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Abstract Simplicial complexes are higher-order com-

binatorial structures which have been used to represent

real-world complex systems. In this paper, we focus on

the local patterns in simplicial complexes called sim-

plets, a generalization of graphlets. We study the prob-

lem of counting simplets of a given size in a given sim-

plicial complex. For this problem, we extend a sampling

algorithm based on color coding, from graphs to simpli-

cial complexes, with essential technical novelty. We the-

oretically analyze our proposed algorithm named SC3,

showing its correctness, unbiasedness, convergence, and

time/space complexity. Through extensive experiments

on sixteen real-world datasets, we show the superior-

ity of SC3 in terms of accuracy, speed, and scalability,

compared to the baseline methods. We use the counts

given by SC3 for simplicial complex analysis, especially
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for characterization, which is further used for simpli-

cial complex clustering, where SC3 shows a strong abil-

ity of characterization with domain-based similarity.

Additionally, we explore a variant of simplet count-

ing (specifically, estimating the relative counts of sim-

plets) under realistic scenarios where the entire sim-

plicial complex is not provided at once but can only

be partially accessed, for instance, through a limited

number of API calls. For such scenarios, we propose

a random-walk-based sampling algorithm, SCRW, and

analyze its theoretical properties. In our experiments,

SCRW requires, on average, 16.5× less memory than

SC3, while the speed-accuracy trade-offs provided by

the two methods are comparable.

Keywords Simplicial complex · Simplet · Counting
algorithm · Color coding · Random walk

1 Introduction

In many real-world systems, group relations involving

more than two entities exist, which cannot be fully

represented by pairwise graphs. For example, for co-

authorship relations [55], a single publication is pos-

sibly done by more than two authors; for email sys-

tems [36], the recipients of an email can be more than

two. Therefore, hypergraphs, where an edge may con-

tain more than two nodes, naturally represent group re-

lations involving more than two entities, and have been

used to model such systems.

In spite of the representative power of hypergraphs,

modeling real-world systems as hypergraphs may not be

optimal in scenarios where all subset relations naturally

occur within group relationships (e.g., author sets in

co-authorship networks and item sets in co-purchasing
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A simplicial complex
𝒦𝒦 = (𝑉𝑉,𝐸𝐸𝒦𝒦)

16 simplices 2{𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷}
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A hypergraph
ℋ = (𝑉𝑉,𝐸𝐸ℋ)

A single edge {𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷}
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The clique expansion graph
𝒢𝒢 = (𝑉𝑉,𝐸𝐸𝒢𝒢) of ℋ

6 edges {𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷}
2
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sub-relations among 

8 simplices 2{𝐴𝐴,𝐵𝐵,𝐶𝐶}
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No edges
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sub-relations among

3 edges {𝐴𝐴,𝐵𝐵,𝐶𝐶}
2

{A, B, C } {A, B, C } {A, B, C }

Fig. 1: A simplicial complex (left), a hypergraph (mid-

dle), and a clique expansion graph (right) represent-

ing the same group interaction among four entities.

The hypergraph does not inherently represent interac-

tions involving only subsets of the entities (which nat-

urally exist in some real-world scenarios such as co-

authorship and co-purchasing), while the clique expan-

sion graph cannot effectively capture interactions spe-

cific to groups larger than two.

networks).1 In hypergraphs, subset relations are often

not represented as separate edges; for example, when

we have a group relation involving four entities a, b, c, d,

usually only a single edge {a, b, c, d} exists in the cor-

responding hypergraph, as shown in Figure 1. How-

ever, this overlooks the sub-relations, e.g., the relations

{a, b, c}, {a, b, d}, and {a, b}, and this makes it hard to

capture local patterns. Notably, the typical pairwise-

graph representation (namely, clique expansion) over-

looks group interactions of size more than two.

In order to address this problem, one may use sim-

plicial complexes (SCs) [31,43,58]. An SC is defined as

a pair consisting of a set of nodes and a set of edges,

where each edge is a subset of the nodes. With the

downward closure property, for each edge in an SC, all

the subsets of the edge are also included in the SC,

as shown in Figure 1. Compared to hypergraph-based

modeling, SC-based modeling has advantages in appli-

cations and connections to geometry and algebra [53].

Notably, in practice, we do not need additional space for

the SC-based modeling (compared to the hypergraph-

based one) since we can store the same set of edges as in

the corresponding hypergraph with all the subset edges

implicitly included. For example, when a group relation

involves four entities: a, b, c, and d, 11 hyperedges are

1 Note that there can also be scenarios where assuming the
existence of subset relations is not intuitive; in such cases,
hypergraph modeling, which allows for the explicit inclusion
or exclusion of subset relations, can be more appropriate.

required to represent all possible sub-relations: {a, b},
{a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d},
{a, c, d}, {b, c, d}, and {a, b, c, d}. In contrast, SC can

capture this entire group relation using just a single

simplex, {a, b, c, d}. Due to these merits, SCs have been

widely used to model real-world complex systems [7,

51] of communication [63], epidemic spreading [37], or

social contagion [29]. See also [60] for comprehensive

comparisons between SCs and (hyper)graphs.

One of the benefits of modeling real-world systems

as abstract structures is that it makes studying the pat-

terns [17] within the systems easier, especially the local

patterns [34]. An important and widely-used example

on pairwise graphs is graphlets [45,49] which describe

the pattern of the interactions among several nodes.

In typical usage of graphlets, the occurrences of each

graphlet are counted in the input graph [48,42], and

the counts are used to measure the similarity between

graphs [54], detect anomalies [27], or detect communi-

ties [71].

In this paper, we study the problem of counting sim-

plets. Simplets are the counterpart of graphlets in SCs.

Similar to graphlets, simplets describe the patterns of

the simplices formed by groups of nodes. The concept

of simplets and the problem of counting simplets were

mentioned for the first time in [47]. However, in [47], in-

stead of directly counting the occurrences of simplets, a

surrogate measure was proposed to estimate the occur-

rences, due to the theoretical hardness of direct count-

ing (see Appendix B for details). Benson et al. [7] con-

sidered the problem of counting certain configurations

of three or four nodes in simplicial complexes, focusing

on those related to simplicial closure; however, these

configurations are distinct from simplets.2 In summary,

these prior works did not directly focus on counting

simplets. In this work, we aim to directly count the

occurrences of simplets, filling this existing gap.

Many techniques have been proposed for count-

ing graphlets [28,2,46,66]. Recently, graphlet-counting

methods [12–14] based on color coding (CC) [3] have

been proposed, especially for the graphlets of sizes

more than five. For simplet counting, we propose SC3

(Simplet Counting using Color Coding), an algorithm

using CC-based sampling, where we adapt the algo-

rithms for graphlet counting in [12–14] with technical

improvement, to deal with the intrinsic hardness of sim-

plet counting, e.g., set enumeration and isomorphism

analysis. Specifically, given an SC and a specific sim-

plet size, in the proposed algorithm SC3, we first use

2 Their configurations do not correspond one-to-one with
simplets (see Appendix B), and we empirically demonstrate
that simplet counts provide stronger characterization power
(see Section 7.4).
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a standard CC process consisting of two steps (build-

ing and sampling) to sample candidate node sets. After

that, we obtain the maximal simplices in the sub-SC

induced by each candidate node set. Finally, we match

each group of maximal simplices with a simplet, while

taking isomorphism into consideration. We also theoret-

ically prove the correctness, unbiasedness, convergence,

and time/space complexity of SC3.

Through extensive experiments on sixteen real-

world datasets, we show the empirical correctness, con-

vergence, and high speed of SC3. Specifically, for size-4

simplets, with 100,000 samples, the counts given by SC3

have a normalized error (normalized by the ground-

truth total number of simplets) lower than 5% on all the

datasets. Regarding the speed, SC3 with 100,000 sam-

ples is, on average, 41× faster than an exact method

for size-4 simplets.

