly with the size of the input stream?

— Q2. Accuracy: Is THINKD more accurate than its best competitors?
— Q3. Speed: Is THINKD faster than its best competitors?
— Q4. Effects of Deletions: Is THINKD consistently accurate regardless of the ratio

of deleted edges?
— Q5. Application to Social Network Analysis: Is THINKD useful for accurate,

space-efficient, and incremental estimation of measures that are widely used in
social network analysis and network science?

Additionally, in appendices, our experiments for answering the following questions
are reviewed:

— Q6. Speed and Accuracy in Multigraph Streams (Appendix C): Is a variant
of THINKD for triangle counting in multigraph streams (i.e., graph streams with
parallel edges) faster and more accurate than its best competitors?

— Q7. Application to Anomaly Detection (Appendix D): Does THINKD-SPOT,
which is based on THINKD, detect suddenly emerging dense subgraphs faster and
more accurately than its best competitors?

5.1. Experimental Settings
Machines: We used a PC with a 3.60GHz Intel i7-4790 CPU and 32GB RAM unless
otherwise stated.
Datasets: We created fully dynamic graph streams with deletions using the real-world
graphs listed in Table III as follows: (a) create the additions of the edges in the input

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams A:21

graph and randomly shuffle them8, (b) choose α% of the edges and create the deletions
of them, (c) locate each deletion in a random position after the corresponding addition.
We set α to 20% unless otherwise stated (see Sect. 5.5 for its effect on accuracy). The
created streams were streamed from the disk.
Implementations: We implemented THINKDFAST (Sect. 4.2), THINKDACC (Sect. 4.3),
TRIESTFD [De Stefani et al. 2017], TRIESTIMPR [De Stefani et al. 2017], ESD [Han and
Sethu 2017], and MASCOT [Lim et al. 2018] commonly in Java. In all of them, sampled
edges are stored in the adjacency list format, and as described in the last paragraph of
Sect. 4.3, estimates are lower bounded by zero unless otherwise stated.
Evaluation Metrics: Let x and {(u, x[u])}u∈V be the true counts of global triangles
and local triangles at the end of the input stream. Let x̂ and {(u, x̂[u])}u∈V be the
corresponding estimates obtained by the evaluated algorithm. Then, we measured the
accuracy of each algorithm using the following metrics:

— Global Error (the lower the better): |x− x̂|/x,
— RMSE (the lower the better):

√
1
|V|
∑
u∈V(x[u]− x̂[u])2,

— Rank Correlation (the higher the better): Spearman’s rank correlation coefficient
[Spearman 1904] between {(u, x[u])}u∈V and {(u, x̂[u])}u∈V .

5.2. Q1. Illustration of Theorems
THINKD gives unbiased estimates (Theorem 1). We compared 10, 000 estimates of
the global triangle count obtained by THINKDFAST, THINKDACC, and TRIESTFD, whose
parameters were set so that on average 10% of the edges are stored at the end of each
graph stream. Figs. 2(d) and 2(h) show the distributions of the estimates at the end
of the Facebook and Epinion datasets, respectively. The means of the estimates were
close to the true triangle count, consistently with Theorem 1 (i.e., unbiasedness of
THINKD). Moreover, THINKDACC and THINKDFAST gave estimates with smaller vari-
ances than TRIESTFD. Figs. 2(b), 2(c), 2(f), and 2(g) show how the 95% confidence inter-
vals, estimated from 10, 000 trials, changed over early and late parts of the datasets.
THINKDACC was consistently the most accurate with the smallest confidence intervals.
THINKDFAST became more accurate than TRIESTFD as the input graph grew over time.
The same trend can be seen in Figs. 2(a) and 2(e), where we show how an estimate
from a single trial of each algorithm changed over the entire datasets.
THINKD scales linearly (Corollary 1 and Theorem 4). We measured the elapsed
times taken by THINKDFAST and THINKDACC to process all elements in graph streams
with different numbers of elements. To measure their speeds independently of the
speed of the input stream, we ignored time taken to wait for the arrival of elements.
In both algorithms, we set k and r so that on average 107 edges are stored at the end
of each input stream. Fig. 3(a) shows the results in the Random datasets, which were
created by the Erdös-Rényi model. Both THINKDFAST and THINKDACC scaled linearly
with the number of elements, as expected in Corollary 1 and Theorem 4. Notice that
the largest dataset contains 100 billion elements. As seen in Fig. 3(b) and Fig. 3(c), we
obtained similar trends in graph streams with realistic structures created by sampling
different numbers of elements from the Friendster and Orkut datasets.

5.3. Q2. Accuracy (THINKD is more accurate than its competitors)
We compared the accuracies of four algorithms that support edge deletions. As we
changed the ratio of stored edges at the end of each input stream from 5% to 40%,

8Instead, additions can be ordered chronologically when timestamps of edges are given. We obtained consis-
tent experimental results when we ordered additions randomly and chronologically.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 K. Shin et al.

Epinion Dataset:

0M

1M

2M

0 400K 800K
Number of

Processed Elements

N
um

be
r o

f T
ria

ng
le

s

ThinkDACC

True
Count

ThinkDFAST

TriestFD

(a) Estimates over time
(the entire stream)

4.78K

4.8K

4.82K

4.84K

106500 106700
Number of

Processed Elements
N

um
be

r o
f T

ria
ng

le
s

(C
on

fid
en

ce
 In

te
rv

al
)

The Others

ThinkDFAST

(b) 95% confidence
intervals over time (an

early part of the steram)

2512K

2514K

2516K

852900 853100
Number of

Processed Elements

N
um

be
r o

f T
ria

ng
le

s
(C

on
fid

en
ce

 In
te

rv
al

)

ThinkDACC

True Count
ThinkDFAST

TriestFD

(c) 95% confidence
intervals over time (a

late part of the stream)

5.0e−06

1.0e−05

1.5e−05

2.4M 2.6M
Estimated Count

Pr
ob

ab
ilit

y
D

en
si

ty

TriestFD

ThinkD
(ACC) ThinkD

(FAST)

True Count

(d) Distribution of
estimates (at the end of

the steram)

Facebook Dataset:

0M

0.5M

1M

1.5M

0 400K 800K
Number of

Processed Elements

N
um

be
r o

f T
ria

ng
le

s

ThinkDACC

True
Count

ThinkDFAST

TriestFD

(e) Estimates over time
(the entire stream)

1.05K

1.06K

81600 81800
Number of

Processed Elements

N
um

be
r o

f T
ria

ng
le

s
(C

on
fid

en
ce

 In
te

rv
al

)

The Others

ThinkDFAST

(f) 95% confidence
intervals over time (an

early part of the steram)

1790K

1791K

1792K

1793K

979900 980100
Number of

Processed Elements

N
um

be
r o

f T
ria

ng
le

s
(C

on
fid

en
ce

 In
te

rv
al

)

ThinkDACC

True Count

ThinkDFAST

TriestFD

(g) 95% confidence
intervals over time (a

late part of the stream)

1e−05

2e−05

3e−05

1.7M 1.8M 1.9M
Estimated Count

Pr
ob

ab
ilit

y
D

en
si

ty

TriestFD

ThinkD
(ACC)

ThinkD
(FAST)

True Count

(h) Distribution of
estimates (at the end of

the steram)

Fig. 2: THINKD is provably accurate and scalable. (a, e) THINKD is ‘any time’,
maintaining estimates while the input graph evolves. (b-c, f-g) THINKDACC is the most
accurate with the smallest confidence intervals over the entire stream. THINKDFAST

becomes more accurate than TRIESTFD as the input graph grows over time. (d, h)
THINKD provides unbiased estimates, whose expected values are equal to the true
triangle counts, and their variances are small.

●

●

●

●

●

●

●

●

●

●

●

●

102

103

104

105

108 109 1010 1011

Number of Elements

El
ap

se
d

Ti
m

e
(s

ec
) ThinkDACC

ThinkDFAST

Linear (slope=1)

(a) Random (log-log scale)

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

0

5

10

15

20

0 0.5B 1B 1.5B
Number of Elements

El
ap

se
d

Ti
m

e
(m

in
)

ThinkDACC

ThinkDFAST

(b) Friendster

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

2.0

2.5

0 50M 100M
Number of Elements

El
ap

se
d

Ti
m

e
(m

in
) ThinkDACC

ThinkDFAST

(c) Orkut

Fig. 3: THINKD is scalable. THINKD scales linearly with the size of the input stream.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams A:23

ThinkDACC (Proposed) ThinkDFAST (Proposed) TriestFD ESD

G
lo

ba
lE

rr
or

(t
he

lo
w

er
th

e
be

tt
er

)
3.1X

2.3X
0

5

10

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Stored Edges

G
lo

b
a

l E
rr

.
(X

1
0

4
)

3X

2.5X
0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Stored Edges

G
lo

b
a

l E
rr

.
(X

1
0

3
)

4X

2.2X0

1

2

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Stored Edges

G
lo

b
a

l E
rr

.
(X

1
0

2
)

1.9X

2.5X
0

1

2

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Stored Edges

G
lo

b
a

l E
rr

.
(X

1
0

2
)

