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Abstract

Satellite images play a crucial role in weather analytics, and recent
advancements in satellite technology have significantly enhanced
the accuracy and reliability of weather predictions. In this paper,
we introduce SkySearch, a large-scale satellite video search system
deployed at the Korean Meteorological Administration (KMA). Sky-
Search is designed to aid weather experts in making timely and
accurate forecasts by rapidly and precisely searching for satellite
videos in the database that resemble current weather conditions.
SkySearch employs self-supervised learning to compress large
volumes of high-resolution satellite videos into low-dimensional
embeddings, addressing the absence of labeled satellite data. Within
this latent space, relationships between videos are modeled as a
graph, enabling efficient searches. Given a query video, SkySearch
rapidly identifies a small subset of similar videos by traversing the
graph. When the query video represents the current conditions, it
can optionally be augmented with predicted future frames to search
for videos that reflect both the current conditions and expected
evolution. The identified videos are then ranked based on their simi-
larity to the query video. Finally, the ranked list of videos is provided
to weather forecasters through a user-friendly interface. We demon-
strate the deployment and empirical effectiveness of SkySearch
through both numerical and qualitative evaluations. In summary,
SkySearch is: (a) Scalable: processes queries from a large-scale
database of satellite images spanning over a decade and delivers
results within seconds, (b) Accurate: returns numerically and qual-
itatively similar videos to the query video, and (c) Label-free: does
not require labeled videos.
∗Co-first authors.
†Co-corresponding authors.
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1 Introduction

Satellite images provide invaluable information for monitoring and
forecasting environmental and atmospheric changes, enhancing
our understanding of weather patterns, climate shifts, and natural
events. Especially, over recent decades, advancements in satellite
technology have greatly improved the accuracy and reliability of
weather forecasting.

Weather patterns often recur, making it essential to analyze sim-
ilar past events. For example, at the Korea Meteorological Admin-
istration (KMA), identifying historical patterns provides weather
forecasters with strong references for analyzing and forecasting
current weather conditions. As a result, retrieving similar past satel-
lite videos (i.e., sequences of consecutive satellite images), ideally
in real-time, can greatly assist weather forecasters, leading to more
accurate and timely weather predictions. Especially, this case-based
reasoning complements Numerical Weather Prediction (NWP) mod-
els, which often fail to simulate realistic cloud dynamics.

However, satellite video retrieval presents unique practical chal-
lenges. First, there are no predefined labels that indicate which
past satellite videos are similar. Labeling them requires extensive

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3711896.3737263
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Figure 1: Overview of SkySearch. Satellite videos are compressed into low-dimensional embeddings, and their relationships

are modeled as a graph within the latent space. Given a query video, SkySearch identifies similar videos by graph traversal. If

the query reflects current conditions, it can be augmented with predicted frames to capture both present and future states. The

retrieved videos are then ranked and displayed through a user interface (see Figure 2 for details).

expertise and resources, making it impractical at scale. Moreover,
the vast volume and high spatial resolution of satellite images in-
crease the complexity of retrieval. Over its operational lifetimes, a
satellite typically produces millions or more images, with each im-
age containing hundreds of thousands or more pixels—significantly
exceeding the resolution of typical benchmark video datasets.

In this work, we present SkySearch, a system deployed at Korea
Meteologocial Administration (KMA) to address these challenges.
As shown in Figure 1, SkySearch first compresses the vast, high-
resolution satellite video data into low-dimensional embeddings
using a video encoder. This encoder is trained with a self-supervised
loss designed to preserve temporal consistency, without requiring
labeled videos. Using the embeddings, relationships between videos
are modeled as a graph, enabling efficient searches. Given a query
video, SkySearch efficiently identifies a small subset of similar
videos by traversing the graph. When the query video represents
the current conditions, it can be augmented with predicted future
frames, enabling SkySearch to search for videos that reflect both
the current state and its predicted evolution. The identified videos
are then ranked based on their similarity to the query video. Finally,
the ranked results are presented to weather forecasters via a user-
friendly interface to aid in their decision-making process.

At Korea Meteologocial Administration, SkySearch operates on
a database of 1.13 million satellite images of East Asia, collected
over more than a decade. Our numerical and qualitative evaluations
validate its accuracy and speed through.

To summarize, SkySearch has the following advantages:

• Scalable: SkySearch processes user queries from a large-scale
database and delivers results within seconds.

• Accurate: SkySearch returns videos that are both numerically
and qualitatively similar to the input query video.

• Label-free: By utilizing self-supervised learning, SkySearch
reduces the costs needed for manual labeling.

For reproducibility, we release our code and online appendix at
https://github.com/geon0325/skysearch.

2 Problem Definition & Evaluation

We are given a large number of satellite images D = {(𝑥1, 𝑡1), · · · ,
(𝑥 |D | , 𝑡 |D | )}, where 𝑥𝑖 denotes a satellite image, and 𝑡𝑖 is the cor-
responding timestamp when it was captured. We define a satellite
video as a temporally ordered sequence of 𝐿 consecutive satellite
images captured at 1-hour intervals. Formally, a satellite video is

represented as 𝑣 = ((𝑥𝑖+1, 𝑡𝑖+1), (𝑥𝑖+2, 𝑡𝑖+2), . . . , (𝑥𝑖+𝐿, 𝑡𝑖+𝐿)) ,where
|𝑡 𝑗+1−𝑡 𝑗 | = 1 hour for 𝑗 = 𝑖, . . . , 𝑖+𝐿−1. Candidate videos are gener-
ated by sliding a window of length 𝐿 over the dataset D. The query
video 𝑞 is an external satellite video sequence, outside the datasetD,
of the same form,

(
(𝑥𝑞,1, 𝑡𝑞,1), (𝑥𝑞,2, 𝑡𝑞,2), . . . , (𝑥𝑞,𝐿, 𝑡𝑞,𝐿)

)
, where

|𝑡𝑞,𝑖+1 − 𝑡𝑞,𝑖 | = 1 hour for 𝑖 = 1, . . . , 𝐿 − 1. We denote the initial
timestamp of the query video as 𝑡𝑞 = 𝑡𝑞,1 and set 𝐿 = 12, correspond-
ing to 12 hours of satellite imagery sampled at 1-hour intervals.