We also use the counts of different simplets obtained

by SC3 for characterizing real-world SCs. In particular,

given an SC, we measure the significance of each sim-

plet by comparing the count of the simplet in the given

SC with its count in a null model (i.e., random SCs

of the same size). We then construct a characteristic

vector by aggregating the significance values of differ-

ent simplets. We demonstrate that characteristic vec-

tors effectively characterize SCs. Specifically, when ap-

plying k-means++ [4] to the characteristic vectors ob-

tained using simplets of size 5 or 6 for clustering, we

achieve perfect clustering (i.e., 100% clustering accu-

racy) of SCs based on their domains.

We further broaden the scope of simplet counting

by considering real-world scenarios with restricted ac-

cess, where the entire simplicial complex (SC) is not
provided at once, but only a portion can be accessed.

Such scenarios are common in real-world applications,

such as accessing information in large online social net-

works via a limited number of API calls, and have been

extensively studied for graphlet counting [1,6,8–10,15,

16,26,59,64,65,68]. We specifically address the prob-

lem of estimating the relative counts of simplets un-

der restricted access. To this end, we propose SCRW, a

random-walk-based sampling algorithm. The proposed

method SCRW samples simplet occurrences through

random walks, where random walkers only require local

information (around their current position), rather than

the entire SC. Based on the sampled simplet occur-

rences, SCRW estimates the relative count of each sim-

plet. We present theoretical analyses of correctness, un-

biasedness, convergence, and time/space complexity of

SCRW. In our experiments, SCRW requires, on average,

16.5× less memory than SC3, while the speed-accuracy

trade-offs provided by the two methods (SCRW and

SC3) are comparable. Specifically, to achieve similar

counting accuracies, SCRW requires an average of 2.9×
less time than SC3 on one dataset but an average of

3.5× more on another.

In short, our contributions are five-fold:3

– New problem. To the best of our knowledge, we

are the first to formulate and study the problem of

directly counting simplets in a given SC, especially

for simplets of sizes more than four.

– Algorithms. We propose SC3 for the simplet count-

ing problem using color-coding-based sampling. We

also prove the correctness, unbiasedness, conver-

gence, and time/space complexity of SC3.

– Accuracy of counting. Through extensive experi-

ments on sixteen real-world datasets, we empirically

show the correctness and convergence of SC3 w.r.t.

the counts of simplets, compared with several base-

line methods.

– Strong characterization power. We use the sim-

plet counts estimated by SC3 to characterize real-

world SCs and perform clustering on them. The re-

sults demonstrate the strong characterization power

of simplets.

– Practical consideration. We further explore real-

istic scenarios where the input SC is only partially

accessible and propose SCRW for simplet counting

in such scenarios. We demonstrate its effectiveness

both theoretically and empirically.

Reproducibility: The code and data are available at

https://github.com/hhyy0401/simplet_counting.

Roadmap: The remaining parts of the paper are as

follows. In Section 2, we discuss related studies. In Sec-

tion 3, we introduce basic concepts and formulate the

problem of simplet counting. In Section 4, we present

an accurate and fast algorithm for simplet counting

and provide theoretical analysis for the algorithm. In

Section 5, we introduce realistic scenarios involving re-

stricted access and propose a new algorithm for such

scenarios, with corresponding theoretical analysis. In

Section 6, we suggest a characterization method for sim-

3 This work is an extended version of our previous
work [32], where we introduced a simplet sampling algorithm
based on color coding [3] and characterized simplicial com-
plexes using simplet counts. In this extended version, we fur-
ther explore realistic scenarios with restricted access where
only part of an input SC is accessible. We study the simplet
counting problem with restricted access and propose a new
algorithm SCRW for this problem with theoretical analysis
(see Section 5). We expand all the experiments in our pre-
vious work to include size-6 simplets. Note that the number
of size-6 simplet is 15942, which is significantly larger than
that of size-4 simplets (14) and that of size-5 simplets (157)
(see Sections 7.2-7.4). Finally, we evaluate the empirical ef-
fectiveness of SCRW, especially in comparison to SC3 (see
Section 7.5).
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Table 1: Frequently-used notations

Section Symbol Definition

3

[k] {1, 2, · · · , k − 1} where k ∈ N
K = (V,E) a simplicial complex (SC) with nodes V and edges E

GK = (VG = V,EG = E ∩
(
V
2

)
) the primal graph of K

M(K) the set of the maximal simplices in K
Sk = {Sk

0 ,Sk
1 , . . . ,Sk

sk−1
} the set of all sk simplets of size k

T k the set of all treelets of size k
Noc(S;K) the absolute number of occurrences of S in K
noc(S;K) the relative number of occurrences of S in K

4

C(v, T , S) the number of occurrences of treelet T colored by color set S rooted at node v
Nct the total number of occurrences of the colorful size k treelets
Tct the sampled occurrences of colorful treelets

M(K[VT ]) the set of maximal simplices in the subcomplex of K induced by VT

x the user-defined number of samples in the sampling step

plicial complexes. In Section 7, we present experimental

results. Finally, in Section 8, we conclude this work.

2 Related Work

In this section, we offer an overview of related studies.

2.1 Simplicial Complex Analysis

In this paper, we focus on a graph representation of

SCs [31], where SCs are represented as higher-order

networks with the downward closure property, used to

describe higher-order relations in network-like struc-

tures [11]. In [7], a triangle-like structure involving three

nodes called simplicial closure is studied on real-world

SCs for higher-order link prediction. Random walks on

SCs are studied in [52] for spectral embedding and esti-

mating the importance of edges. In [5], Structural infor-

mation of SCs is used for wireless network traffic analy-

sis and discrete vector field processing. Several central-

ity measures are defined in [22] and applied to analyze

real-world protein interaction networks. Also, SCs are

used to study systems in communication [63], epidemic

spreading [37], or social contagion [29]. See also [11] for

a comprehensive introduction to SCs.

2.2 Local Pattern Extraction via (Generalized)

Graphlets

Extracting local patterns from the abstract graph mod-

elings is a common approach for studying real-world

systems [17]. For pairwise graphs, graphlets [45,49] have

been proposed to describe the interactions among a

group of nodes. The counts of graphlets are used as

characteristic measures of the graph [48,42], and further

used to measure graph similarity [54], detect anomalies

[27], or detect communities [71].

Recently, graphlet-like patterns have also been stud-

ied on SCs. In [7], local patterns in SCs consisting of

three interconnected nodes (triangles) are studied.4 A

more comprehensive concept called simplets general-

izing graphlets to SCs is proposed in [47]. Similar to

graphlets, each simplet can be seen as a connected SC

without order or node labels, or an isomorphic equiv-

alence class. There are also several trials on extending

graphlets to hypergraphs. In [35], connectivity patterns

w.r.t the intersections within each group of three edges

are studied, where the patterns involve edges as the

objects and are limited to groups consisting of three

edges only. In [38], another generalization of graphlets

on hypergraphs is proposed, where only the patterns

consisting of up to four nodes are considered.

2.3 Graphlet Counting and Simplet Counting

There are sophisticatedly designed efficient algorithms

for exactly counting graphlets of sizes up to five [2,46].

However, the techniques used in those algorithms are

too specific for the graphlets of limited sizes, and cannot

be extended for counting simplets. Recently, for count-

ing graphlets of size more than five, in [12–14], approx-

imate sampling-based methods based on color coding

(CC) [3] have been proposed.