(a) Friendster (b) Orkut (c) Patent (d) BerkStan

2X

2.4X
0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Stored Edges

G
lo

b
a

l E
rr

.
(X

1
0

3
)

2.3X

2.5X
0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Stored Edges

G
lo

b
a

l E
rr

.
(X

1
0

2
)

3.7X

1.9X
0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Stored Edges

G
lo

b
a

l E
rr

.
(X

1
0

2
)

2.8X

2.5X
0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Stored Edges

G
lo

b
a

l E
rr

.
(X

1
0

2
)

R
M

SE
(t

he
lo

w
er

th
e

be
tt

er
)

(e) Flickr (f) Youtube (g) Facebook (h) Epinion

ESDX
2.3X

3.5X

●

●
● ● ●

●

●
● ● ●

●

●
● ● ●0

2

4

6

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
M

S
E

 (
X

10
−2

)

ESDX
2.4X

3X

●

●
● ● ●

●

●
●

● ●

●

●
●

● ●
0

5

10

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
M

S
E

 (
X

10
−2

)

ESDX
2.2X

4.3X

●

●
● ● ●

●

●
● ● ●

●

●
● ● ●0

3

6

9

12

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
M

S
E

 (
X

10
−1

)

ESDX
2.5X

2X

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
M

S
E

 (
X

10
−3

)

(i) Friendster (j) Orkut (k) Patent (l) BerkStan

ESDX
2.4X

2.1X

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

0

1

2

3

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
M

S
E

 (
X

10
−3

)

ESDX
2.5X

2.5X

●

●
●

● ●

●

●

●
● ●

●

●

●
● ●

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
M

S
E

 (
X

10
−2

)

ESDX
1.6X

3.5X

●

●
● ● ●

●

●
● ● ●

●

●
● ● ●

0

2

4

6

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
M

S
E

 (
X

10
−2

)

ESDX
2.4X

2.8X

●

●
●

● ●

●

●
●

● ●

●

●
●

● ●
0

2

4

6

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
M

S
E

 (
X

10
−2

)

R
an

k
C

or
r.

(t
he

hi
gh

er
th

e
be

tt
er

) (m) Flickr (n) Youtube (o) Facebook (p) Epinion

ESDX

●

●
●

● ●

●

●
●

● ●

●

●

●
● ●

3.1X

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
an

k
C

or
re

la
tio

n

ESDX

●

●
● ● ●

●

●
● ● ●

●

●
● ● ●

2.5X

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
an

k
C

or
re

la
tio

n

ESDX
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5.7X
0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
an

k
C

or
re

la
tio

n

ESDX

●

●

●
● ●

●

●

●
● ●

●

●

●
●

●

3X

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
an

k
C

or
re

la
tio

n

(q) Friendster (r) Orkut (s) Patent (t) BerkStan

ESDX

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

2X

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
an

k
C

or
re

la
tio

n

ESDX

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

3.9X

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
an

k
C

or
re

la
tio

n

ESDX

●

●
●

● ●

●

●

●
● ●

●

●

●
● ●

3.3X

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
an

k
C

or
re

la
tio

n

ESDX

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

2.5X

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
an

k
C

or
re

la
tio

n

(u) Flickr (v) Youtube (w) Facebook (x) Epinion

Fig. 4: THINKD is accurate. THINKD provides the best trade-off between space
and accuracy. In particular, THINKDACC is up to 4.3× more accurate than TRIESTFD

within the same memory budget. Error bars denote ±1 standard error. ESD is inap-
plicable to local triangle counting.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 K. Shin et al.

ThinkDACC (Proposed) ThinkDFAST (Proposed) TriestFD ESD

G
lo

ba
lE

rr
or

(t
he

lo
w

er
th

e
be

tt
er

)

2.2X

2.9X

0

5

10

0 5000 1000015000
Elapsed Time (sec)

G
lo

b
a

l E
rr

.
(X

1
0

4
)

2.1X

2X

0

1

2

3

0 200 400 600
Elapsed Time (sec)

G
lo

b
a

l E
rr

.
(X

1
0

3
)

1.9X

3.1X

0

1

2

0 10 20 30
Elapsed Time (sec)

G
lo

b
a

l E
rr

.
(X

1
0

2
)

1.9X

1.5X

0

1

2

0 5 10
Elapsed Time (sec)

G
lo

b
a

l E
rr

.
(X

1
0

2
)

(a) Friendster (b) Orkut (c) Patent (d) BerkStan

2.2X

1.4X

0

1

2

3

4

5

0 50 100 150
Elapsed Time (sec)

G
lo

b
a

l E
rr

.
(X

1
0

3
)

1.9X

1.9X

0

1

2

3

0 5 10 15
Elapsed Time (sec)

G
lo

b
a

l E
rr

.
(X

1
0

2
)

1.9X

2.5X

0

1

2

3

4

0.0 0.5 1.0
Elapsed Time (sec)

G
lo

b
a

l E
rr

.
(X

1
0

2
)

2X

1.8X

0

1

2

3

4

0.0 0.5 1.0
Elapsed Time (sec)

G
lo

b
a

l E
rr

.
(X

1
0

2
)

R
M

SE
(t

he
lo

w
er

th
e

be
tt

er
)

(e) Flickr (f) Youtube (g) Facebook (h) Epinion

2.8X
ESDX

2.2X0

2

4

6

0 5000 10000 15000
Elapsed Time (sec)

R
M

S
E

 (
X

1
0
−
2
)

2.3X
ESDX

2.1X0

5

10

0 100 200 300 400
Elapsed Time (sec)

R
M

S
E

 (
X

1
0
−
2
)

3.4X
ESDX

1.9X0.0

2.5

5.0

7.5

10.0

0 10 20
Elapsed Time (sec)

R
M

S
E

 (
X

1
0
−
1
) 1.5X ESDX

1.9X0.0

0.5

1.0

1.5

2.0

0 5 10
Elapsed Time (sec)

R
M

S
E

 (
X

1
0
−
3
)

(i) Friendster (j) Orkut (k) Patent (l) BerkStan

1.6X ESDX

2.2X0

1

2

3

0 50 100 150
Elapsed Time (sec)

R
M

S
E

 (
X

1
0
−
3
)

2X ESDX

1.9X0.0

0.5

1.0

1.5

2.0

0 5 10 15
Elapsed Time (sec)

R
M

S
E

 (
X

1
0
−
2
)

2.8X
ESDX

1.9X0

2

4

6

0.0 0.5 1.0
Elapsed Time (sec)

R
M

S
E

 (
X

1
0
−
2
)

2.2X
ESDX

2X0

2

4

6

0.0 0.5 1.0
Elapsed Time (sec)

R
M

S
E

 (
X

1
0
−
2
)

R
an

k
C

or
r.

(t
he

hi
gh

er
th

e
be

tt
er

) (m) Flickr (n) Youtube (o) Facebook (p) Epinion
2.2X

2.5X

ESDX
0.0

0.2

0.4

0.6

0.8

1.0

0 5000 1000015000
Elapsed Time (sec)

R
a

n
k
 C

o
rr

e
la

tio
n 2.1X

2.2X

ESDX
0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400
Elapsed Time (sec)

R
a

n
k
 C

o
rr

e
la

tio
n 1.9X

3.8X ESDX
0.0

0.2

0.4

0.6

0.8

1.0

0 10 20
Elapsed Time (sec)

R
a

n
k
 C

o
rr

e
la

tio
n 1.9X

2.4X

ESDX
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10
Elapsed Time (sec)

R
a

n
k
 C

o
rr

e
la

tio
n

(q) Friendster (r) Orkut (s) Patent (t) BerkStan
2.2X

1.7X

ESDX
0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150
Elapsed Time (sec)

R
a

n
k
 C

o
rr

e
la

tio
n 1.9X

2.8X
ESDX

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15
Elapsed Time (sec)

R
a

n
k
 C

o
rr

e
la

tio
n 1.9X

2.7X

ESDX
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
Elapsed Time (sec)

R
a

n
k
 C

o
rr

e
la

tio
n 2X

2.1X

ESDX
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0
Elapsed Time (sec)

R
a

n
k
 C

o
rr

e
la

tio
n

(u) Flickr (v) Youtube (w) Facebook (x) Epinion

Fig. 5: THINKD is fast. THINKD provides the best trade-off between speed and ac-
curacy. In particular, THINKDFAST is up to 2.2× faster than TRIESTFD when they are
similarly accurate. Error bars denote ±1 standard error. ESD is inapplicable to local
triangle counting.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams A:25

curate than TRIESTFD in terms of global error and RMSE, respectively. Between our
algorithms, THINKDACC consistently outperformed THINKDFAST in terms of accuracy.

5.4. Q3. Speed (THINKD is faster than its competitors)
We compared the speeds and accuracies of four algorithms that support edge dele-
tions. The detailed settings were the same as those in Sect. 5.3 except that we
measured the performance of ESD as we changed its parameter from 0.2 to 1.0.
To measure the speeds of the algorithms independently of the speed of the input
stream, we ignored time taken to wait for the arrival of elements. As seen in Fig. 5,
THINKDFAST and THINKDACC consistently gave the best trade-off between speed and
accuracy. Specifically, for the same global error and RMSE, THINKDFAST was up to
2.2× faster than TRIESTFD. Between our algorithms, THINKDFAST consistently out-
performed THINKDACC in terms of speed.