The goal is to generate a ranked list of candidate videos 𝐶 =(
𝑐1, · · · , 𝑐 |𝐶 |

)
, where each 𝑐𝑖 is a sequence of 𝐿 satellite images from

D. These candidate videos should exhibit high similarity to the
query video 𝑞 in terms of both the spatial features of the images and
temporal consistency over the 𝐿-hour duration. Importantly, the
search system should be scalable to process the large volume and
high dimensionality of the dataset D and fast enough to generate
responses within a few seconds. Furthermore, the system should not
rely on label supervision, as ground-truth pairs of similar satellite
videos are absent and costly to obtain.

3 Proposed Framework

We present SkySearch (Figure 1), our framework for satellite video
search, which is composed of five modules.

3.1 Overview of the Framework

As shown in Figure 1, SkySearch consists of three key technical
components. (1) Self-supervised video compression: Each video
is encoded into a low-dimensional latent representation using a
self-supervised loss, preserving essential spatiotemporal semantics
without requiring labels. (2) Prediction-based query augmenta-

tion: When the query reflects current conditions, it is augmented
with predicted future frames, enabling SkySearch to search for
past videos that align with both the current state and its antici-
pated evolution. (3) Graph-based retrieval: A k-nearest neighbor
(k-NN) graph is constructed in the latent space to connect similar
videos. Using efficient graph traversal, SkySearch retrieves a small
subset of videos similar to a given query. These candidates are then
ranked based on their similarity with the query video. Finally, the
ranked videos are displayed through a user interface.

https://github.com/geon0325/skysearch
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3.2 Data Compression

The data compression module generates embeddings in the latent
space for each satellite video while preserving their meteorologi-
cal similarities. Given the high dimensionality of video data, this
compression reduces the storage requirements by 5260×. 1 This
reduction not only decreases storage demands but also enables fast
similarity searches in the compact latent space (see Section 3.4).
Objectives. A key challenge in learning satellite video embeddings
is the absence of ground-truth labels. To address this, we design a
self-supervised loss that leverages the spatiotemporal continuity of
weather systems, as meteorological patterns tend to evolve grad-
ually over time. Given video 𝑣 , we define 𝑃𝑣 as the set of positive
videos that are temporally close to 𝑣 , and 𝑁𝑣 as the set of negative
videos that are temporally distant:

𝑃𝑣 = {𝑣 ′ : |𝑡𝑣 − 𝑡𝑣′ | ≤ Δ}, 𝑁𝑣 = {𝑣 ′ : |𝑡𝑣 − 𝑡𝑣′ | > Δ} (1)

where Δ is a predefined temporal threshold. We set Δ = 8 hours as
default. Then, the self-supervised loss is defined as:

L𝑣 = E𝑝∼𝑃𝑣
𝑛∼𝑁𝑣

max(∥ 𝑓 (𝑣) − 𝑓 (𝑝)∥22− ∥ 𝑓 (𝑣) − 𝑓 (𝑛)∥22+𝛾, 0) (2)

where 𝑓 (·) is the video encoder (described below) and 𝛾 is the mar-
gin. We use equal numbers of positive and negative samples during
training. The final loss aggregates all videos in the database, i.e.,
L =

∑
𝑣 L𝑣 . Intuitively, our loss function encourages embeddings

of temporally close videos to be closer in the latent space than those
of distant ones, by at least margin 𝛾 .
Encoder Architecture and Training Procedure. The video en-
coder is composed of two components: a spatial encoder for frame-
level features and a sequential encoder for modeling temporal de-
pendencies. The spatial encoder captures spatial information from
individual frames using two convolutional layers with max pool-
ing, followed by a linear layer, which generates embeddings for
each frame. The sequential encoder processes the sequence of frame
embeddings using a Convolutional Recurrent Neural Network (Con-
vRNN) [15], capturing temporal dynamics and producing a unified
video-level embedding. Both encoders are optimized using the same
self-supervised loss function described above but are trained in sep-
arate stages. First, the spatial encoder is trained independently to
ensure robust spatial feature extraction. Once trained, the spatial
encoder is frozen, and the sequential encoder is trained to learn
temporal relationships. This training scheme facilitates error debug-
ging during deployment by clearly isolating whether performance
issues originate from the spatial encoder or the sequential encoder.

3.3 Video Prediction

This module is designed to enhance search results by augmenting
query videos with predicted future frames. This is especially useful
when a query video represents the current conditions, as it enables
SkySearch to search for videos that reflect both the current con-
ditions and expected evolution. Moreover, prediction results are
provided to weather forecasters, as described in Section 3.6, to en-
able comparisons between the expected future trends of the current
1Each video consists of 5,385,600 grayscale pixels (see Section 4.1), requiring approx-
imately 5.14MB of storage. A 256-dimensional embedding vector, assuming 32-bit
floats for each dimension, requires 1KB.

state and the evolution patterns of similar past videos, offering
deeper insights into weather dynamics.