Apart from CC, various random walk techniques [1,

6,8–10,15,16,26,59,64,65,68] have been developed to

enumerate graphlets, each employing their own state

spaces and transition strategies. One common approach

is utilizing a generalized graph known as the subgraph

relationship graph, where each node corresponds to a

connected induced subgraph (CIS), and two nodes (i.e.,

4 Patterns with four nodes are also briefly discussed in [7].
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𝓢𝓢𝟎𝟎𝟑𝟑 𝓢𝓢𝟏𝟏𝟑𝟑 𝓢𝓢𝟐𝟐𝟑𝟑

𝓢𝓢𝟎𝟎𝟒𝟒 𝓢𝓢𝟏𝟏𝟒𝟒 𝓢𝓢𝟐𝟐𝟒𝟒 𝓢𝓢𝟑𝟑𝟒𝟒 𝓢𝓢𝟒𝟒𝟒𝟒 𝓢𝓢𝟓𝟓𝟒𝟒 𝓢𝓢𝟔𝟔𝟒𝟒

𝓢𝓢𝟕𝟕𝟒𝟒 𝓢𝓢𝟖𝟖𝟒𝟒 𝓢𝓢𝟗𝟗𝟒𝟒 𝓢𝓢𝟏𝟏𝟏𝟏𝟒𝟒 𝓢𝓢𝟏𝟏𝟏𝟏𝟒𝟒 𝓢𝓢𝟏𝟏𝟏𝟏𝟒𝟒 𝓢𝓢𝟏𝟏𝟏𝟏𝟒𝟒

𝑴𝑴 𝓢𝓢𝟏𝟏𝟏𝟏𝟒𝟒 = {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
𝑴𝑴(𝓢𝓢𝟏𝟏𝟏𝟏𝟒𝟒 ) = {{1,2,3,4}}

Fig. 2: All the simplets of sizes 3 and 4. An edge be-

tween two nodes indicates the presence of a simplex

that contains both nodes. A light blue-filled triangle or

a triangle formed by thick edges (used only for S4
12) in-

dicates the presence of a simplex containing all three

nodes in the triangle. The dark blue-filled tetrahedron

(used only for S4
13) represents the presence of a sim-

plex containing all four nodes in the tetrahedron. The

detailed mathematical descriptions of S4
12 and S4

13 are

provided at the top right corner.

two CISs) are connected by an edge in the subgraph

relationship graph when they share a common set of

nodes in the original graph. For example, GUISE [10]

defines a state as a CIS of size k−1, k, or k+1, where k is

the desired graphlet size, and transitions to a next state

by adding, replacing, or deleting a node. PSRW [64]

considers a state as a CIS with a size of k − 1 and

moves to the next state when there are k − 2 shared

nodes. SRW [15] defines a state as a CIS with a size of

2 ≤ l < k − 1 (l is a hyperparameter) and moves to

a next state when they have l − 1 nodes in common.

These techniques require either full access [10,64,68] or

restricted access [1,6,8,9,15,16,26,59,65] to the input

SC. In this paper, we focus on extending SRW with l

set to 2 from graphs to SCs under restricted access.

It is even harder to count simplets due to the in-

trinsically more complicated nature of SCs (compared

to pairwise graphs). In [47] where the concept of sim-

plets is proposed, the authors showed the NP-hardness

of simplet counting. Due to the theoretical hardness, in-

stead of directly counting the occurrences of simplets,

the authors proposed a surrogate measure called sup-

port and used it for indirect estimation. Essentially,

only the problem of computing the surrogate measure is

studied.5 To the best of our knowledge, we are the first

to study and propose a practical algorithm for the prob-

lem of directly counting the occurrences of simplets.

5 The decision version is mainly studied in [47], and the
problem of exactly computing the supports is discussed in
the appendix of [47].

3 Concepts and problem statement

In this section, we introduce the main concepts used

in this paper and present the formal statement of the

simplet counting problem.

3.1 Concepts

Basic notations: Let N denote the set of positive in-

tegers. Given a set A and k ∈ N, we use 2A = {A′ :

A′ ⊆ A} to denote the power set of A, use [k] to denote

{0, 1, . . . , k − 1}, and use
(
A
k

)
= {A′ ⊆ A : |A′| = k} to

denote the set of all k-subsets of A.

Hypergraphs: A hypergraph H = (V,E) is defined

by a node set V = V (H) and an hyperedge set E =

E(H) ⊆ 2V .

Simplicial complexes: A simplicial complex (SC)

K = (V,E) is also defined by a node set V and an

edge set E, while satisfying the downward closure prop-

erty. That is, for each edge e ∈ E, all the subsets of e

are also in E (i.e., 2e ⊆ E,∀e ∈ E). In an SC, each

edge e is also called a simplex, and an induced subcom-

plex on V ′ is the SC K[V ′] = (V ′, E ∩ 2V
′
). A sim-

plex e is called a k-simplex if e has size k + 1 (i.e.,

|e| = k + 1). A simplex e ∈ E is called a maximal sim-

plex if there is no strict superset of e in K (i.e., ∄e′ ∈ E

s.t. e′ ⊋ e). We use M(K) to denote the set of all the

maximal simplices in K. The primal graph GK of K
is a subcomplex of K consisting of all 1-simplices (i.e.,

GK = (VG = V,EG = {e ∈ E : |e| = 2} = E ∩
(
V
2

)
). An

SC is connected when its primal graph is connected.

Simplets: Two SCs K = (V,E) and K′ = (V ′, E′)

are isomorphic (denoted by K ≃ K′) if there is a

bijection ϕ = ϕ(K,K′) : V → V ′ such that e =

(v1, v2, . . . , vt) ∈ E if and only if e′ = ϕ(e) ∈ E′,

where ϕ(e) = (ϕ(v1), ϕ(v2), . . . , ϕ(vt)). We also write

K′ = ϕ(K), and ϕ is called an isomorphic bijection from

K to K′.6

A simplet, which was first introduced in [47], S =

(VS , ES) of size k = |VS | ∈ N is a connected SC,

and two simplets are seen as the same one if they

are isomorphic. Equivalently, each simplet can be seen

as an isomorphic class. Therefore, WLOG, we assume

that for each simplet of size k, its node set is [k]. Let

Sk = {Sk
0 ,Sk

1 , . . . ,Sk
sk−1} denote the set of all the sim-

plets of size k, where sk = |Sk| is the number of such

simplets, for each k ∈ N. Under the isomorphic equiva-

lence relation, sk takes the values 1, 1, 3, 14, 157, and

15,942 when k is 1, 2, 3, 4, 5, and 6, respectively.7 In

6 Multiple such bijections may exist, and we let ϕ be any
of them.
7 See Appendix C for an algorithm generating all the sim-

plets of size k based on all the graphlets of the same size.
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Algorithm 1: Brute-force enumeration of sim-

plets

Input: (1) K = (V,E): the input simplicial complex;
(2) k: the considered size of simplets;
(3) Sk: the set of all the simplets of size k
Output: Noc(Sk

i ;K), ∀i ∈ [sk]: the count of each
simplet

1 Noc(Sk
i ;K)← 0, ∀i ∈ [sk] ▷ Initialization

2 foreach Vk ∈
(
V
k

)
do

3 foreach bijection ϕ : Vk → [k] do
4 if ϕ(K[Vk]) ∈ Sk then
5 Noc(ϕ(K[Vk]);K)← Noc(ϕ(K[Vk]);K)+1

6 return Noc(Sk
i ;K), ∀i ∈ [sk]

Figure 2, we list all the simplets of size 3 and 4. A

graphlet [13,49] L = (VL, EL) can be seen as a special

simplet that is a pairwise graph (i.e., |e| = 2,∀e ∈ EL).