5.5. Q4. Effects of Deletions (THINKD is consistently accurate)
We measured how the ratio of deleted edges (i.e., α in Sect. 5.1) in input graph streams
affects the accuracies of the considered algorithms. In every algorithm, we set the
ratio of stored edges at the end of each input stream to 10%. As seen in Fig. 6, all al-
gorithms that support edge deletions became more accurate as input graphs became
smaller with more deletions. THINKDFAST and THINKDACC were similarly accurate
with MASCOT and TRIESTIMPR, respectively, in the streams without deletions. In the
streams with deletions, which MASCOT and TRIESTIMPR cannot handle, THINKDFAST

and THINKDACC were 1.8− 3.4×more accurate than TRIESTFD regardless of the ra-
tio of deleted edges.

5.6. Q5. Application to Social Network Analysis
We show that THINKD can be used for accurate and space-efficient estimation of the
following measures, which are widely used in social network analysis and network
science [Luce and Perry 1949; Holland and Leinhardt 1971; Wasserman and Faust
1994; Watts and Strogatz 1998; Kemper 2009], in fully-dynamic graph streams:

— Transitivity Ratio (TR) [Luce and Perry 1949]: The transitivity ratio of a graph
G(t) is defined as

TR(G(t)) :=
6× |T (t)|∑

v∈V(t)(d(t)[v]× (d(t)[v]− 1))
,

where d(t)[v] is the degree of v ∈ V(t) in G(t).
— Local Clustering Coefficients (LCC) [Watts and Strogatz 1998]: The local clus-

tering coefficient of each node v ∈ V(t) in a graph G(t) is defined as

LCC(G(t), v) :=
2× |T (t)[v]|

d(t)[v]× (d(t)[v]− 1)
,

where d(t)[v] is the degree of v ∈ V(t) in G(t).
— Global Clustering Coefficient (GCC) [Watts and Strogatz 1998]: The global clus-

tering coefficient of a graph G(t) is defined as

GCC(G(t)) :=
1

|V(t)|
∑
v∈V(t)

LCC(G(t), v).

Specifically, to estimate these graph measures, the exact degree of each node v ∈ V(t)

(i.e., d(t)[v]) was computed incrementally while c̄(t) and c(t)[u] for each node v ∈ V(t)

were computed in THINKDFAST, THINKDACC, and TRIESTFD. Their parameters were set

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 K. Shin et al.

Table IV: . THINKD is useful for social network analysis (SNA). THINKD en-
ables accurate and space-efficient estimation of widely-used graph measures in fully-
dynamic graph streams.

SNA Transitivity Global Clustering Local Clustering
Measures Ratio Coefficients Coefficients

Datasets Evaluation Global Global RMSE* Rank
Metrics Error* Error* Correlation**
TRIESTFD 0.0051 0.019 0.63 0.41

Facebook THINKDFAST 0.0046 0.010 0.26 0.56
THINKDACC 0.0026 0.010 0.15 0.68
TRIESTFD 0.0083 0.036 0.74 0.51

Epinion THINKDFAST 0.0064 0.012 0.29 0.63
THINKDACC 0.0038 0.014 0.17 0.74
TRIESTFD 0.0083 0.016 1.56 0.35

BerkStan THINKDFAST 0.0060 0.011 0.72 0.47
THINKDACC 0.0037 0.007 0.38 0.58

* the lower the better ** the higher the better

so that on average 30% of the edges are stored at the end of each input graph stream.10

Note that incrementally computing the degrees of all nodes takes O(t) time and re-
quires O(n) space.11 Then, replacing |T (t)| and |T (t)[v]| in the above definitions by c̄(t)
and c(t)[v], respectively, we estimated the measures. In all the algorithms, the addi-
tional time taken for incrementally computing the degrees of all nodes and estimating
graph measures was negligible compared to the time taken for estimating the counts
of triangles. To evaluate the accuracies of the estimates obtained by different algo-
rithms, we computed the evaluation metrics defined in Sect. 5.1 at the end of each
input stream. As summarized in Table IV, where each evaluation metric was aver-
aged over 10 trials, THINKDACC and THINKDFAST estimated all the considered graph
measures more accurately than TRIESTFD within the same memory budget.

6. CONCLUSION
We propose THINKD, which estimates the counts of global and local triangles in a
fully dynamic graph stream with edge additions and deletions. We theoretically and
empirically show that THINKD has the following advantages:

— Accurate: THINKD is up to 4 .3× more accurate than its best competitors within
the same memory budget (Fig. 4).

— Fast: THINKD is up to 2 .2× faster than its best competitors with similar accura-
cies (Fig. 5). THINKD processes terabyte-scale graph streams with linear scalability
(Fig. 2, Corollary 1, and Theorem 4).

— Theoretically Sound: THINKD maintains unbiased estimates (Theorem 1) with
small variances (Theorem 2) at any time while the input graph evolves.

Additionally, in Appendix D, we apply THINKD to the task of detecting suddenly
emerging dense subgraphs and show its advantages over state-of-the-art methods.

10When estimating global clustering coefficients, we computed c(t)[u] for each node u ∈ V(t) without lower
bounding it by zero.
11For each addition ({u, v},+), increase d(t)[u] and d(t)[v] by 1, and for each deletion ({u, v},−), decrease
d(t)[u] and d(t)[v] by 1.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams A:27

ThinkDACC (Proposed) ThinkDFAST (Proposed) TriestFD TriesteIMPR MASCOT

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

2.6X

2.2X

ESDX

0

2

4

0.0 0.2 0.4 0.6
Ratio of Deleted Edges

R
M

S
E

 (
X

10
−2

)
●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

2.2X

2.1X

ESDX

0

3

6

9

12

0.0 0.2 0.4 0.6
Ratio of Deleted Edges

R
M

S
E

 (
X

10
−2

)

●
●

●
● ●

●
●

●
● ●

●
●

●
● ●

3.4X

2.5X

ESDX

0

2

4

6

8

0.0 0.2 0.4 0.6
Ratio of Deleted Edges

R
M

S
E

 (
X

10
−1

)

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

1.8X

2X

ESDX

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6
Ratio of Deleted Edges

R
M

S
E

 (
X

10
−3

)

(a) Friendster (b) Orkut (c) Patent (d) BerkStan

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

1.9X

2X

ESDX

0

1

2

3

0.0 0.2 0.4 0.6
Ratio of Deleted Edges

R
M

S
E

 (
X

10
−3

)

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

2X

2.2X

ESDX

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6
Ratio of Deleted Edges

R
M

S
E

 (
X

10
−2

)
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

2.6X

2.1X

ESDX

0

1

2

3

4

5

0.0 0.2 0.4 0.6
Ratio of Deleted Edges

R
M

S
E

 (
X

10
−2

)

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

2.1X

2.1X

ESDX

0

2

4

0.0 0.2 0.4 0.6
Ratio of Deleted Edges

R
M

S
E

 (
X

10
−2

)

(e) Flickr (f) Youtube (g) Facebook (h) Epinion

Fig. 6: THINKD is consistently accurate regardless of the ratio of deleted
edges. Error bars denote ±1 standard error. TRIESTIMPR and MASCOT are inapplicable
when there are deletions. ESD is inapplicable to local triangle counting.

Reproducibility: The source code and datasets used in the paper are available at
http://dmlab.kaist.ac.kr/∼kijungs/codes/thinkd/.

APPENDIX
A. TOY EXAMPLE FOR THINKD AND ITS COMPETITORS (TRIESTFD AND ESD)
Fig. 7 shows an artificial graph stream that highlights the (dis)advantages of THINKD
and its competitors (i.e., TRIESTFD and ESD). First, ESD runs out of memory (O.O.M.)
at t ≥ 4 since it stores all edges of the input graph. This implies that ESD has limited
scalability. In the case of TRIESTFD, its estimation at t = 7 is inaccurate since it does
not update estimates if the current edge (i.e., {b, c}) is not stored but discarded. On the
other hand, THINKD updates its estimates whenever an update (i.e., an insertion or
a deletion) arrives. Hence, THINKDFAST and THINKDACC estimate the global triangle
count exactly at t = 7. THINKDFAST suffers from information loss at t = 6 and 7 since
it discards edges (i.e., {c, e} and {b, c}) even when the number of edges in memory
is less than the given budget. On the other hand, within the given memory budget,
THINKDACC tries to maintain as many edges as possible in memory. Note that we set
the memory budget to 3 for all methods to make a fair comparison.

B. VARIANCE ANALYSIS
We let l(t)uv be the last time that edge {u, v} is added to or removed from G at time t or
earlier. For each added or deleted triangle ({u, v, w}, s) ∈ A(t) ∪ D(t), we use 1({u,v,w},s)
to denote the time when its first edge has arrived and 2({u,v,w},s) to denote the time
when its second edge has arrived. Formally,

1({u,v,w},s) := min(l(s)uv , l
(s)
vw, l

(s)
wu), 2({u,v,w},s) := median(l(s)uv , l

(s)
vw, l

(s)
wu).

Then, we define the type of each triangle pair in Definition 3.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dmlab.kaist.ac.kr/~kijungs/codes/thinkd/

A:28 K. Shin et al.