Specifically, it appends 𝐿-step predicted future frames to the
query video, resulting in a 2𝐿-step augmented video. The aug-
mented query is then encoded into the latent space using the trained
video encoder (see Section 3.2) for searches.
Video Predictor. For the predictor (i.e., generator)𝐺 , we adopt the
same architecture as SimVP [8], a recently proposedmethod built on
combinations of CNN modules. Specifically, it employs an encoder-
decoder framework with a translator module positioned between
them to capture temporal patterns. Despite its simplicity, SimVP
has demonstrated state-of-the-art performance across various video
prediction benchmarks.
Objectives.While SimVP is trained using pixel-wise MSE loss to
predict future video frames, it fails to generate high-quality outputs
when applied to high-dimensional satellite videos, often resulting
in blurry or fragmented frames (see Section 4). Such artifacts can
undermine the reliability of weather predictions derived from these
videos. To address this issue, we introduce an adversarial loss to
improve the sharpness and quality of the predicted videos. Specifi-
cally, given an input video 𝑣 and its ground-truth future video 𝑣 ′, a
discriminator 𝐷 is trained to distinguish between the real future
video 𝑣 ′ and the generated video 𝐺 (𝑣), using the loss defined as:

L (𝐷 )
adv = −E[log𝐷 (𝑣 ′)] − E[log(1 − 𝐷 (𝐺 (𝑣)))] .

The generator 𝐺 is trained to minimize two losses. The first loss is
the MSE loss, which is used in the original SimVP, defined as:

LMSE = ∥𝑣 ′ −𝐺 (𝑣)∥22,

which aims to make the generated video 𝐺 (𝑣) closely match the
ground-truth future video 𝑣 ′ at the pixel level. The second loss is
the adversarial loss, defined as:

L (𝐺 )
adv = −E[log(𝐷 (𝐺 (𝑣)))]

which encourages the generator to generate video frames that are
indistinguishable from real frames by the discriminator 𝐷 .

To effectively train the video prediction module in SkySearch,
it is important to balance the contributions of the three losses.
We introduce three hyperparameters: 𝜆MSE, 𝜆

(𝐺 )
adv and 𝜆 (𝐷 )

adv , which
control the weighting of the MSE loss, the adversarial loss for the
generator, and the adversarial loss for the discriminator, respec-
tively. 2 Empirically, we find that setting 𝜆MSE = 0.3, 𝜆 (𝐺 )

adv = 0.6 and

𝜆
(𝐷 )
adv = 0.1 achieves a well-balanced and effective training process.

3.4 Candidate Search

The candidate search module identifies a set 𝐶 of the videos most
similar to the query video through a graph-based search. Using the
data compression module (see Section 3.2), past video embeddings
are stored in a database, and a query embedding is generated when
a query video is provided. This module retrieves the video embed-
dings from the database most similar to the query embedding.
2Specifically, at each training step, we perform biased sampling to select one of the
three losses, LMSE , L (𝐺 )

adv , or L (𝐷 )
adv based on probabilities proportional to 𝜆MSE , 𝜆

(𝐺 )
adv

and 𝜆 (𝐷 )
adv , respectively. The selected loss term is minimized at each training step.
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Figure 2: The user interface of SkySearch. Upon entering

query information (e.g., satellite, channel, and initial times-

tamp), it displays the query video and a ranked list of similar

videos searched from the database.

Graph Construction. Directly comparing the query embedding
with all database embeddings is computationally infeasible for real-
time meteorological applications. To accelerate the search, we con-
struct a k-nearest neighbor (k-NN) graph using NNDescent [6],
where each embedding is a node connected to its 𝑘 most similar
neighbors. The number 𝑘 balances between retrieval accuracy and
cost; higher 𝑘 improves search accuracy but increases graph den-
sity and memory requirements, limiting scalability. For a better
trade-off between accuracy and cost, unnecessary edges are pruned,
where an edge (𝑢, 𝑣) is removed if edges (𝑢,𝑤), (𝑤, 𝑣) exist and
sim(𝑢,𝑤) < sim(𝑤, 𝑣) where sim(·) represents the similarity be-
tween two embeddings.
Candidate Search.When a query embedding is given, the graph
is traversed using a best-first search approach to find the top |𝐶 |
embeddings most similar to the query. Initially, |𝐶 | embeddings are
randomly selected from the entire database and added to a candidate
set. Among the embeddings in the candidate set, the one with the
highest similarity to the query is visited, removed from the set, and
its neighbors are added to the set. However, if the similarity of the
visited embedding exceeds a similarity threshold, its neighbors are
not added. The similarity threshold is dynamically updated during
the search and is defined as the similarity of the |𝐶 |-th most similar
embedding visited so far plus 𝜖 , where 𝜖 is a non-negative constant.
This process repeats until there are no more candidates left. The
final result is the set 𝐶 of |𝐶 | embeddings that have the highest
similarity among all visited embeddings.
Time-Restricted 𝑘-NN.Meteorologists often require finding videos
similar to a query video within a specific time interval as temporal
context plays a critical role in weather analysis. This type of query
is referred to as time-restricted k-NN (TkNN) search. A straight-
forward approach to handle TkNN queries is to filter the result
set 𝐶 , retaining only embeddings within the query time interval.
To ensure |𝐶 | results, the search can be extended until the desired
number of embeddings is found. However, this approach leads to

Table 1: Summary of the datasets. The images are captured

by two satellites, COMS and GK2A. Videos are sequences of

12 consecutive hourly images without any missing frames.

Satellite Years # of Images # of Videos

COMS 2010 - 2020 837,525 295,713
GK2A 2019 - 2021 292,506 209,373

Total 2010 - 2021 1,130,031 505,086

significant delays, especially when the query time interval is nar-
row, as most embeddings are filtered out during graph traversal.
To address this issue and enable efficient TkNN search, we employ
Multi-level Block Indexing (MBI) [10]. MBI partitions embeddings
into blocks according to their timestamps. These blocks are then
hierarchically organized by pairing adjacent blocks to form higher-
level blocks. Each block maintains its own graph. For a TkNN query,
graph traversal is performed only within blocks whose time ranges
overlap with the query’s time interval, significantly improving
search efficiency.
Data Accumulation. As satellite videos accumulate over time,
MBI efficiently organizes them through lazy graph construction,
in which the graph for a block is not constructed until the block
reaches its capacity. A new video embedding is inserted in the last
unfilled block at the lowest level. Searches within a block without
a graph are performed using brute force. Once the block is filled,
its graph is constructed and, if necessary, graphs for its ancestor
blocks are also constructed.