Given an SC K = (VK, EK) and a simplet S of size

k, we say there is an occurrence of S on X ∈
(
V
k

)
in K

(the event is denoted by OC(S, X;K)), if the induced

subcomplex K[X] is isomorphic to S.8 The total number

of occurrences of S in K is

Noc(S;K) =

∣∣∣∣{X ∈
(
V

k

)
: OC(S, X;K)

}∣∣∣∣ .
For a given SC K, the relative count of a size-k simplet

S ∈ Sk, denoted as noc(S;K), is defined as the ratio

between the count of the simplet and the total number

of simplets, i.e., noc(S;K) := Noc(S;K)∑
S∈Sk Noc(S;K) .

Treelets and colorful treelets: Given an SC K =

(V,E) and k ∈ N, we apply a k-coloring f : V → [k],

where to each v ∈ V a color f(v) ∈ [k] is assigned.

We define treelets as special cases of simplets that are

trees.9 We use T k to denote the set of all the size-k

treelets. That is, T 3 = {S3
0}, and T 4 = {S4

0 , S4
1} (re-

fer to Figure 2 for S3
0 , S4

0 , and S4
1 ). We say a treelet

T ∈ T k is a colorful treelet [12] if all the k colors are

used on the k nodes in T (i.e., {f(v) : v ∈ VT } = [k]).

The frequently-used notations are summarized in

Table 1. In the notations, the input SC K can be omit-

ted when the context is clear.

8 In this paper, only induced subcomplexes are counted fol-
lowing the typical definition for graphlets [28], while non-
induced ones are also counted in [47]. However, note that
the counts of non-induced subcomplexes can be derived from
those of induced subcomplexes by leveraging the set inclusion
relationships among simplets.
9 Note that the treelets defined on SCs are identical to those

on graphs, and their occurrences are the same in an SC and
its primal graph.

3.2 Problem Statement

We are now ready to present the formal statement of

the problem studied in this paper, where we aim to

count the occurrences of each simplet of a given size k

in a given SC K.

Problem 1 Given an SC K = (V,E) and the simplet

size k ∈ N, we aim to count the number Noc(Sk
i ;K) of

occurrences of Sk
i in K, for each i ∈ [sk].

Problem 1 extends the well-known and widely-

studied counterpart problem of counting graphlets [39,

67,28,2,50,10,26,56,64,13,14]. Due to the quadratic

nature of graphlets (essentially, of pairwise relations),

and the exponential nature of simplets (essentially, of

group relations), Problem 1 is intrinsically more dif-

ficult than the counterpart on graphlets, while inher-

iting the #W[1]-hardness [30]. Specifically, the brute-

force enumeration for graphlet counting takes O(k2nk)

time [13]; while for simplet counting it takes O(2knk)

time, where k is the given size of considered graphlets

or simplets and n is the number of nodes in the input

graph or SC. We present the enumeration process for

simplet counting in Algorithm 1, where we first enu-

merate all the k-subsets Vk of the node set (Line 2) and

all the bijections from Vk to [k] (Line 3) to check which

simplet the induced subcomplex on Vk corresponds to

(this takes O(2k) time since a simplet of size k has

O(2k) edges) and increment the counting accordingly

(Lines 4 and 5), which gives the total time complexity(|V |
k

)
· k! · 2k = O(2k|V |k).10

Due to the prohibitive time complexity of the brute-

force method, it is imperative to have a faster method
for simplet counting. Unfortunately, the existing tech-

niques for exact graphlet counting rely on sophisti-

cated designs tailored for specific problems and cannot

be directly extended to simplet counting. For exam-

ple, Ahmed et al. [2] used combinatorial derivations of

graphlet counts that leverage information such as the

number of cliques and cycles; however, these deriva-

tions are specific to graphs and not directly applicable

to SCs. Therefore, instead of exact counting, we aim to

propose an approximate algorithm with high accuracy.

4 Proposed method: SC3

In this section, we introduce in detail our algorithm

SC3 (Simplet Counting using Color Coding). We

present the algorithmic details based on color coding

(CC) [3] for counting the occurrences of each specific

10 See [47] for more discussion on the hardness of this prob-
lem.
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Algorithm 2: SC3-build

Input:
(1) k: the considered size of simplets
(2) GK = (VG, EG): the primal graph of the

input SC K
Output:
(1) C(v, T , S), ∀v ∈ V, T , S: the number of

occurrences of T colored by S rooted at v
(2) Nct: the total count of occurrences of

size-k colorful treelets
1 foreach v ∈ V do
2 foreach T ∈

⋃k
i=1 T i do

3 foreach S ∈
(
[k]
|T |

)
do

4 C(v, T , S)← 0

5 foreach v ∈ V do
6 c(v)← uniformly at random sampled in [k]
7 C(v, ({0}, ∅), {c(v)})← 1

8 for i = 2, . . . , k do
9 foreach v ∈ V do

10 if i = k and c(v) ̸= 0 then
11 continue

12 foreach T ∈ T i do

13 foreach S ∈
(
[k]
i

)
do

14 C(v, T , S)←
1

d

∑
(u,v)∈EG

∑
S1⊔S2=S

C(v, T1, S1) ·

C(u, T2, S2)
15 Nct ← 0
16 for v ∈ V do
17 foreach T ∈ T k do
18 Nct ← Nct + C(v, T , [k])
19 return C, Nct

simplet of size k. The proposed algorithm SC3 consists

of four phases: building phase, sampling phase, scan-

ning phase, and lastly, matching phase, which extends

the CC-based graphlet-counting algorithms [12–14] to

simplet counting with essential technical novelty, espe-

cially in the scanning and matching phases. The the-

oretical analysis is provided in Section 4.5, where we

show the unbiasedness, convergence, and time/space

complexity of SC3.

4.1 Overview of SC3

The four steps of SC3 can be summarized as follows:

for a given SC K and size k, (i) we build trees based on

the input SC for the latter steps (building step). After

that, we (ii) sample a (colorful and non-induced) tree

T = (VT , ET ) such that |VT | = k, uniformly at ran-

dom (sampling step), (iii) find an induced subcomplex

K[VT ] based on the node set of T (scanning step), (iv)

match it to an isomorphic simplet S ∈ Sk (matching

step), and repeat (ii)-(iv) for multiple steps. The entire

process is presented in Algorithm 6. See Appendix D for

a toy example. Below, we present each step in detail.

Algorithm 3: SC3-sample

Input:
(1) k: the considered size of simplets
(2) GK = (VG, EG): the primal graph of the

input SC K
(3) C(v, T , S), ∀v ∈ V, T , S: the number of

occurrences of T colored by S rooted at v
(4) Nct: the total count of occurrences of

size-k colorful treelets
(5) x: the number of samples
Output: Tct: the sampled occurrences of colorful

treelets
1 Function Sample(v, T , S):
2 if |T | = 1 then
3 return {v}
4 decompose T with T1 and T2
5 choose u ∈ N(v), S1 ∈

(
[k]
|T1|

)
, S2 ∈

(
[k]
|T2|

)
from

distribution
Pr(u, S1, S2) ∝ C(v, T1, S1) · C(u, T2, S2)

6 return Sample(v, T1, S1) ∪ Sample(u, T2, S2)

7 Tct = ∅
8 foreach i ∈ [x] do
9 Choose v, T from distribution

Pr(v, T ) = C(v, T , [k])/Nct

10 VT = Sample(v, T , [k])
11 Tct ← Tct ∪ {VT }
12 return Tct

4.2 Building and sampling colorful treelets

For the first two steps (building and sampling), the

key techniques are adapted from color coding [3] for

graphlet counting. Specifically, we use the correspond-

ing steps of the graphlet counting algorithm in [12–14],

as discussed in greater detail at the end of this subsec-

tion. Below, we elaborate on the two steps, with pseu-

docode provided in Algorithms 2 and 3.