Time Change
True

Global
Count

𝑻𝒉𝒊𝒏𝒌𝑫𝑭𝒂𝒔𝒕	
(r = 0.5)

𝑻𝒉𝒊𝒏𝒌𝑫𝑨𝑪𝑪
(budget = 3)

𝑻𝑹𝑰𝑬𝑺𝑻𝑭𝑫
(budget = 3)

𝑬𝑺𝑫
(budget = 3)

Sampled
Edges

Estimate Sampled
Edges

Estimate Sampled
Edges

Estimate Sampled
Edges

Estimate

1 {a,b},+ 0 {a,b} 0 {a,b} 0 {a,b} 0 {a,b} 0

2 {a,c},+ 0 {a,b},{a,c} 0 {a,b},{a,c} 0 {a,b},{a,c} 0 {a,b},{a,c} 0

3 {a,d},+ 0 {a,b},{a,c} 0 {a,b},{a,c},{a,d} 0 {a,b},{a,c},{a,d} 0 {a,b},{a,c},{a,d} 0

4 {a,e},+ 0 {a,b},{a,c},{a,e} 0 {a,b},{a,c},{a,e} 0 {a,b},{a,c},{a,e} 0 O.O.M.
5 {a,e},- 0 {a,b},{a,c} 0 {a,b},{a,c} 0 {a,b},{a,c} 0 O.O.M.
6 {c,e},+ 0 {a,b},{a,c} 0 {a,b},{a,c},{c,e} 0 {a,b},{a,c},{c,e} 0 O.O.M.
7 {b,c},+ 1 {a,b},{a,c} 1 {a,b},{a,c},{c,e} 1 {a,b},{a,c},{c,e} 0 O.O.M.

Fig. 7: A toy example that highlights the (dis)advantages of THINKD and its competi-
tors. ESD runs out of memory (O.O.M.) at t ≥ 4 since it stores all edges of the input
graph. TRIESTFD is inaccurate at t = 7 since it does not update estimates if an incom-
ing edge is not stored but discarded. However, THINKDFAST and THINKDACC produce
accurate estimates although THINKDFAST suffers from information loss at t = 6 and 7.

Definition 3 (Types of Triangle Pairs). The type of each ordered pair of two distinct
triangles τ 6= ω ∈ A(t) ∪ D(t) is defined as follows:

Type(τ,ω) =



1, if τ ∈ A(t) and ω ∈ A(t) and |{1τ ,2τ} ∩ {1ω,2ω}| = 1,

2, if τ ∈ D(t) and ω ∈ D(t) and |{1τ ,2τ} ∩ {1ω,2ω}| = 1,

3, if τ ∈ A(t) and ω ∈ D(t) and |{1τ ,2τ} ∩ {1ω,2ω}| = 1,

4, if τ ∈ D(t) and ω ∈ A(t) and |{1τ ,2τ} ∩ {1ω,2ω}| = 1,

5, if τ ∈ A(t) and ω ∈ A(t) and |{1τ ,2τ} ∩ {1ω,2ω}| = 2,

6, if τ ∈ D(t) and ω ∈ D(t) and |{1τ ,2τ} ∩ {1ω,2ω}| = 2,

7, if τ ∈ A(t) and ω ∈ D(t) and |{1τ ,2τ} ∩ {1ω,2ω}| = 2,

8, if τ ∈ D(t) and ω ∈ A(t) and |{1τ ,2τ} ∩ {1ω,2ω}| = 2,

9, otherwise (i.e., |{1τ ,2τ} ∩ {1ω,2ω}| = 0).

(36)

Theorem 5 (Variance of THINKDFAST). Let n(t)i be the number of Type-i triangle pairs in
A(t)∪D(t). Likewise, Let n(t)i [u] be the number of Type-i triangle pairs in A(t)[u]∪D(t)[u].
Then,

V ar[c̄(t)] = (|A(t)|+ |D(t)|) · 1− r2

r2

+ (n
(t)
1 + n

(t)
2 − n

(t)
3 − n

(t)
4) · 1− r

r

+ (n
(t)
5 + n

(t)
6 − n

(t)
7 − n

(t)
8) · 1− r2

r2
, ∀t ≥ 1. (37)

Likewise,

V ar[c(t)[u]] = (|A(t)[u]|+ |D(t)[u]|) · 1− r2

r2

+ (n
(t)
1 [u] + n

(t)
2 [u]− n(t)3 [u]− n(t)4 [u]) · 1− r

r

+ (n
(t)
5 [u] + n

(t)
6 [u]− n(t)7 [u]− n(t)8 [u]) · 1− r2

r2
, ∀t ≥ 1, ∀u ∈ V(t). (38)

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams A:29

Proof. For each time t ≥ 1, let X(t) be the random number in Bernoulli(r) drawn in
line 12 of Algorithm 2 while the t-th element e(t) is processed. Then, from Lemma 4,

{u, v} ∈ S(t) ⇐⇒ X(l(t)uv) = 1. (39)

Now, for each τ = ({u, v, w}, s) ∈ A(t) ∪ D(t), let γτ be the amount of change in each of
c̄, c[u], c[v], and c[w] due to the discovery of τ in line 9 or line 10 of Algorithm 2. Let
δτ = +1 when τ ∈ A(t), i.e. when the last edge is added, and let δτ = −1 when τ ∈ D(t),
i.e. when the last edge is deleted. Let {u, v} be the edge added or deleted at time s
without loss of generality. Then, γτ = δτ

r2 if both {v, w}, {w, u} ∈ S(s) and 0 otherwise.
Hence, combined with Eq. (39),

γτ =
δτ
r2
X(1τ)X(2τ). (40)

Then from the definitions of γτ , c̄(t) =
∑
τ∈A(t)∪D(t) γτ , and its variance is

V ar[c̄(t)] =
∑

τ∈A(t)∪D(t)

V ar[γτ] +
∑

τ 6=ω∈A(t)∪D(t)

Cov[γτ , γω]. (41)

For the variance term in Eq. (41), note first that applying that X(1τ) and X(2τ) are
independent Bernoulli(r) to Eq. (40) gives E[γτ] as

E[γτ] = E
[
δτ
r2
X(1τ)X(2τ)

]
=
δτ
r2

E
[
X(1τ)

]
E
[
X(2τ)

]
= δτ . (42)

Then, further applying δ2τ = 1 and (X(s))2 = X(s) to Eq. (40) and again applying that
X(1τ) and X(2τ) are independent Bernoulli(r) give V ar[γτ] as

V ar[γτ] = E[γ2τ]− (E[γτ])
2

= E
[
δ2τ
r4
X(1τ)X(2τ)

]
− δ2τ =

1

r4
E
[
X(1τ)

]
E
[
X(2τ)

]
− 1

=
1− r2

r2
.

Hence the variance term in Eq. (41) is computed as∑
τ∈A(t)∪D(t)

V ar[γτ] =
∑

τ∈A(t)∪D(t)

1− r2

r2
= (|A(t)|+ |D(t)|) · 1− r2

r2
. (43)

For the covariance term in Eq. (41), applying Eq. (40) and Eq. (42) and using the
fact that all the X(s)’s are independent and identically distributed as Bernoulli(r) and
(X(s))2 = X(s) yield the Cov[γτ , γω] as

Cov[γτ , γω] = E[γτγω]− E[γτ]E[γω] = E
[
δτδω
r4

X(1τ)X(2τ)X(1ω)X(2ω)

]
− δτδω

= δτδω

 1

r4
E

 ∏
i∈{1γ ,2γ}∪{1ω,2ω}

X(i)

− 1


= δτδω

 1

r4

∏
i∈{1γ ,2γ}∪{1ω,2ω}

E
[
X(i)

]
− 1

 = δτδω

(
r|{1γ ,2γ}∪{1ω,2ω}|

r4
− 1

)
.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 K. Shin et al.

Then δτδω = 1 if τ, ω ∈ A(t) or τ, ω ∈ D(t), and δτδω = −1 if τ ∈ A(t), ω ∈ D(t) or τ ∈ D(t),
ω ∈ A(t). Hence Cov[γτ , γω] can be calculated as

Cov[γτ , γω] =



1−r
r , if Type(τ,ω) = 1 or 2,

− 1−r
r , if Type(τ,ω) = 3 or 4,

1−r2
r2 , if Type(τ,ω) = 5 or 6,

− 1−r2
r2 , if Type(τ,ω) = 7 or 8,

0, if Type(τ,ω) = 9.

Hence the covariance term in Eq. (41) is computed as∑
τ 6=ω∈A(t)∪D(t)

Cov[γτ , γω] =(n
(t)
1 + n

(t)
2 − n

(t)
3 − n

(t)
4) · 1− r

r

+ (n
(t)
5 + n

(t)
6 − n

(t)
7 − n

(t)
8) · 1− r2

r2
. (44)

Hence applying Eq. (43) and Eq. (44) to Eq. (41) gives

V ar[c̄(t)] =
∑

τ∈A(t)∪D(t)

V ar[γτ] +
∑

τ 6=ω∈A(t)∪D(t)

Cov[γτ , γω]

=(|A(t)|+ |D(t)|) · 1− r2

r2
+ (n

(t)
1 + n

(t)
2 − n

(t)
3 − n

(t)
4) · 1− r

r

+ (n
(t)
5 + n

(t)
6 − n

(t)
7 − n

(t)
8) · 1− r2

r2
,

which completes the proof of Eq. (37).
For Eq. (38), replacing c̄(t) by c(t)[u], A(t) by A(t)[u], and D(s) by D(s)[u] and repeating

above give a proof.