3.5 Ranking

Once the set𝐶 of similar videos is rapidly searched, they are ranked
based on Euclidean distances from the query embedding in the
latent space. For a more precise ranking, the results can be further
refined by employing more computationally intensive image sim-
ilarity or distance measures, such as LPIPS [33], FSIM [35], and
SSIM [33]. Comprehensive experimental results based on different
ranking measures are presented in Section 4.3.

3.6 Visualization

Finally, the results are displayed through a user interface deployed
at KMA, as shown in Figure 2. Input query information includes the
satellite, the satellite channel, and the initial timestamp of the video
(see Section 4.1 for more details). The system outputs a ranked list
of similar videos, each annotated with the video’s date, the distance
from the query video in the latent space, and the LPIPS score [33]
computed relative to the query video.

4 Deployment and Evaluation

We describe the deployment of SkySearch at Korea Meteologocial
Administration (KMA) and evaluate its empirical performance.

4.1 Deployment Details

Satellite Database.We use images captured by two satellites: (1)
COMS, launched in 2010, and (2)GK2A, launched in 2018. Both pro-
vide imagery covering East Asia, centered on the Korean Peninsula.
While COMS is designed for general purposes, GK2A is specialized
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Figure 3: Qualitative comparison of search results. SkySearch retrieves satellite videos that are more similar to the query

videos, compared to those retrieved by the best-performing baseline (i.e., fine-tuned EfficientNet). Moreover, augmenting

queries with video prediction enhances long-term search accuracy.

in weather analysis. Images from both satellites include the IR (in-
frared), SWIR (shortwave infrared), andWV (water vapor) channels.
SkySearch supports all channels and both satellites, allowing the
query and retrieved videos to be captured by different satellites.

As summarized in Table 1, the dataset spans 12 years, from Sep-
tember 2010 to June 2021. The satellites capture images periodically,
with intervals of 15 minutes for COMS and 10 minutes for GK2A,
with some missing images.

Each image originally has a spatial resolution of about 1300×1500
pixels, which we downscale to 600 × 748 by using mean pooling

and cropping unnecessary regions. The total number of pixels per
video is (600 × 748) × 12 frames = 5,385,600, and it is significantly
larger than that of benchmark videos (at most 614,400 pixels).3

Environments. At KMA, SkySearch is deployed on a server with
an AMD EPYC 7742 64-Core CPU (256 threads) and 1TB RAM. An
NVIDIA A100 GPU (40GB) is used to support data compression and
video prediction.
3For example, the largest dataset used in [8], Caltech Pedestrian, contains images with
dimensions 3 × 128 × 160, and each video consists of 10 images.
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Table 2: Numerical comparison of search results. With respect to three evaluationmetrics, LPIPS (lower is better), FSIM (higher

is better), and SSIM (higher is better), SkySearch consistently outperforms all baselines, including ResNet [11], EfficientNet [28],

VideoMAE [29], and TimeSformer [3]. In addition, SkySearch with query augmentation through video prediction enhances

long-term search performance. The best results are highlighted in bold, and the second best results are underlined.

Model Short-Term Search Accuracy (12 Hours) Long-Term Search Accuracy (24 Hours)

LPIPS (↓) FSIM (↑) SSIM (↑) LPIPS (↓) FSIM (↑) SSIM (↑)
Random 0.2406 ± 0.0364 0.3350 ± 0.0126 0.2249 ± 0.0609 0.2405 ± 0.0356 0.3348 ± 0.0122 0.2248 ± 0.0595

ResNet (Pre-Trained) 0.2086 ± 0.0396 0.3465 ± 0.0159 0.2635 ± 0.0780 0.2100 ± 0.0388 0.3459 ± 0.0154 0.2626 ± 0.0765
ResNet (Fine-Tuned w/ SimCLR) 0.2034 ± 0.0342 0.3487 ± 0.0149 0.2713 ± 0.0753 0.2051 ± 0.0335 0.3478 ± 0.0144 0.2687 ± 0.0737

EfficientNet (Pre-Trained) 0.2087 ± 0.0376 0.3461 ± 0.0150 0.2633 ± 0.0751 0.2103 ± 0.0367 0.3452 ± 0.0145 0.2619 ± 0.0739
EfficientNet (Fine-Tuned w/ SimCLR) 0.2039 ± 0.0365 0.3479 ± 0.0151 0.2703 ± 0.0767 0.2047 ± 0.0357 0.3476 ± 0.0146 0.2690 ± 0.0751

VideoMAE (Pre-Trained) 0.2039 ± 0.0401 0.3486 ± 0.0164 0.2712 ± 0.0812 0.2051 ± 0.0390 0.3480 ± 0.0159 0.2692 ± 0.0791
TimeSformer (Pre-Trained) 0.2090 ± 0.0395 0.3466 ± 0.0163 0.2627 ± 0.0782 0.2102 ± 0.0388 0.3460 ± 0.0160 0.2615 ± 0.0763

SkySearch (w/o Video Prediction) 0.1943 ± 0.0355 0.3502 ± 0.0150 0.2784 ± 0.0767 0.1974 ± 0.0349 0.3490 ± 0.0147 0.2751 ± 0.0750
SkySearch (w/ Video Prediction) 0.1960 ± 0.0356 0.3495 ± 0.0151 0.2775 ± 0.0759 0.1965 ± 0.0347 0.3494 ± 0.0146 0.2766 ± 0.0750