Building (Algorithm 2): The primal graph GK of an

SC K is given as an input of the building step together

with the considered size k of simplets. For each tuple

(v, T , S) consisting of a node v ∈ V , a treelet T of

size at most k, and a set of colors S of the same size

as T (thus T colored by S is colorful), we record the

number C(v, T , S) of occurrences of T colored by S

rooted at v (Line 14). At the same time, we count the

total number Nct of occurrences of the colorful size-k

treelets (Line 18).

Specifically, we first apply a k-coloring to the input

GK by coloring each node with a color in [k] uniformly

at random (Line 6). For counting the occurrences of

color treelets, the key idea is recursively computing

each C(v, T , S) from each pair of C(v, T1, S1) and

C(v, T2, S2) with T = T1⊔T2 and S = S1⊔S2 until the

size of T reaches k, where ⊔ denotes the operation of

disjoint union (Lines 12-14).



8 Hyunju Kim, Heechan Moon, et al.

Sampling (Algorithm 3): Besides the input primal

graph GK and the size k, the output of the building step

(the numbers of occurrences of rooted colorful treelets

C(·, ·, ·) and the total number Nct of occurrences of the

colorful treelets of size k), as well as a user-defined num-

ber x of samples to draw are given. We sample a set Tct

of x occurrences of colorful treelets uniformly at ran-

dom among all the Nct occurrences of colorful treelets

of size k, where each occurrence is output as a set of

nodes. The key idea is that each occurrence of a col-

orful treelet is sampled with a probability proportional

to C(v, T , [k]), which is achieved by recursively sam-

pling subtrees (Line 10).11 In our implementation, we

store the calculated probabilities (Line 5) to be used for

sampling the next subtree. Hence, if the same subtree

is sampled during the entire sampling process, we can

save time by reusing the stored probabilities.

Lemma 1 Given primal graph GK = (VG, EG), k ∈ N,
and a user-defined number x of samples, the building

and sampling steps (Algorithms 2 and 3) output Tct

consisting of x node sets Vk ∈ Vcon in O(ck|EG| + xk)

time and O(ck|EG|) space for some absolute constant

c > 1, where Vcon = {Vk ∈
(
VG

k

)
: GK[Vk] is connected}.

Moreover, in each iteration of sampling, a Vk is sam-

pled with a probability proportional to nst(GK[Vk]), the

number of spanning trees of GK[Vk].

Proof Refer to the proof in Appendix A.

As mentioned above, the building and sampling

phases are based on [12–14]. Specifically, after convert-

ing an SC into its primal graph, we directly applied

both steps from pairwise graph methods [12–14] to the

converted graph. Note that, since a subcomplex of an

SC induced by a node set is connected if and only if

the corresponding induced subgraph of its primal graph

is connected,12 we can sample connected induced sub-

complexes in the SC by sampling connected induced

subgraphs in its primal graph. For completeness, we

provide the detailed processes in Algorithms 2 and 3,

and refer to [12–14] for more details.

4.3 Scanning the maximal simplices (Algorithm 4)

The building and sampling steps give us a set Tct of

occurrences of colorful treelets. In the scanning step,

11 The sampled node sets might be duplicated, and then the
output Tct is a multiset.
12 Since an SC contains every 1-simplex (i.e., edge) of its
primal graph, if the primal graph is connected, the SC is also
connected. By the downward closure property, if two nodes
are connected by a simplex of any size, they are also connected
by a 1-simplex (i.e., an edge in the primal graph). Therefore,
if an SC is connected, its primal graph is also connected.

Algorithm 4: SC3-scan

Input:
(1) Tct: the sampled occurrences of colorful treelets
(2) K = (V,E): the input SC
Output: M(K[VT ]), ∀VT ∈ Tct: the set of maximal

simplices in the subcomplex of K induced
by each sampled VT

1 M(K[VT ])← ∅, ∀VT ∈ Tct ▷ Initialization
2 foreach VT ∈ Tct do
3 foreach σ ∈M(K) s.t. |VT ∩ σ| > 1 do
4 kσ ← VT ∩ σ
5 if ∄q ∈M(K[VT ]) s.t. kσ ⊆ q then
6 M(K[VT ])←M(K[VT ]) ∪ {kσ} \ {q ∈

M(K[VT ]) : q ⊊ kσ}
7 return M(K[VT ]), ∀VT ∈ Tct

we aim to find for each occurrence VT ∈ Tct the set of

maximal simplices in the induced subcomplex of K on

VT , where K is the input SC.

In Algorithm 4, we provide the detailed process of

scanning. We first initialize the set M(K[VT ]) of max-

imal simplices as empty for each sampled VT (Line 1).

Then for each VT (Line 2), and for each maximal sim-

plex σ intersecting with VT with more than one node

(Line 3) that is maximal in the current M(K[VT ])

(Line 5), we add the intersection kσ = VT ∩ σ into

M(K[VT ]) while removing all the strict subsets of kσ for

computational and memory efficiency without affecting

correctness (Line 6). Note that we utilize the fact that

M(K[VT ]) ⊂ {VT ∩σ : σ ∈ M(K)} to avoid checking all

simplices. Also, note that we store only M(K) for each

SC K.

Lemma 2 Given Tct and K = (V,E), Algorithm 4

correctly outputs M(K[VT ]) for all VT ∈ Tct in
O(|M(K)|M̂ct) time and O(M̂ct) space, where M̂ct =∑

VT∈Tct
|M(K[VT ])|.

Proof Refer to the proof in Appendix A.

4.4 Matching the simplets (Algorithm 5)

After the scanning step, for each sampled occurrence

VT of a colorful treelet, we have the set M(K[VT ]) of

maximal simplices in the subcomplex induced by VT .

We aim to match each M(K[VT ]) to a simplet S ∈ Sk.

Finding the isomorphic simplets is done by pre-

computing the matching f for all possible permutations

ϕ : [k] → [k] of the nodes in each simplet of size k

(Line 2). Note that the pre-computed mapping function

f maps (the maximal simplices of) a subcomplex to the

corresponding simplet. For each sampled VT ∈ Tct, we

recover the whole SC from its maximal simplices and

find the corresponding simplet by using the mapping
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Algorithm 5: SC3-match

Input:
(1) Tct: the sampled occurrences of colorful treelets
(2) M(K[VT ]), ∀VT ∈ Tct: the set of maximal

simplices in the subcomplex induced by each
sampled VT

(3) k: the considered size of simplets/treelets
(4) Sk: the set of all the simplets
(5) Nct: the total count of the occurrences of colorful
treelet
Output: Ñoc(S), ∀S ∈ Sk: the estimated count of

each simplet
1 Ñoc(S)← 0, ∀S ∈ Sk ▷ Initialization

2 f(ϕ(M(S)))← S, ∀S ∈ Sk, ∀bijection ϕ : [k]→ [k]

3 nst(GS)← spanning tree count in GS , ∀S ∈ Sk

▷ Kirchhoff’s Matrix-Tree Theorem [61]
4 foreach VT ∈ Tct do
5 ST ← f(M(K[VT ]))

6 Ñoc(ST )← Ñoc(ST ) + 1
nst(GST

)
· Nct

|Tct|
· k

k

k!

7 return Ñoc(S), ∀S ∈ Sk

function f (Line 5), and increase the estimated count

by a normalized value ( 1
nst(GST

) ·
Nct

|Tct| ·
kk

k! on Line 6),

where nst(GST
) is the number of spanning trees in the

primal graph of GST
, pre-computed by using the Kirch-

hoff’s Matrix-Tree Theorem [61] on the primal graph of

GS ,∀S ∈ Sk (Line 3).13 The term nst(GST
) is used be-

cause each VT can be sampled from nst(GST
) different

trees in the sampling step, the term Nct

|Tct| is the pro-

portion of the sampled occurrences, and the term kk

k!

comes from the fact that for k-set of nodes, there are k!

ways of k-coloring for it to be colorful while there are

kk ways in total.