C. EXTENSIONS: TRIANGLE COUNTING IN FULLY DYNAMIC MULTIGRAPH STREAMS
C.1. Notations and Problem Definition
A multigraph is a graph with parallel edges; hence, two nodes can be connected by
more than one edge. Specifically, we define the multiplicity of an edge {u, v} by M(u, v),
which indicates a number of parallel edges between u and v; then, a multigraph has at
least one edge whose M(u, v) ≥ 2. Meanwhile, we call a graph with no parallel edges
(i.e., all M(u, v) = 1) a simple graph.

Similar to the simple graph case, a fully dynamic multigraph stream represents the
sequence of changes in a multigraph G, and we denote the stream by (e(1), e(2), ...). As
in [De Stefani et al. 2017], we assume that a triple e(t) = ({u, v}, l, δ) of an edge {u, v},
a label l, which differentiates parallel edges, and a sign δ ∈ {+,−} arrives at each time
t ∈ {1, 2, ...}. Moreover, we assume that only new edges not in G (which can be parallel
edges with new labels) can be added, and only existing edges in G can be deleted.

There are two ways of counting triangles in a multigraph. One way is to add the
weights of triangles. The weight of each triangle {u, v, w} ⊂ V is defined as M(u, v) ×
M(v, w)×M(w, u). The other way is to count triangles while ignoring edge multiplicity.
In this paper, we choose the former scheme, which fully reflects given information.

We address the problem of estimating the counts of global and local triangles in a
fully dynamic multigraph stream, which is summarized by Problem 2. As in Sect. 3.2,
we assume the standard data stream model where the elements in the input stream,
which may not fit in memory, can be accessed once in the given order unless they are
explicitly stored in memory.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams A:31

Problem 2 (Global and Local Triangle Counting in a Fully Dynamic Multigraph
Stream).

— Given: a fully dynamic multigraph stream with parallel edges (e(1), e(2), ...,)
(i.e., sequence of edge additions and deletions in a multigraph G)

— Maintain: estimates of global triangle count |T (t)| and local triangle counts
{(u, |T (t)[u]|)}u∈V(t) of graph G(t) for current t ∈ {1, 2, ...}

— to Minimize: the estimation errors.

C.2. Extension of THINKDFAST and THINKDACC to a Fully Dynamic Multigraph Stream
We extend THINKDFAST and THINKDACC to a fully dynamic multigraph stream by mak-
ing two key changes while keeping the other parts the same. The overall process
of THINKDFAST and THINKDACC for triangle counting in a fully dynamic multigraph
stream is provided in Algorithm 4.

The first key change is to store parallel edges with their labels. Given an edge dele-
tion, if we delete a parallel edge without considering labels, edges can be “overdeleted”
and thus the counts of triangles can be underestimated. Therefore, given an edge dele-
tion, we delete the same edge with the same label from memory (if it is in memory)
without deleting parallel edges with different labels.

The second key change is the amount of changes in our estimates per new or deleted
triangle. For each new observed triangle {u, v, w}, we increase the corresponding esti-
mates by M(v, w) ×M(w, u)/r2 (in THINKDFAST) or M(v, w)×M(w, u)/p(|E|, nb, ng) (in
THINKDACC). We decrease the corresponding estimates by the same amounts for each
observed deleted triangle {u, v, w}.

With the above proper changes, THINKD maintains unbiased estimates of the global
and local triangle counts in a given fully dynamic multigraph stream. THINKD still
requires sublinear memory, while the exact memory requirements depend on the sam-
pling ratio r or the memory budget k. Note that we can apply the same techniques used
in Sect. 4.4 and Sect. 4.5 to prove the accuracy and complexity of THINKD in a multi-
graph stream. Specifically, we can simply treat parallel edges with different labels as
different edges and follow the same steps in the sections.

C.3. Experiments
We empirically validate the accuracy and speed of THINKD in order to show our ex-
tensions of THINKDFAST and THINKDACC are successful. We describe our experimen-
tal settings in Sect. C.3.1. We explain the accuracy of THINKD and other methods in
Sect. C.3.2 and the speed in Sect. C.3.3.

C.3.1. Experimental Settings:. We ran all experiments on a machine with 2.67GHz In-
tel Xeon E7-8837 CPUs and 1TB memory (up to 32GB was used). The real-world
multigraphs used in our experiments are summarized in Table V. From them, we cre-
ated fully-dynamic multigraph streams as in Sect. 5.1, while fixing α (i.e., the ratio of
deleted edges) to 20%. We used TRIESTFD, which supports triangle counting in fully-
dynamic multigraph streams, as the competitor of THINKD.

C.3.2. Accuracy (THINKD is more accurate than its best competitor). We compared
the accuracies of THINKDFAST, THINKDACC, and TRIESTFD, as we changed the ratio of
stored edges at the end of each input stream from 5% to 40%. Each evaluation metric
was averaged over 1000 trials in all the datasets. As seen in Fig. 8, THINKDACC con-
sistently gave the best trade-off between space and accuracy, followed by THINKDFAST.
Specifically, within the same memory budget, THINKDACC was up to 2.7× and 2.5×
more accurate than TRIESTFD in terms of global error and RMSE, respectively.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 K. Shin et al.

Algorithm 4: Extensions of THINKDFAST and THINKDACC to a Multigraph
Inputs : fully dynamic multigraph stream: (e(1), e(2), ...) = (({u, v}, l, δ), ...,),

sampling probability: r (for THINKDFAST), and
memory budget: k (≥ 2) (for THINKDACC)

Outputs: estimate of the global triangle count: c̄
estimates of the local triangle counts: c[u] for each node u

1 S ← ∅ (for THINKDFAST)
2 |E| ← 0, nb ← 0, ng ← 0 (for THINKDACC)
3 for each element e(t) = ({u, v}, l, δ) in the input stream do
4 UPDATE(({u, v}, l), δ)
5 if δ = + then INSERT(({u, v}, l))
6 else if δ = − then DELETE(({u, v}, l))
7 Procedure UPDATE(({u, v}, l, δ)): . update global and local triangle counts
8 compute N̂ [u] ∩ N̂ [v] . N̂ [u] and N̂ [v] are obtained from current S
9 for each common neighbor w ∈ N̂ [u] ∩ N̂ [v] do

10 if THINKDFAST then
11 if δ = + then increase c̄, c[u], c[v], and c[w] by M(v,w)M(w,u)

r2

12 else if δ = − then decrease c̄, c[u], c[v], and c[w] by M(v,w)M(w,u)

r2

13 else if THINKDACC then
14 if δ = + then increase c̄, c[u], c[v], and c[w] by M(v,w)M(w,u)

p(|E|,nb,ng)

15 else if δ = − then decrease c̄, c[u], c[v], and c[w] by M(v,w)M(w,u)
p(|E|,nb,ng)

16 Procedure INSERT(({u, v}, l)):
17 if THINKDFAST then
18 if a random number in Bernoulli(r) is 1 then S ← S ∪ {({u, v}, l)}
19 else if THINKDACC then
20 |E| ← |E|+ 1
21 if nb + ng = 0 then
22 if |S| < k then S ← S ∪ {({u, v}, l)}
23 else if a random number in Bernoulli(k/|E|) is 1 then
24 replace a random edge in S with ({u, v}, l)

25 else if a random number in Bernoulli(nb/(nb + ng)) is 1 then
26 S ← S ∪ {({u, v}, l)}, nb ← nb − 1

27 else ng ← ng − 1

28 Procedure DELETE(({u, v}, l)):
29 if THINKDFAST then
30 if ({u, v}, l) ∈ S then S ← S \ {({u, v}, l)}
31 else if THINKDACC then
32 |E| ← |E| − 1
33 if ({u, v}, l) ∈ S then
34 S ← S \ {({u, v}, l)}, nb ← nb + 1

35 else ng ← ng + 1

C.3.3. Speed (THINKD is faster than its best competitor). We compared the speeds
and accuracies of THINKDFAST, THINKDACC, and TRIESTFD. The detailed settings were
the same as those in Sect. C.3.2, and we ignored time taken to wait for the arrival
of elements to measure the speeds of the algorithms independently of the speed of
the input stream. As shown in Fig. 9, THINKDFAST consistently gave the best trade-off

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams A:33

Table V: Summary of the real-world multigraph streams used in our experiments. M:
million, K: thousand.