4.2 Evaluation of Final Outcomes

As baselines, we use pre-trained ResNet [11] and EfficientNet [28],
in addition to their variants fine-tuned using SimCLR [4]. Using
image embeddings obtained by these baselines, we train convolu-
tional RNN video encoders, identical to the one used by SkySearch
(see Section 3.2), to generate their video embeddings. In addition,
we use publicly available pre-trained VideoMAE [29] and TimeS-
former [3]. For VideoMAE, we adopt the videomae-base variant
available through HuggingFace. For TimeSformer, we use the model
pretrained on the Kinetics-400 dataset with 16 input frames and
a spatial crop size of 448. For streamlined but fair evaluation, for
all methods, including SkySearch, we use a subset of the datasets
from the deployed system. Specifically, we use infrared (IR) channel
satellite videos from COMS between 2014 and 2018 as the training
set (also as the database) and 2,000 randomly sampled videos be-
tween 2019 and 2020 as the query set. Each query video spans 𝐿 =
12 hours. For SkySearch with video prediction, the query video is
augmented to 𝐿 = 24 hours using the video prediction module (see
Section 3.3), and 24-hour videos are retrieved. Given the 12-hour
query video, the other methods retrieve 12-hour videos, and for
each retrieved video, we also use the subsequent 12-hour video
for long-term search accuracy, as described below. We evaluate
two aspects: short-term search accuracy for the first 12 hours of
searched videos and long-term search accuracy for the full 24 hours.
We evaluate the quality of the top-ranked video with a minimum
embedding distance (see Section 4.3 and Appendix A). For numer-
ical evaluation, we report LPIPS [36], FSIM [35], and SSIM [33]
scores, which quantify the similarity between a query video and
each retrieved candidate. Given that each video consists of a se-
quence of 𝐿 images, we compute the metric for each corresponding
pair of frames (i.e., at the same temporal position) in the query and
retrieved video. The final score is obtained by averaging the values
across all 𝐿 image pairs. 4

Numerical Evaluation. As shown in Table 2, SkySearch, both
with and without video prediction, outperforms all baseline mod-
els (pre-trained and fine-tuned ResNet and EfficientNet; and pre-
trained VideoMAE and TimeSformer) in both short-term and long-
term accuracy. In the table, a random baseline, which selects a
4To our knowledge, no standard metric exists for meteorological similarity. In dis-
cussions with KMA forecasters, LPIPS was found to align best with meteorologically
meaningful patterns, followed by FSIM and SSIM.

video uniformly at random from the training set, is also included
for reference. Notably, SkySearch with video prediction achieves
the best long-term accuracy, while SkySearch without video pre-
diction achieves the best short-term accuracy. This demonstrates
the ability of SkySearch with video prediction to retrieve videos
not only similar to the query but also its future developments.
Qualitative Evaluation. As case studies, Figure 3 presents the re-
trieval results for three long-term searches, specifically three frames
from each retrieved 24-hour video and their corresponding LPIPS
values. Based on Table 2, we select fine-tuned EfficientNet as the
top-performing baseline for comparison. These results demonstrate
that SkySearchwith video prediction retrieves videos more similar
to the query and future developments, compared to both the base-
line and SkySearch without video prediction. Additional examples
are provided in the online appendix [1], and Appendix D presents
results on additional satellite channels, SWIR and WV.
Experts’ Evaluation. SkySearch is actively used in daily opera-
tional forecasting at KMA. It complements NWPmodels by enabling
rapid retrieval of similar past cases, particularly focused on cloud
evolution. According to KMA experts, SkySearch consistently re-
trieves relevant cases with similar cloud dynamics, helping them
make more confident decisions under uncertainty and enhancing
the overall interpretability of weather predictions.

4.3 Evaluation of Components

We evaluate two components of SkySearch.
Evaluation of Video Prediction. As discussed in Section 3.3, in
SkySearch, video prediction is used for query-video augmentation
and visualization. We present example prediction results compar-
ing the video prediction module in SkySearch with the baseline
SimVP [8]. As shown in Figure 4, SimVP, despite its state-of-the-art
performance on benchmark video datasets, produces highly blurry
predictions when applied to high-dimensional satellite video data.
In contrast, our video prediction module, enhanced with adversarial
learning, yields more accurate and sharper video predictions. Quan-
titatively, SkySearch achieves a lower average LPIPS of 0.2170,
compared to 0.3907 for SimVP.
Evaluation of Candidate Search.Weevaluate the candidate search
using the graph generated for the IR channel videos. Since the graph
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Future Frames of

the Query Video

Video Prediction

in SkySearch

SimVP

Figure 4: Video prediction performance. SkySearch em-

ploys adversarial learning for video prediction to augment

the query video. This leads to more accurate and sharper

future predictions of the query video compared to SimVP [8].

More case studies can be found in the online appendix [1].

search of SkySearch yields approximate results, both efficiency
and accuracy are assessed. The number |𝐶 | of candidates is set to
50 and 500. The queries are generated by randomly selecting em-
beddings from the database as query embeddings and randomly
defining query time intervals. The length of the query time interval
is randomly chosen to range between 1% and 100% of the total
dataset time span.

We compare the performance of candidate search in SkySearch
against two baselines, BSBF and PyNNDescent.

• BSBF (Binary Search and Brute-Force) sorts the embeddings
by their timestamps, uses binary search to identify embeddings
within the query time interval, and computes similarities to find
the top-|𝐶 | results.

• PyNNDescent is a widely-used graph-based approximate near-
est neighbor search library.Wemodify it for TkNN Search; during
the search, embeddings not included in the query time interval
are excluded from the results, continuing the process until the
desired number of results are found.

Figure 5 shows the queries per second (QPS) under varying query
time interval lengths (QILs). For SkySearch and PyNNDescent, var-
ious search parameters are tested, and only the results with a recall
rate of at least 99% are reported. The query speed of BSBF decreases
as QIL increases, reflecting the proportional growth in the number
of comparisons it requires. In contrast, PyNNDescent shows a sharp
decline in query speed as QIL decreases. This trend aligns with the
explanation in Section 3.4, where narrower QILs require expanding
the search range to identify embeddings within the interval, leading
to more similarity comparisons. SkySearch maintains high QPS
regardless of QILs thanks to the multi-level block indexing. This
demonstrates its robustness in handling varying time constraints,
achieving up to 112.50× times higher query speed than BSBF when
QIL is wide and up to 943.87× higher speed than PyNNDescent
when QIL is narrow.