Lemma 3 Given (i) k, the considered size of simplets,

(ii) Sk, derived from k, (iii) Nct, obtained from the

building step, (iv) Tct, obtained from the scanning step,

(v) M(K[VT ]) (∀VT ∈ Tct), obtained from the sam-

pling step, Algorithm 5 takes O(k!M̂k+ |Tct|+kω) time

and O(M̂k + M̂ct) space, where M̂k =
∑

S∈Sk |M(S)|,
M̂ct =

∑
VT∈Tct

|M(K[VT ])|, and ω is the exponent of

the time complexity of matrix multiplication. Here, M̂k

is a function of k: M̂4 is 47 and M̂5 is 807.

Proof Refer to the proof in Appendix A.

13 The theorem states that the number of spanning trees in
the given graph is equivalent to any cofactor of its Laplacian
matrix. A cofactor of the Laplacian matrix of size k × k can
be computed using the determinant of one of its submatrices
of size (k − 1) × (k − 1). The time complexity of calculating
the determinant of a (k− 1)× (k− 1) matrix is O(kω), where
ω represents the exponent of the time complexity of matrix
multiplication [13].

4.5 Theoretical Analysis

Now we conclude the whole process of SC3 in Algo-

rithm 6, and theoretically analyze its properties. Specif-

ically, we show the following properties:

– Unbiasedness: the output Ñoc(S) is an unbiased

estimator of the ground truth Noc(S), for each S;
– Convergence: the output Ñoc(S) converges to the

ground truth Noc(S), for each S, as the number of

repeated trials increases. For a single trial of SC3

(i.e., a fixed coloring), the output converges (though

not necessarily to the ground truth), as the number

of samples (i.e., x) in the sampling step increases.

– Complexities: the time and space complexities of

SC3 are bounded as functions of K, k, and x.

Theorem 1 (unbiasedness) Given k, K, Sk, and

any x, for each S ∈ Sk, the Ñoc(S) given by Algo-

rithm 6 satisfies that E[Ñoc(S)] = Noc(S).

Proof Refer to the proof in Appendix A.

Theorem 2 (convergence) Given any k, K =

(V,E), and Sk, for each S ∈ Sk, let Ñ i
oc(S) denote

the output by Algorithm 6 in the i-th trial. For any

ϵ, λ > 0, there exists Rt = O(−λ−2|V |2k ln ϵ) such

that if R > Rt, then Pr[|
∑

i∈[R] Ñ
i
oc(S)/R−Noc(S)| ≤

λ] ≥ 1 − ϵ, for any x ≥ 1, where x is the number

of samples in the sampling step. For a single trial,

Pr[|Ñoc(S) − Noc(S)rcolor| ≤ λσ] ≥ 1 − 1
λ2 where

σ2 = V ar[Ñoc(S)] = O( 1x ) (in terms of x only), and

rcolor is the ratio between the actual count of occur-

rences of colorful treelets corresponding to S and the

expected count.

Proof Refer to the proof in Appendix A.

Theorem 3 (complexities) Given k, K = (V,E),

Sk, and the number of samples x, Algorithms 6 takes

O(ck|EG| + x|M(K)|2 + k!M̂k) time and O(ck|EG| +
x|M(K)|+M̂k) space for some absolute constant c > 1,

where EG = E ∩
(
V
2

)
, and M̂k =

∑
S∈Sk |M(S)| is a

function of k.

Proof Refer to the proof in Appendix A.

For Problem 1, high complexity w.r.t. k is inevitable

since |Sk| increases exponentially w.r.t. k. However,

SC3 is scalable w.r.t factors other than k and empir-

ically much faster than the competitors. Note also from

the theorems that increasing x (i.e., the number of sam-

ples) reduces variance but increases both the time and

memory complexities.
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Algorithm 6: SC3: Simplet Counting using

Color Coding

Input: (1) k: the considered size of simplets
(2) K: the input SC
(3) Sk: the set of all the simplets
(4) x: the user-defined number of samples
Output: Ñoc(S), ∀S ∈ Sk: the estimated count of

each simplet
1 C,Nct ← Alg. 2 with k and GK ▷ Building
2 Tct ← Alg. 3 with k, GK, C, Nct and x ▷ Sampling
3 M(K[VT ])← Alg. 4 with Tct and K, ∀VT ∈ Tct

▷ Scanning

4 Ñoc(S)← Alg. 5 with Tct, M(K[VT ]), ∀VT ∈ Tct, k,

Sk, and Nct, ∀S ∈ Sk ▷ Matching

5 return Ñoc(S), ∀S ∈ Sk

5 Simplet Counting under restricted access

In this section, we extend the scope of simplet counting

by exploring real-world scenarios with restricted access.

Specifically, we consider scenarios where the entire in-

put simplicial complex (SC) is not provided at once, but

rather, we can only access a portion of it. Such scenar-

ios are prevalent. For instance, in online social networks,

users are often allowed to access only a small portion

of data through a restricted number of API calls.

Under restricted access, we specifically consider the

problem of estimating the relative counts of simplets.

To this end, we propose SCRW, a sampling method

based on random walks. Note that random walks re-

quire only local information centered on the current

position of random walkers at a time. Specifically, we

provide a problem definition in Section 5.1 and then de-

scribe SCRW in Section 5.2. Lastly, we provide theoret-

ical analyses regarding the unbiasedness, convergence,

and time/space complexity of SCRW in Section 5.3.

5.1 Problem Definition

The aforementioned realistic scenarios can be mod-

eled by restricted access models [19,20], which specify

how data can be accessed. In this work, we assume a

restricted access model where the input SC can be ac-

cessed only through a limited number of neighborhood

queries, akin to API calls in the examples of online so-

cial networks mentioned above. A neighborhood query

for a query node v ∈ V in K = (V,E) returns the set of

maximal simplices incident to v, denoted by Q(v), i.e.,

Q(v) = {σ ∈ M(K) : v ∈ σ}.14

14 In this paper, we assume that the dataset is provided in
the form of a set of maximal simplices, i.e.,

⋃
σ∈M(K) 2

σ.

Under this restricted access, especially when the

number of queries is restrictive, simplet counting be-

comes even more challenging because we are likely not

able to access the entire SC or even reach every con-

nected component. Therefore, we consider an easier

version of simplet counting where (i) the input SC is

connected and contains at least one k-simplex, where

k ≥ 2,15 and (ii) we aim only to estimate the relative

counts (i.e., proportions or concentrations; refer to Sec-

tion 3.1) of simplets rather than their absolute counts.

Formally, the problem is defined as follows.

Problem 2 Given the number of queries y on a con-

nected SC K = (V,E), the simplet size k ∈ N, and
the node set V , we aim to compute the relative count

noc(Sk
i ;K) for each i ∈ [sk] in K while accessing K only

through up to y neighborhood queries.

5.2 Proposed Method: SCRW

In this section, we present Simplet Counting using

Random Walks (SCRW), our proposed algorithm for

addressing Problem 2.

5.2.1 Key Concepts for SCRW

We begin by defining several key concepts that form

the foundation of SCRW.