Name #Nodes #Edges Type
Enron [Klimt and Yang 2004] 87.0K 1.13M Email Network
DBLP [Ley 2002] 1.28M 18.2M Author Collaboration
Wikipedia [Sun et al. 2016] 2.86M 19.3M Communication
Movie [Barabási and Albert 1999] 382K 33.1M Actor Collaboration

ThinkDACC (Proposed) ThinkDFAST (Proposed) TriestFD

Global Error (the lower the better):

1.8X

2.7X
0.0

2.5

5.0

7.5

0.0 0.2 0.4 0.6
Ratio of Stored Edges

G
lo

b
a

l E
rr

.
(X

1
0

3
)

1.9X

2.5X
0

5

10

15

0.0 0.2 0.4 0.6
Ratio of Stored Edges

G
lo

b
a

l E
rr

.
(X

1
0

3
)

2X

2.5X
0

3

6

9

0.0 0.2 0.4 0.6
Ratio of Stored Edges

G
lo

b
a

l E
rr

.
(X

1
0

3
)

1.8X

2.5X
0

1

2

3

4

5

0.0 0.2 0.4 0.6
Ratio of Stored Edges

G
lo

b
a

l E
rr

.
(X

1
0

2
)

(a) Movie (b) Wikipedia (c) DBLP (d) Enron

RMSE (the lower the better):

2.5X

1.9X

0

5

10

15

20

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
M

S
E

 (
X

1
0
−
4
)

2.5X

1.9X

0

2

4

6

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
M

S
E

 (
X

1
0
−
6
)

2.5X

1.9X

0

1

2

3

4

5

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
M

S
E

 (
X

1
0
−
4
)

2.5X

1.9X

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
M

S
E

 (
X

1
0
−
6
)

(e) Movie (f) Wikipedia (g) DBLP (h) Enron

Rank Corr. (the higher the better):

1.3X

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
a

n
k
 C

o
rr

e
la

tio
n

1.9X

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
a

n
k
 C

o
rr

e
la

tio
n

1.7X

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
a

n
k
 C

o
rr

e
la

tio
n

1.5X

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6
Ratio of Stored Edges

R
a

n
k
 C

o
rr

e
la

tio
n

(i) Movie (j) Wikipedia (k) DBLP (l) Enron

Fig. 8: THINKD is accurate. THINKDFAST and THINKDACC provide a better trade-off
between space and accuracy than TRIESTFD. In particular, THINKDACC is up to 2.7×
more accurate than TRIESTFD within the same memory budget.

between speed and accuracy, followed by THINKDACC. Specifically, for the same global
error and RMSE, THINKDFAST was up to 2.2× faster than TRIESTFD.

D. APPLICATION: DETECTING SUDDENLY EMERGING DENSE SUBGRAPHS
In this section, we apply THINKD to the task of detecting dense subgraphs created
within a short time. Specifically, we first provide a short survey on dense-subgraph
detection and sliding-window models. Then, we propose an algorithm called THINKD-
SPOT, which utilizes THINKD to detect suddenly emerging dense subgraphs. Lastly,

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 K. Shin et al.

ThinkDACC (Proposed) ThinkDFAST (Proposed) TriestFD

Global Error (the lower the better):

2.2X

1.5X

0.0

2.5

5.0

7.5

0 200 400 600
Elapsed Time (sec)

G
lo

b
a

l E
rr

.
(X

1
0

3
)

2X

1.6X

0

5

10

15

0 100 200 300 400
Elapsed Time (sec)

G
lo

b
a

l E
rr

.
(X

1
0

3
)

1.9X

1.4X

0

3

6

9

0 50 100
Elapsed Time (sec)

G
lo

b
a

l E
rr

.
(X

1
0

3
)

1.8X

1.5X

0

1

2

3

4

5

0 2 4 6
Elapsed Time (sec)

G
lo

b
a

l E
rr

.
(X

1
0

2
)

(a) Movie (b) Wikipedia (c) DBLP (d) Enron

RMSE (the lower the better):

1.5X

2.2X
0

5

10

15

20

0 200 400 600
Elapsed Time (sec)

R
M

S
E

 (
X

1
0
−
4
) 1.5X

2X
0

2

4

6

0 100 200 300 400
Elapsed Time (sec)

R
M

S
E

 (
X

1
0
−
6
) 1.5X

1.9X
0

1

2

3

4

5

0 50 100
Elapsed Time (sec)

R
M

S
E

 (
X

1
0
−
4
) 1.5X

1.8X
0.0

0.5

1.0

1.5

2.0

0 2 4 6
Elapsed Time (sec)

R
M

S
E

 (
X

1
0
−
6
)

(e) Movie (f) Wikipedia (g) DBLP (h) Enron

Rank Corr. (the higher the better):

2.2X

1.2X

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600
Elapsed Time (sec)

R
a

n
k
 C

o
rr

e
la

tio
n 2X

1.6X

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400
Elapsed Time (sec)

R
a

n
k
 C

o
rr

e
la

tio
n 1.9X

1.5X

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100
Elapsed Time (sec)

R
a

n
k
 C

o
rr

e
la

tio
n 1.8X

1.4X

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6
Elapsed Time (sec)

R
a

n
k
 C

o
rr

e
la

tio
n

(i) Movie (j) Wikipedia (k) DBLP (l) Enron

Fig. 9: THINKD is fast. THINKDFAST and THINKDACC provide a better trade-off be-
tween speed and accuracy than TRIESTFD. In particular, THINKDFAST is up to 2.2×
faster than TRIESTFD when they are similarly accurate.

we experimentally show the advantages of THINKD-SPOT over state-of-the-art algo-
rithms.

D.1. Survey on Detecting Dense Subgraphs and Sliding-Window Models
Detecting Dense Subgraphs. Theoretical work on identifying densest subgraphs in-
cludes exact and approximate algorithms for static graphs [Goldberg 1984; Charikar
2000; Andersen and Chellapilla 2009; Khuller and Saha 2009; Bahmani et al. 2012]
and approximate algorithms for dynamic graphs [Epasto et al. 2015a; Bhattacharya
et al. 2015; McGregor et al. 2015; Nasir et al. 2017]. We refer interested readers to
a survey [Lee et al. 2010]. Unusually dense subgraphs in real-world graphs tend to
signal anomalous or fraudulent behaviors, including a ‘follower-boosting’ service on
social media [Jiang et al. 2014; Hooi et al. 2017; Shin et al. 2018a], ‘copy-and-paste’
bibliographies in citation networks [Prakash et al. 2010; Shin et al. 2018a], and web-
sites that attempt to manipulate search engine rankings [Gibson et al. 2005]. Several
recent algorithms detect dense subgraphs or more generally dense subtensors that
are created within a short time or in a temporally synchronized manner [Maruhashi
et al. 2011; Beutel et al. 2013; Jiang et al. 2015; Shin et al. 2017a; Shin et al. 2017b;

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams A:35

Rozenshtein et al. 2017; Shin et al. 2018c]. Considering temporal aspects enables these
algorithms to accurately identify suspicious subgraphs and subtensors, which indicate
fake ‘Likes’ on Facebook [Beutel et al. 2013], ‘edit wars’ and bot activities on Wikipedia
[Shin et al. 2017b; Shin et al. 2018a], network intrusions [Maruhashi et al. 2011; Shin
et al. 2017a], etc.
Sliding-Window Models. Our dense-subgraph detection method, described in the fol-
lowing section, is in the timestamp-based sliding-window model [Babcock et al. 2002],
where the elements (or edges) whose arrival timestamp is within a time interval ∆T
of the current time are maintained, while the others are “expired” and removed. This
model is different from but similar to the sequence-based sliding window model [Datar
et al. 2002], where the most recent k elements (or edges) are maintained, regardless
of their arrival timestamps, while the others are removed. In addition to sampling
algorithms in both models [Babcock et al. 2002], several graph algorithms in the lat-
ter model have been developed for connectivity tests, graph sparsification, minimum
spanning forest detection, etc [Crouch et al. 2013; McGregor 2014]. Note that THINKD
is in the fully-dynamic graph stream model, which is more general than both sliding-
windows models. Designing triangle counting algorithm specific to the sliding-windows
models remains to be investigated as future work.

D.2. Proposed Method: THINKD-SPOT

We present an algorithm called THINKD-SPOT, which utilizes THINKD to detect dense
subgraphs that are created within a short time. THINKD-SPOT, which is described in
Fig. 10, tracks the estimated counts of triangles using THINKD and uses the sudden
increases in the counts as the signal of suddenly emerging dense subgraphs.

Consider a graph whose edges have actual timestamps (rather than logical times-
tamps), and for each edge e, let te be its timestamp. THINKD-SPOT first creates a fully
dynamic graph stream with deletions as follows:

(1) For each edge e, create an addition (e,+) with timestamp te,
(2) For each edge e, create a deletion (e,−) with timestamp te + ∆T ,
(3) Sort the additions and deletions from the previous steps in the increasing order of

their timestamps.

Then, THINKD-SPOT processes the created stream using THINKD (either THINKDFAST

or THINKDACC). This makes THINKD-SPOT maintain the estimated counts of global
and local triangles created within ∆T time units. THINKD-SPOT tracks the changes in
the maintained estimate of the global triangle count, and if a spike with the estimate
greater than a given threshold θ is encountered, THINKD-SPOT reports the emergence
of a sudden dense subgraph. At each spike, THINKD-SPOT returns the maintained
estimates of local triangle counts as the amount of contribution of each node to the
sudden dense subgraph.