To evaluate large-scale applicability, we also test SkySearch on
Deep1B, a large-scale dataset consisting of 10million 96-dimensional
vectors. Each vector is assigned a randomly generated timestamp.
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Figure 5: Candidate search performance. SkySearch shows

consistently highQPS regardless ofQILs, outperformingPyN-

NDscent and BSBF by up to 943.87× and 112.50×, respectively.
More results are provided in the online appendix [1].
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Figure 6: Candidate search performance on Deep1B. Sky-

Search consistently outperforms PyNNDscent and BSBF

regardless of QIL, aligning with the results in Figure 5.

The index size of SkySearch for Deep1B is 18.24GB, approximately
five times larger than the original dataset size of 3.92GB. Figure 6
presents QPS versus QIL on Deep1B. The results are consistent with
those in Figure 5; SkySearch achieves the highest query speed re-
gardless of the QIL setting.
Evaluation of Ranking. In SkySearch, once the set 𝐶 of similar
video candidates is retrieved, they are ranked based on their Eu-
clidean embedding distances to the query embedding in the latent
space by default. For enhanced precision, the ranking can be re-
fined using more computationally intensive similarity or distance
measures, such as LPIPS [33], FSIM [35], and SSIM [33]. To illus-
trate the impact of these refinements, we provide additional search
results where LPIPS, FSIM, and SSIM are used to select the best
match from 50 similar video candidates retrieved by SkySearch
with the video prediction module across 50 sampled query videos.
Figure 7 presents qualitative results from each ranking method.
While all methods retrieve videos that are visually similar to the
query, applying LPIPS, FSIM, and SSIM further refines the results
to better align with human perceptual judgments.

We also provide numerical and additional qualitative results in
Appendix A (Table 3) and the online appendix [1]. As detailed in
Appendix A (Table 3), LPIPS, FSIM, and SSIM incur substantial
computational overhead—up to 4.16 × 105 times slower than the
default embedding-based ranking—despite improvements of up to
8.28%. To sum up, SkySearch provides fast and accurate retrievals
by default using embedding distances, but its precision can be
further optimized with additional computational resources.
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Figure 7: Results of alternative ranking methods Sky-

Search ranks the most similar videos from the candidates

retrieved by the candidate search module using embedding

distances, LPIPS, SSIM, or FSIM. While all retrieved videos

are visually similar to the query, image-based measures such

as LPIPS, SSIM, and FSIM can provide further refinement at

the cost of higher computational complexity.

4.4 Ablation Studies

In this section, we present ablation studies to analyze the perfor-
mance of SkySearch under different configurations: (a) sensitivity
to the temporal threshold Δ in Eq (1), and (b) impact of video pre-
diction compared to using ground-truth videos.
Sensitivity to Temporal Threshold Δ. In Eq. (1), the sets of pos-
itive and negative video pairs are defined based on the temporal

(a) Sensitivity to Temporal Threshold Δ (b) Effect of Video Prediction

Figure 8: Impact of temporal thresholds and video prediction

on video search performance. (a) SkySearch achieves the

best performance, indicated by the lowest LPIPS scores,

at Δ = 8 hours across all variants. (b) Video prediction

maintains low LPIPS over the long term, outperforming the

variant without prediction and demonstrating performance

comparable to the variant with ground-truth videos.

threshold Δ. Specifically, positive videos are those that occur within
Δ hours of the query video, while negative videos are those that
occur more than Δ hours apart. We investigate the sensitivity of Δ
to the performance of SkySearch in long-term video search. For
this study, we randomly sampled 100 videos from 2019 to 2020 to
serve as the query set and evaluate different variants of SkySearch:
without video prediction, with 6-hour video prediction, and with
12-hour video prediction. As shown in Figure 8(a), the best perfor-
mance is consistently observed at Δ = 8 hours across all variants,
as indicated by the lowest LPIPS values. Consequently, Δ = 8 hours
is adopted as the default setting in our experiments. In addition, it
is important to note that the results demonstrate that SkySearch
with 12-hour video prediction is robust to variations in Δ.
Effect of Video Prediction. To evaluate the impact of video pre-
diction, we compare the performance of SkySearch with and with-
out video prediction, as well as with ground-truth videos. Figure 8(b)
presents the LPIPS values for each frame of the 24-hour retrieved
videos compared to the corresponding query videos. While Sky-
Search without video prediction initially achieves lower LPIPS
values, performance deteriorates significantly in later frames. In
contrast, SkySearch with video prediction maintains stable and
consistently lower LPIPS values across all frames, demonstrating
its effectiveness in long-term video search. When compared to Sky-
Searchwith ground-truth videos, the version with video prediction
exhibits comparable LPIPS performance, with only slight deviations
observed in the final 20-24 hour frames, where ground-truth data
provides marginally better accuracy. These results indicate that
SkySearch with video prediction performs nearly as well as when
ground-truth videos are available.