Random walks on SCs: Several schemes of random

walks on graphs have been explored for various pur-

poses [1,6,8–10,15,16,26,59,64,65,68]. Among these

schemes, we leverage a random-walk method using 1-

simplices, which extends SRW(2) [15] for graphs. Such

a method has the merit of general applicability to sim-

plet counting regardless of simplet size and type. Specif-

ically, for a given SC K = (V,E), we consider the state

space of SCRW, X , as the set of 1-simplices (recall that

each 1-simplex contains two nodes) in E. Transition-

ing from the current state (i.e., a 1-simplex), the next

state is selected from among the 1-simplices incident

to the current one. Note that although these random

walks are conceptually equivalent to random walks on

the edges of the primal graph, SCRW does not explic-

itly construct the primal graph, whereas SC3 does.

States and transition probabilities: For each time

step i = 0, 1, 2, . . ., we denote Xi ∈ X as the i-th

state of the random walk and its corresponding 1-

simplex as eXi
. We let P ∈ R|X |×|X| denote the tran-

sition probability matrix of the random walk, where

each entry P (e, e′) is non-zero if and only if the two

15 Note that an SC is connected if and only if its primal
graph is connected, as proven in Footnote 12.
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1-simplices e and e′ are incident, i.e., |e ∩ e′| = 1.

Starting from the initial state X0, the random walk

at the state Xi transitions to the next state Xi+1 with

a probability P (eXi
, eXi+1

). If k − 1 consecutive pre-

vious states Xt, . . . , Xt+k−2 at a time step t ≥ 0 are

all distinct, a size-k (connected) subcomplex induced

by V ′ =
⋃t+k−2

l=t eXl
is sampled, which is an instance

of (i.e., isomorphic to) a simplet of size k. Note that

employing the random walk that traverses adjacent 0-

simplices, where the next state Xi+1 is chosen among

the adjacent nodes of Xi, overlooks (i.e., cannot sam-

ple) certain types of simplets, unless we consider longer

consecutive states.16

Stationary distribution: Given an SC K = (V,E)

that is (i) connected and (ii) contains at least one

k-simplex, where k ≥ 2, the random walk on its 1-

simplices can be regarded as an irreducible and ape-

riodic Markov chain, since the next state Xi+1 is de-

termined solely based on the current state Xi, without

being influenced by the previous states X1, . . . , Xi−1.

Note that the condition (i) (i.e., connectedness) implies

irreducibility17 and the condition (ii) implies aperiodic-

ity.18 Thus, the random walk on 1-simplices converges

to a unique stationary distribution πP , which satisfies

πP = πPP [25]. Here, πP is a row vector whose entries

sum up to 1, where for each 1-simplex e, πP (e) is the

probability of being at e after convergence.

Simplet coefficient: To ensure the unbiasedness of

the proposed algorithm, it is necessary to consider ap-

propriate weighting for each sampled induced subcom-

plex. Hence, we extend the concept of the state corre-

sponding coefficient [15] used in graphs to SCs, and call

the extended concept the simplet coefficient.

Definition 1 (simplet coefficient) For each simplet

S = (VS , ES) of size k (i.e., |VS | = k), its simplet co-

efficient αS is defined as the number of sequences con-

sisting of k − 1 simplices e1, . . . , ek−1 that satisfy the

following properties:

1. (1-simplices only) ej ∈ ES and |ej | = 2, ∀j ∈ [k− 1]

2. (incident consecutive pairs only) |ej ∩ ej+1| = 1,

∀j ∈ [k − 2]

3. (all nodes covered)
⋃

j∈[k−1] ej = VS

16 For example, whenM(K) = {{v1, v2}, {v1, v3}, {v1, v4}},
if a random walker traverses adjacent 0-simplices, it is impos-
sible to visit all nodes v1, v2, v3, v4 within k−1, which equals
3, consecutive states. It requires at least 5 consecutive states
(e.g., v2 → v1 → v3 → v1 → v4).
17 Any 1-simplex (i.e., state) can be reached from any other
1-simplex.
18 Due to the downward closure property, a k-simplex with
k ≥ 2 implies that at least three 1-simplices (i.e., states) are
mutually connected (i.e., sharing nodes), allowing the walker
to return to a 1-simplex (i.e., state) in the k-simplex after any
number of steps.

Table 2: The simplet coefficients when k is 4. The sym-

bol i represents the index of simplets of size 4 in Fig-

ure 2.

i 0 1 2 3-4 5-7 8-13

αS4
i

2 6 8 10 24 48

Note that the third property, together with |VS | =
k, implies that all the ej ’s are distinct. The simplet

coefficient αS represents the total number of random

walks of length k− 1 on the primal graph GS of S that

satisfy the three properties listed above. Due to the first

property above, two simplets whose primal graphs (un-

derlying graphlets) are identical have the same simplet

coefficients. See Table 2 for the values when k is 4.

Mixing time of random walks: Denote a distribu-

tion starting from a state X0 as π(0), which is the one-

hot vector where only the entry corresponding to eX0

is non-zero. Then for any ϵ > 0, the mixing time τ(ϵ)

of random walks on an SC K = (V,E) is defined as

τ(ϵ) = min{t ≥ 0 : maxe∈E:|e|=2∥π(0)P t−π∥TV < ϵ},19
where P t (i.e., P to the power of t) is the transition ma-

trix after t steps and ∥·∥TV is a total variation distance

between two distributions. Roughly speaking, this is the

time needed for the state distribution to get close to the

stationary distribution. In the case of SCRW, we use a

pre-defined value of τ , referred to as the time budget,

to reflect the concept of mixing time. SCRW excludes

samples from the first τ steps of the random walk to

approximate the stationary distribution.20

5.2.2 Description of SCRW

We first pre-compute a mapping f that is used to map

(the maximal simplices of) a subcomplex to the cor-

responding simplet. Note that f is pre-computed con-

sidering all possible permutations ϕ : [k] → [k] of the

nodes in each simplet of size k (Line 2). Then, we start

from a random initial state X0 ∈ X , i.e., a randomly

chosen 1-simplex eX0 = (v0, u0), by randomly choos-

ing v0 ∈ V , σ ∈ Q(v0) (where Q(v0) is the neighbor-

hood query of v0 defined in Section 5.1), and u0 ∈ σ

in order (Line 3-5). Then, we fetch Q(v0) and store it

as Q̃(v0) (Line 7). Similarly, for Q(u0), we store it as

19 Since the mixing time is defined as the minimum time
at which the difference is smaller than ϵ for ‘every’ state,
we compare ϵ with the maximum over the differences at the
states (i.e., 1-simplices).
20 While this choice does not fully guarantee a close ap-
proach to the stationary distribution, it is supported by the
experiments in Appendix H, where we demonstrate that the
error due to sampling decreases more significantly within the
first 20 steps, compared to later steps.
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Algorithm 7: SCRW: Simplet Counting us-

ing Random Walks

Input: (1) k: the considered size of simplets
(2) Sk: the set of all the simplets of size k
(3) V : the set of nodes in the input SC K
(4) y: the maximum number of queries on K
(5) τ : the user-defined time budget
Output: ñoc(S), ∀S ∈ Sk: the estimated relative

count of each simplet
1 ñoc(S)← 0, ∀S ∈ Sk

2 f(ϕ(M(S)))← S, ∀S ∈ Sk, ∀bijection ϕ : [k]→ [k]
3 v0 ← randomly chosen node from V
4 σ ← randomly chosen simplex from Q(v0)
5 u0 ← randomly chosen node from σ
6 eX0