Although we describe THINKD-SPOT in an offline setting, it can be easily extended
to online settings where new edges are added to the input graph while it is being
processed. In online settings, to maintain the estimated counts of triangles created
within ∆T time units, THINKD-SPOT processes the insertion of each new edge as soon
as the edge arrives, while it processes the deletion of the edge after ∆T time units.
While new edges need to be stored until they are removed after ∆T units, since they
are written and deleted sequentially, they can be stored on disks.

D.3. Experiments
For empirical evaluation of THINKD-SPOT, we measured how rapidly and accurately
THINKD-SPOT detects suddenly emerging dense subgraphs compared to its best com-
petitors: DENSEALERT [Shin et al. 2017b], M-BIZ [Shin et al. 2018c], D-CUBE [Shin

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 K. Shin et al.

Past Edges
(Deleted)

Current Edges
(Maintained)

Future Edges
(Will be Added)

Es
tim

at
ed

 C
ou

nt

of
 G

lo
ba

l T
ria

ng
le

s Time Window 𝚫𝑻 Time

Time

Time

Threshold 𝜃

Es
tim

at
ed

 C
ou

nt
s

of
 L

oc
al

 T
ria

ng
le

s

Emergence of
Sudden Dense Subgraphs

Amount of Contribution of Each Node
to Sudden Dense Subgraphs

Nodes Forming
Sudden Dense Subgraphs

In
pu

t
(E

dg
es

 w
ith

 T
im

es
ta

m
ps

)
O

ut
pu

ts
 o

f T
hi

nk
D

Fig. 10: Pictorial description of THINKD-SPOT, which spots suddenly emerging dense
subgraphs using THINKD. THINKD-SPOT maintains the estimated counts of global
and local triangles created within ∆T time units. Spikes in the estimated count of
global triangles indicate the emergence of sudden dense subgraphs, and the estimated
counts of local triangles indicate the amount of contribution of each node to the sudden
dense subgraphs.

et al. 2017a], and CROSSSPOT [Jiang et al. 2015], all of which are designed for detect-
ing dense subgraphs or more generally dense subtensors created within a short time.12

Specifically, we randomly injected 10 cliques created within a day into the Facebook
and Epinion datasets.13 That is, the timestamps of all edges composing each clique
were within a day. The injected cliques were of size 6 to 15. Then, we measured the
running time of each method and the precision at the top-10 outputs obtained by each
method (i.e., the ratio of outputs that correspond to the injected cliques).

As summarized in Fig. 11(a), THINKD-SPOT was the fastest and the most accurate
in both datasets. Especially, THINKD-SPOT was 8.3− 19.6× faster than DENSEAL-
ERT, which was the second most accurate method. Figs. 11(b)-(e) show that the spikes
in the estimated count of global triangles obtained by THINKD-SPOT indicated the in-

12We implemented all the algorithms commonly in Java. We used THINKDACC with k = 2000 for triangle
counting in THINKD-SPOT, and we set ∆T to a day for both THINKD-SPOT and DENSEALERT. We used
the geometric average degree as the density measure in M-BIZ and D-CUBE, since this measure led to the
highest accuracy. Using each of M-BIZ, D-CUBE, and CROSSSPOT, we detected 10 dense subgraphs. The
other experimental settings were the same as those described in Sect. 5.1.
13We used the Facebook and Epinion datasets because the edges in them have timestamps. We ignored the
edges with missing timestamps.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams A:37

Datasets Facebook Epinion

Measures Running Time Precision @ Running Time Precision @
(milliseconds) Top-10 (milliseconds) Top-10

CROSSSPOT 54,975 0.00 11,173 0.00
D-CUBE 1,443 0.33 674 0.00
M-BIZ 1,298 0.31 667 0.41

DENSEALERT 12,080 1.00 1,843 0.59
THINKD-SPOT 617 1.00 223 0.75

(a) Running Time and Accuracy Averaged over 10 Runs.

Anomalies (Injected Cliques) False Alarms False Dismissals

Top 10

(b) Spikes from
THINKD-SPOT (Facebook)

Top 10

(c) Spikes from
DENSEALERT (Facebook)

Top 10

(d) Spikes from
THINKD-SPOT (Epinion)

Top 10

(e) Spikes from
DENSEALERT (Epinion)

Anomalies (Nodes Forming Cliques) Other Nodes

●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●
●●●
●●

21X

78X

28X

55X

45X

55X

91X

35X

7X

6X

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10
Spikes in Count of Global Triangles

E
st

im
at

ed
 C

ou
nt

 o
f

 L
oc

al
 T

ria
ng

le
s

(f) Local Triangle Counts at Top-10 Spikes
(Facebook)

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●
●●
●

●

●

●

●

●●

●●●●

●

●●●
●

●●

●●

●

●●

●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●● ●●●●●●● ●●●●●

●

●●
●
●
●●

●
●
●

●
●
●
●
●●

●

●●
●

●

●●
● ●●●

3X 28X

105X

36X

78X
91X

45X

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10
Spikes in Count of Global Triangles

Es
tim

at
ed

 C
ou

nt
 o

f
 L

oc
al

 T
ria

ng
le

s False Alarms

(g) [Local Triangle Counts at Top-10 Spikes
(Epinion)

Fig. 11: (a) THINKD-SPOT is fast and accurate. (b-e) The spikes in the estimated
count of global triangles, obtained by THINKD-SPOT, indicate the injected suddenly
emerging cliques more accurately than the spikes obtained by DENSEALERT. The ar-
rows indicate the timestamps where the cliques are injected, and the stars indicate
the false alarms in top-10 spikes. The triangles indicate false dismissals. (f-g) The
nodes forming the injected cliques are clearly distinguished by their estimated counts
of local triangles, obtained by THINKD-SPOT. The plots show the distributions of the
estimated counts of local triangles at the top-10 spikes in (b-e).

jected cliques more accurately than the spikes obtained by DENSEALERT. Figs. 11(e)-
(f) show that the nodes forming the injected cliques are clearly distinguished by their
estimated counts of local triangles, obtained by THINKD-SPOT.

REFERENCES
Nesreen K Ahmed, Nick Duffield, Jennifer Neville, and Ramana Kompella. 2014. Graph sample and hold: A

framework for big-graph analytics. In KDD.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 K. Shin et al.

Nesreen K. Ahmed, Nick Duffield, Theodore L. Willke, and Ryan A. Rossi. 2017. On Sampling from Massive
Graph Streams. PVLDB 10, 11 (2017), 1430–1441.

Reid Andersen and Kumar Chellapilla. 2009. Finding dense subgraphs with size bounds. In WAW.
Brian Babcock, Mayur Datar, and Rajeev Motwani. 2002. Sampling from a moving window over streaming

data. In SODA.
Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Densest subgraph in streaming and mapre-

duce. PVLDB 5, 5 (2012), 454–465.
Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. 2002. Reductions in streaming algorithms, with an applica-

tion to counting triangles in graphs. In SODA.
Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random networks. science 286, 5439

(1999), 509–512.
Vladimir Batagelj and Matjaž Zaveršnik. 2007. Short cycle connectivity. Discrete Mathematics 307, 3 (2007),

310–318.
Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. 2010. Efficient algorithms for large-scale

local triangle counting. TKDD 4, 3 (2010), 13.
Jonathan W Berry, Bruce Hendrickson, Randall A LaViolette, and Cynthia A Phillips. 2011. Tolerating the

community detection resolution limit with edge weighting. Physical Review E 83, 5 (2011), 056119.
Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and Christos Faloutsos. 2013. Copy-

catch: stopping group attacks by spotting lockstep behavior in social networks. In WWW.
Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos Tsourakakis. 2015. Space-

and time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic streams. In STOC.
Paul G Brown and Peter J Haas. 2006. Techniques for warehousing of sample data. In ICDE.
Moses Charikar. 2000. Greedy approximation algorithms for finding dense components in a graph. In AP-

PROX.
Shumo Chu and James Cheng. 2012. Triangle listing in massive networks. TKDD 6, 4 (2012), 17.
Michael S Crouch, Andrew McGregor, and Daniel Stubbs. 2013. Dynamic graphs in the sliding-window

model. In European Symposium on Algorithms. Springer, 337–348.
Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 2002. Maintaining stream statistics over

sliding windows. SIAM journal on computing 31, 6 (2002), 1794–1813.
Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, and Eli Upfal. 2017. TRIÈST: Counting Local and

Global Triangles in Fully Dynamic Streams with Fixed Memory Size. TKDD 11, 4 (2017), 43.
Alessandro Epasto, Silvio Lattanzi, Vahab Mirrokni, Ismail Oner Sebe, Ahmed Taei, and Sunita Verma.