5 Related Work

In this section, we review prior works relevant to this study.
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Image & Video Retrieval. Image retrieval has been researched
for a long time [5] and focuses on efficiently performing similarity-
based retrieval by compressing images into concise representations.
Early works extracted signatures as compact and descriptive rep-
resentations of images using handcrafted features such as color
histograms [27], texture patterns [24], or wavelet coefficients [31].
With the advent of deep learning, significant progress has been
made by leveraging learning-based approaches for hashing [22, 23]
and quantization [13, 34], which automatically learn compact and
discriminative image representations. In addition, image retrieval
for remote sensing data, including satellite images, has been ex-
plored [12, 16, 19, 21, 25]. However, most prior studies assume the
availability of explicit labels, which are utilized during training
and evaluation. In contrast, our setting does not have access to
such labeled data. While video retrieval has gained attention re-
cently, much of the existing work primarily considers text-based
queries [7, 26, 32]. In these approaches, videos and text are encoded
into a shared latent space where text data often provides comple-
mentary information that may not be captured by videos. However,
in our setting, videos themselves are used as queries, and there are
no corresponding text annotations for each video.
Applications of Satellite Images in Meteorology. Satellite im-
ages have been extensively used in meteorological research for var-
ious applications, including identifying typhoon cloud patterns [18],
detecting distinctive cloud characteristics [2, 9], image prediction [14],
classfication [17] and weather event detection [20]. Most of these
studies rely on labeled data or ground-truth images to address spe-
cific tasks such as classification or prediction. In contrast, our work
focuses on retrieving videos from historical data that are most sim-
ilar to a given query video. This task poses unique challenges, as it
adopts an unsupervised approach where labels or ground-truth im-
ages are unavailable, and defining similarity often requires domain-
specific expertise. While similar retrieval-based approaches [30]
have been explored, our method differs by focusing on video re-
trieval and leveraging neural networks to extract features, enabling
effective representation learning and similarity measurement.

In summary, to the best of our knowledge, no public systems
support retrieval over large-scale, high-resolution satellite videos
spanning broad regions like East Asia. Existing tools are typically
station-level, relying on metadata or chart-based similarity, rather
than direct spatiotemporal matching, making them not directly
comparable to SkySearch.

6 Conclusion & Future Directions

In this paper, we present SkySearch, a large-scale satellite video
search system deployed at Korea Meteologocial Administration.
SkySearch offers the following advantages:

• Efficient. SkySearch processes queries from massive databases
and provides results within seconds.

• Accurate. SkySearch retrieves videos that closely align with
the input query video, both numerically and visually.

• Unsupervised. SkySearch employs self-supervised learning to
address the lack of labeled data.

For reproducibility, we release our code and online appendix at
https://github.com/geon0325/skysearch.

In the future, we consider three extensions to enhance Sky-
Search. First, we aim to expand the input to jointly support multi-
channel satellite data (e.g., IR, SW, WV) for richer atmospheric
representation. Second, we plan to incorporate prediction confi-
dence into the query augmentation process to improve robustness
against potential inaccuracies in video predictions. When extend-
ing the query video with predicted future frames, these frames can
be filtered or reweighted based on confidence scores, enabling the
system to prioritize reliable outputs over uncertain ones. Lastly, we
aim to apply SkySearch to wildfire precursor retrieval extending
its applicability to broader tasks in environmental monitoring and
disaster response.
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A Detailed Evaluation of Ranking Methods

This appendix provides an in-depth evaluation of the ranking meth-
ods used in SkySearch, focusing on both retrieval accuracy and
computational efficiency. Table 3 presents a comprehensive break-
down of the quantitative results and computational trade-offs.

We assess the performance gains achieved by LPIPS, FSIM, and
SSIM compared to the default embedding-based ranking. Specifi-
cally, LPIPS improves the LPIPS metric by 5.42%, FSIM improves
the FSIM metric by 1.71%, and SSIM improves the SSIM metric by
8.28% relative to the embedding distance baseline. These results are
measured over 1,000 query cases. However, these gains come with
significant computational overhead, with processing times ranging
from 4.29× 103 to 4.16× 105 times longer than embedding distance
calculations. The majority of the time overhead in FSIM and SSIM
results from the need to load and process high-resolution frames,
whereas LPIPS incurs additional cost due to complex feature extrac-
tion in deep neural networks. To mitigate this cost, we introduce
lightweight variants, LPIPS-Lite, FSIM-Lite, and SSIM-Lite, which
downsample video frames by a factor of 2 along both spatial dimen-
sions (i.e., reducing width and height by 50%) during the ranking
step. This reduces runtime by approximately 75% with minimal

performance degradation (≤ 0.21%). As the refinement step is op-
tional and applied selectively in precision-critical scenarios, these
variants offer a practical balance between accuracy and efficiency.
Additional qualitative comparisons between ranking methods are
provided in the online appendix [1]. In conclusion, these results
highlight the flexibility of SkySearch in adapting to varying ap-
plication requirements. For scenarios where real-time retrieval is
critical, the default embedding-based ranking offers an efficient
solution. Conversely, applications that prioritize retrieval precision
can benefit from integrating perceptual similarity metrics, despite
the increased computational demands.

B Metric-Supervised Variants

To explore whether perceptual similarity metrics can serve as
effective supervision signals for our task, we evaluate a metric-
supervised variant of SkySearch. We use the same training dataset
as in our default setup but reformat it to include explicit similarity
values. Specifically, for each anchor video, we generate two separate
pairs—(anchor, positive) and (anchor, negative)—based on temporal
proximity. Instead of using contrastive loss, the model is trained to
regress the perceptual similarity score for each pair independently.
We select LPIPS as the training signal in this experiment, but similar
supervision could be applied using other metrics such as FSIM or
SSIM. To reduce computation, we approximate the target similarity
using the LPIPS score computed only between the first frames of
the anchor and each paired video.

Table 4 presents the results on short-term retrieval accuracy
(i.e., excluding the influence of video prediction), averaged over
1,000 query cases. Despite the significant computational cost of
calculating perceptual scores during training, the performance im-
provement of the Metric-Supervised SkySearch over our default
self-supervised method is marginal. Notably, even though LPIPS is
used as the supervision signal, the Metric-Supervised model slightly
underperforms our default method in LPIPS score. Moreover, the
high computational cost of perceptual metrics such as LPIPS makes
them impractical for scaling to larger training datasets (e.g., with
additional satellite channels or extended temporal ranges). We hy-
pothesize that this limited gain stems from the nature of perceptual
metrics like LPIPS: while they capture low-level visual differences
(e.g., brightness, texture), they are less effective at modeling the spa-
tiotemporal structures that define meteorological dynamics—such
as cloud evolution and cyclone movement. These results suggest
that although perceptual metrics are useful for evaluation, using
them directly as supervision signals may not be the most effective
strategy for training satellite video encoders.