2015b. Ego-net community mining applied to friend suggestion. PVLDB 9, 4 (2015), 324–335.
Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. 2015a. Efficient densest subgraph computation in

evolving graphs. In WWW.
Rainer Gemulla, Wolfgang Lehner, and Peter J Haas. 2008. Maintaining bounded-size sample synopses of

evolving datasets. The VLDB Journal 17, 2 (2008), 173–201.
David Gibson, Ravi Kumar, and Andrew Tomkins. 2005. Discovering large dense subgraphs in massive

graphs. In VLDB.
Andrew V Goldberg. 1984. Finding a maximum density subgraph. Technical Report.
Bronwyn H Hall, Adam B Jaffe, and Manuel Trajtenberg. 2001. The NBER patent citation data file: Lessons,

insights and methodological tools. Technical Report. National Bureau of Economic Research.
Guyue Han and Harish Sethu. 2017. Edge Sample and Discard: A New Algorithm for Counting Triangles in

Large Dynamic Graphs. In ASONAM.
Paul W Holland and Samuel Leinhardt. 1971. Transitivity in structural models of small groups. Compara-

tive group studies 2, 2 (1971), 107–124.
Bryan Hooi, Kijung Shin, Hyun Ah Song, Alex Beutel, Neil Shah, and Christos Faloutsos. 2017. Graph-based

fraud detection in the face of camouflage. TKDD 11, 4 (2017), 44.
Xiaocheng Hu, Yufei Tao, and Chin-Wan Chung. 2014. I/O-efficient algorithms on triangle listing and count-

ing. TODS 39, 4 (2014), 27.
Madhav Jha, Comandur Seshadhri, and Ali Pinar. 2013. A space efficient streaming algorithm for triangle

counting using the birthday paradox. In KDD.
Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, and Christos Faloutsos. 2015. A general

suspiciousness metric for dense blocks in multimodal data. In ICDM.
Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. 2014. Catchsync: catching syn-

chronized behavior in large directed graphs. In KDD.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams A:39

Minsoo Jung, Sunmin Lee, Yongsub Lim, and U Kang. 2016. FURL: fixed-memory and uncertainty reducing
local triangle counting for graph streams. arXiv preprint arXiv:1611.06615 (2016).

Andreas Kemper. 2009. Valuation of network effects in software markets: a complex networks approach.
Springer Science & Business Media.

Samir Khuller and Barna Saha. 2009. On finding dense subgraphs. In ICALP. 597–608.
Bryan Klimt and Yiming Yang. 2004. Introducing the Enron Corpus.. In CEAS.
Mihail N Kolountzakis, Gary L Miller, Richard Peng, and Charalampos E Tsourakakis. 2010. Efficient tri-

angle counting in large graphs via degree-based vertex partitioning. In WAW.
Konstantin Kutzkov and Rasmus Pagh. 2014. Triangle counting in dynamic graph streams. In SWAT.
Victor E Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. 2010. A survey of algorithms for dense sub-

graph discovery. In Managing and Mining Graph Data. 303–336.
Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2009. Community structure in

large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathemat-
ics 6, 1 (2009), 29–123.

Michael Ley. 2002. The DBLP computer science bibliography: Evolution, research issues, perspectives. In
SPIRE. Springer, 1–10.

Yongsub Lim, Minsoo Jung, and U Kang. 2018. Memory-efficient and accurate sampling for counting local
triangles in graph streams: from simple to multigraphs. TKDD 12, 1 (2018), 4.

R Duncan Luce and Albert D Perry. 1949. A method of matrix analysis of group structure. Psychometrika
14, 2 (1949), 95–116.

Koji Maruhashi, Fan Guo, and Christos Faloutsos. 2011. Multiaspectforensics: Pattern mining on large-scale
heterogeneous networks with tensor analysis. In ASONAM.

Paolo Massa and Paolo Avesani. 2005. Controversial users demand local trust metrics: An experimental
study on epinions. com community. In AAAI.

Andrew McGregor. 2014. Graph stream algorithms: a survey. ACM SIGMOD Record 43, 1 (2014), 9–20.
Andrew McGregor, David Tench, Sofya Vorotnikova, and Hoa T Vu. 2015. Densest subgraph in dynamic

graph streams. In MFCS.
Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and Bobby Bhattacharjee. 2007.

Measurement and Analysis of Online Social Networks. In IMC.
Muhammad Anis Uddin Nasir, Aristides Gionis, Gianmarco De Francisci Morales, and Sarunas Girdzi-

jauskas. 2017. Fully dynamic algorithm for top-k densest subgraphs. In CIKM.
Mark EJ Newman. 2003. The structure and function of complex networks. SIAM review 45, 2 (2003), 167–

256.
Rasmus Pagh and Charalampos E Tsourakakis. 2012. Colorful triangle counting and a mapreduce imple-

mentation. Inform. Process. Lett. 112, 7 (2012), 277–281.
Aduri Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. 2013. Counting and sampling

triangles from a graph stream. PVLDB 6, 14 (2013), 1870–1881.
BA Prakash, M Seshadri, A Sridharan, S Machiraju, and C Faloutsos. 2010. Eigenspokes: Surprising pat-

terns and community structure in large graphs. PAKDD (2010).
Polina Rozenshtein, Nikolaj Tatti, and Aristides Gionis. 2017. Finding dynamic dense subgraphs. TKDD 11,

3 (2017), 27.
Kijung Shin. 2017. WRS: Waiting Room Sampling for Accurate Triangle Counting in Real Graph Streams.

In ICDM.
Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. 2018a. Patterns and anomalies in k-cores of real-

world graphs with applications. Knowl. Inf. Syst. 54, 3 (2018), 677–710.
Kijung Shin, Mohammad Hammoud, Euiwoong Lee, Jinoh Oh, and Christos Faloutsos. 2018b. Tri-Fly: Dis-

tributed Estimation of Global and Local Triangle Counts in Graph Streams. In PAKDD.
Kijung Shin, Bryan Hooi, and Christos Faloutsos. 2018c. Fast, Accurate, and Flexible Algorithms for Dense

Subtensor Mining. TKDD 12, 3 (2018), 30.
Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. 2017a. D-Cube: Dense-Block Detection in

Terabyte-Scale Tensors. In WSDM.
Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. 2017b. DenseAlert: Incremental Dense-

Subtensor Detection in Tensor Streams. In KDD. ACM, 1057–1066.
Kijung Shin, Jisu Kim, Bryan Hooi, and Christos Faloutsos. 2018. Think before You Discard: Accurate Tri-

angle Counting in Graph Streams with Deletions. In ECML/PKDD.
Charles Spearman. 1904. The proof and measurement of association between two things. The American

journal of psychology 15, 1 (1904), 72–101.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 K. Shin et al.

Jun Sun, Jérôme Kunegis, and Steffen Staab. 2016. Predicting user roles in social networks using transfer
learning with feature transformation. In ICDMW. IEEE, 128–135.

Siddharth Suri and Sergei Vassilvitskii. 2011. Counting triangles and the curse of the last reducer. In WWW.
Kanat Tangwongsan, Aduri Pavan, and Srikanta Tirthapura. 2013. Parallel triangle counting in massive

streaming graphs. In CIKM.
Charalampos E Tsourakakis. 2008. Fast counting of triangles in large real networks without counting: Al-

gorithms and laws. In ICDM.
Charalampos E Tsourakakis, Petros Drineas, Eirinaios Michelakis, Ioannis Koutis, and Christos Faloutsos.

2011. Spectral counting of triangles via element-wise sparsification and triangle-based link recommen-
dation. Social Network Analysis and Mining 1, 2 (2011), 75–81.

Charalampos E Tsourakakis, U Kang, Gary L Miller, and Christos Faloutsos. 2009. Doulion: counting tri-
angles in massive graphs with a coin. In KDD.

Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P Gummadi. 2009. On the evolution of user
interaction in facebook. In WOSN.

Jeffrey S Vitter. 1985. Random sampling with a reservoir. TOMS 11, 1 (1985), 37–57.
Pinghui Wang, Yiyan Qi, Yu Sun, Xiangliang Zhang, Jing Tao, and Xiaohong Guan. 2017. Approximately

counting triangles in large graph streams including edge duplicates with a fixed memory usage. PVLDB
11, 2 (2017), 162–175.

Stanley Wasserman and Katherine Faust. 1994. Social network analysis: Methods and applications. Vol. 8.
Cambridge university press.

Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-world’ networks. Nature 393,
6684 (1998), 440–442.

Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network communities based on ground-
truth. KAIS 42, 1 (2015), 181–213.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

	Introduction
	Related Work
	Triangle Counting in Insertion-only Graph Streams
	Triangle Counting in Fully-dynamic Graph Streams

	Notations and Problem Definition
	Notations
	Problem Definition

	Proposed Method: Think before You Discard (ThinkD)
	Preliminaries: Random Pairing (RP)
	Simple and Fast Version of ThinkD: ThinkDfast
	Accurate Version of ThinkD: ThinkDacc
	Accuracy Analyses
	Complexity Analyses

	Experiments
	Experimental Settings
	Q1. Illustration of Theorems
	Q2. Accuracy (ThinkD is more accurate than its competitors)
	Q3. Speed (ThinkD is faster than its competitors)
	Q4. Effects of Deletions (ThinkD is consistently accurate)
	Q5. Application to Social Network Analysis

	Conclusion
	Toy Example for ThinkD and its Competitors (Triestfd and ESD)
	Variance Analysis
	Extensions: Triangle Counting in Fully Dynamic Multigraph Streams
	Notations and Problem Definition
	Extension of ThinkDfast and ThinkDacc to a Fully Dynamic Multigraph Stream
	Experiments
	Experimental Settings:
	Accuracy (ThinkD is more accurate than its best competitor)
	Speed (ThinkD is faster than its best competitor)

	Application: Detecting Suddenly Emerging Dense Subgraphs
	Survey on Detecting Dense Subgraphs and Sliding-Window Models
	Proposed Method: ThinkD-Spot
	Experiments