C Extreme and Challenging Scenarios

In this section, we present several cases where SkySearch encoun-
ters difficulties, which we leave as directions for future work.

C.1 Typhoon Scenarios

We evaluate SkySearch under five real-world typhoon events from
the query set (2019-07-17, 2019-08-02, 2019-08-11, 2019-09-20, and
2019-09-29), which are particularly challenging due to complex and
rapidly evolving cloud formations. While absolute similarity scores
tend to be lower in these extreme scenarios compared to the overall
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Table 3: Numerical evaluation of ranking performance and running time of ranking methods. Ranking methods (i.e., Embed-

ding Distance, LPIPS, FSIM, and SSIM) rank similar videos retrieved by SkySearch. LPIPS, FSIM, and SSIM improve accuracy

over the default embedding-based ranking but incur high computational cost. Their lightweight variants (e.g., LPIPS-Lite), used

in deployment, apply 50% downsampling, reducing runtime by up to 75% while retaining second-best performance.

Ranking Method

Evaluation Metrics Time Max Performance Gain Time Overhead

Embed. Dist. (↓) LPIPS (↓) FSIM (↑) SSIM (↑) (sec.) (↓) (%) (×)
Embed Dist. 1.0564 0.2033 0.3482 0.2606 0.0121 Baseline Baseline
LPIPS 1.1667 0.1923 0.3522 0.2774 51.8519 +5.42% ×4.29 × 103

FSIM 1.1610 0.1946 0.3541 0.2728 5,043.7140 +1.71% ×4.16 × 105

SSIM 1.1659 0.1953 0.3517 0.2822 86.9802 +8.28% ×7.19 × 103

LPIPS-Lite 1.1615 0.1927 0.3524 0.2766 22.8965 +5.21% ×1.89 × 103

FSIM-Lite 1.1588 0.1949 0.3535 0.2728 926.0870 +1.55% ×7.65 × 104

SSIM-Lite 1.1731 0.1947 0.3519 0.2817 12.1341 +8.09% ×1.00 × 103

Table 4: Comparison between Metric-Supervised SkySearch

and our default self-supervised approach. While Metric-

Supervised SkySearch achieves comparable performance,

the improvement is marginal despite the additional compu-

tational cost of computing perceptual similarity metrics (e.g.,

LPIPS) for supervision.

Model LPIPS (↓) FSIM (↑) SSIM (↑)
EfficientNet (Fine-Tuned w/ SimCLR) 0.2084 0.3471 0.2590

Metric-Supervised SkySearch 0.1985 0.3500 0.2693

SkySearch 0.1978 0.3497 0.2689

Table 5: Comparison of long-term search accuracy during

typhoon events. SkySearch shows consistently superior per-

formance across all perceptual similarity metrics.

Model LPIPS (↓) FSIM (↑) SSIM (↑)
ResNet (Pre-Trained) 0.2583 0.3329 0.1724

ResNet (Fine-Tuned w/ SimCLR) 0.2415 0.3374 0.1981
EfficientNet (Pre-Trained) 0.2519 0.3330 0.1782

EfficientNet (Fine-Tuned w/ SimCLR) 0.2445 0.3360 0.1861

SkySearch (w/ Video Prediction) 0.2334 0.3388 0.2015

results in Table 2, SkySearch consistently outperforms all baseline
models across all evaluation metrics. The quantitative results are
summarized in Table 5. Figure 11 further illustrates that SkySearch
successfully retrieves semantically similar temporal patterns even
under such adverse conditions, outperforming the best-performing
baseline (i.e., fine-tuned EfficientNet).

C.2 Challenging Cases in Video Prediction

We analyzed cases where the video prediction results of SkySearch
were unsatisfactory. As shown in Figure 10, SkySearch performs
poorly particularly when predicting scattered clouds, which re-
mains a challenging task.

D SkySearch on Various Input Channels

As discussed in Section 4.1, SkySearch is compatible with all satel-
lite channels used in the deployment setting. To illustrate its ro-
bustness across different input types, we provide qualitative results
on additional input channels, namely SWIR and WV. Figure 12 and
Figure 13 show representative short-term retrieval examples on
these channels. In both cases, SkySearch retrieves video sequences
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Figure 9: Comparison of node visit patterns during candidate

search using SkySearch and PyNNDescent.
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Figure 10: Video prediction with unsatisfactory performance.

SkySearch’s video prediction module demonstrates limited

performance when predicting videos with scattered clouds.

that are more visually and temporally aligned with the query than
those retrieved by the fine-tuned EfficientNet, the best performing
baseline in the IR channel. These qualitative results suggest that
SkySearch generalizes well to alternative inputs, supporting its
applicability across diverse operational settings.

E Node Visit Patterns in Candidate Search

Figure 9 compares node visit patterns during candidate search using
SkySearch and PyNNDescent on IR channel videos. Figure 9(a)
shows the number of nodes visited per query. PyNNDescent ex-
hibits a highly skewed distribution, with some queries visiting
exceptionally many nodes, while SkySearch maintains a consis-
tent number, capped at 15,796. Figure 9(b) shows how many queries
each node is involved in. PyNNDescent creates strong hubs with
frequently visited nodes, whereas SkySearch distributes queries
more evenly due to its time-partitioned search strategy.
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Figure 11: Qualitative comparison of retrieval results during typhoon events.
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Figure 12: Retrieval results on the SW (Shortwave Infrared) channel.
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Figure 13: Retrieval results on the WV (Water Vapor) channel.
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