= (v0, u0) ▷ Initial state

7 Q̃(v0)← Q(v0)
8 for i = 1, . . . , y − 2 do

9 Q̃(ui−1)← Q(ui−1) ▷ Note that, by definition

of vi, Q̃(vi−1) = Q̃(vi−2) or Q̃(ui−2) for i > 1

10 Nb(eXi−1
)← get-1-simplices(vi−1, Q̃(vi−1)) ∪

get-1-simplices(ui−1, Q̃(ui−1)) \
{(vi−1, ui−1), (ui−1, vi−1)}

11 pb(Xi−1, Xi)← 1
|Nb(eXi−1

)|

12 eXi
= (vi, ui)← uniformly at random sampled

from Nb(eXi−1
) where vi = eXi−1

∩ eXi

13 if i > τ then
14 VS ←

⋃i
l=i−k+2 eXl

15 if |VS | = k then
16 p̃←

|Nb(eXi−k+2
)| ·

∏i
l=i−k+3 pb(Xl−1, Xl)

17 S ← f(M(K[VS ]))

18 ñoc(S)← ñoc(S) + 1
αS·p̃

19 N ←
∑

S∈Sk ñoc(S)
20 for S ∈ Sk do

21 ñoc(S)← ñoc(S)

N
22 return ñoc(S), ∀S ∈ Sk

23 Procedure get-1-simplices(v, Q̃(v)):
24 return

⋃
σ∈Q̃(v){(v, v′) : v′ ∈ σ \ {v}}

Q̃(u0) (Line 9). Here, Nb(eX0) is defined as the set of

1-simplices that share only one node in common with

eX0
, i.e. Nb(eX0

) = {e ∈ E : |e ∩ eX0
| = 1}. This is ob-

tained by examining every 1-simplex in each maximal

simplex σ ∈ Q̃(v0) ∪ Q̃(u0) (Line 10). Finally, the next

state X1 is determined by choosing one among Nb(eX0
)

uniformly at random (Lines 12, 23, and 24).

Similarly, each i-th state Xi is determined from the

previous state Xi−1. Note that in each i-th step for

i > 1, we only need to call the neighborhood query once

(Line 9), this is because eXi−1
and eXi

share a common

node, whose neighborhood query has been answered in

the previous step (i.e., the (i − 1)-th step). We repeat

the above process for y−2 steps so that y neighborhood

queries are answered in total.

While repeating this process, if at each time step i,

k − 1 consecutive states
−→
V = (Xi−k+2, . . . , Xi) form

a set of k distinct nodes VS (Line 14), we conduct

the scanning step on this sample as in SC3. If VS

does not contain k distinct nodes, with
−→
V not having

k − 1 distinct states (Line 15), this invalid sample is

excluded from updating ñoc.
21 To ensure the unbiased-

ness, we calculate the value p̃ (Line 18) by multiplying

|Nb(eXi−k+2
)| and transition probabilities (previously

calculated in Line 11). This is because |Nb(eXi−k+2
)|

and p̃ are proportional to the stationary distribution

and the probability of the consecutive sequence
−→
V be-

ing sampled, respectively (refer to Lemma 4 below).

Particularly, |Nb(eXi−k+2
)| can be regarded as weight-

ing, assigning a value to each state based on the proba-

bility of being in the state (after mixing time, i.e, once

the state distribution has sufficiently converged to the

stationary distribution).

After finding the simplet S isomorphic to K[VS ] by

using the pre-computed mapping function f (Line 17),

we increase the estimated relative count by the inverse

of αS · p̃ (Line 18), since each VS can be sampled in αS

different ways, where αS is the simplet coefficient of S
defined in Section 5.2.1. Note that the total number of

induced subcomplexes is always bounded by y − τ − 2

since a validated sample is produced only after reach-

ing τ steps, where τ is the user-defined time budget.

(Line 13). Finally, we obtain the estimated relative

count of each simplet by normalizing it (Line 21).

Remarks: If an appropriate global coefficient is given,

we can estimate the absolute counts instead of the rel-

ative counts. Let M be the global coefficient defined as∑
e∈E:|e|=2 |Nb(e)|, which is equal to 2 · |

⋃
σ∈M(K)

(
σ
2

)
|,

i.e., twice the number of 1-simplices in K.

If we replace |Nb(eXi−k+2
)| with

|Nb(eXi−k+2
)|

M on

Line 16 and skip the normalization step on Line 21,

we obtain the estimated absolute count of each simplet

as the final output, not its relative count. However, the

value M is challenging to obtain or even estimate, es-

pecially when access to the entire SC is restricted.

5.3 Theoretical Analysis

We present the whole process of SCRW in Algo-

rithm 7. Below, we theoretically analyze the properties

of SCRW, focusing on the following properties:

– Unbiasedness: the output ñoc(S) is an unbiased es-

timator of the ground truth noc(S), for each S;
– Convergence: the output ñoc(S) converges to the

ground truth noc(S), for each S, as the number of

queries y increases;

21 Empirically, the average ratios of invalid samples across
the datasets considered in Section 7 when k is 4, 5, and 6 are
less than 5%.
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– Complexities: the time complexity is bounded as a

function of K, k, and y, while the space complexity

is independent of y.

Throughout our analysis, we assume that the user-

defined time budget τ is large enough, such that the

stationary distribution is (asymptotically) reached.

We begin with presenting the stationary distri-

bution and the transition probability of SCRW in

Lemma 4, which is used to show the correctness and

unbiasedness of SCRW.

Lemma 4 For a given SC K = (V,E), the state space

of SCRW corresponds to the set of 1-simplices in E,

i.e., X = {e ∈ E : |e| = 2}. The stationary distribution

of each state X ∈ X is uniquely determined as |Nb(eX)|
M

(defined as Line 11). The transition probability from X

to X ′ is 1
|Nb(eX)| .

Proof Refer to the proof in Appendix A.

Theorem 4 (unbiasedness and convergence)

Given k, K, Sk, for any S ∈ Sk and y > 0, the ñoc(S)
given by Algorithm 7 satisfies E[ñoc(S)] = noc(S) and

Pr[|ñoc(S) − noc(S)| ≤ λσ] ≥ 1 − 1
λ2 for any λ > 0,

where σ2 = Var[ñoc(S)].

Proof Refer to the proof in Appendix A.

By the results in [15] (see Theorem 3 in [15]), for

any 0 < δ < 1, there exists a constant ξ such that

Pr[(1 − ϵ)noc(S) ≤ ĝ ≤ (1 + ϵ)g] > 1 − δ when the

sample size n > O(ξ · τ(ϵ = 1/8)), where g is the

true count of the object, ĝ is is estimated value, and

τ(ϵ = 1/8) is the mixing time at ϵ = 1/8. This induces

that for each simplet S ∈ Sk and for any 0 < δ < 1,

Pr[|ñoc(S) − noc(S)| ≤ ϵ · noc(S)] > 1 − δ holds when-

ever the number of validated samples is bigger than

Θ(τ(ϵ = 1/8)). This implies that the required number

of samples to guarantee the same accuracy is linear in

τ(ϵ = 1/8).

Theorem 5 (complexities) The space complex-

ity of SCRW is O(Qmax + M̂k), where Qmax =

maxv∈V

∑
σ∈Q(v) |σ| is determined by K, and M̂k =∑

S∈Sk |M(S)| is a function of k. The time complexity

of SCRW is O(y|M(K)|2 + k!M̂k + yk+ yQmax), where

y is the maximum number of queries used in Algo-

rithm 7 under the assumption each neighborhood query

with query node v ∈ V takes O(
∑

σ∈Q(v) |σ|) time.

Proof Refer to the proof in Appendix A.

When comparing space complexities, SCRW outper-

forms SC3 in memory usage since it does not need ad-

ditional space for pre-processing.

5.4 Limitations of SCRW

Similar to many graphlet-counting methods designed

for partially accessible graphs [10,64,26,15,65,68],

SCRW has two primary limitations, especially when

compared to SC3. First, since SCRW relies on local in-

formation without any global information, it is able to

estimate only the relative counts of simplets, not their

absolute counts. Second, for its theoretical properties

to hold, SCRW requires the input SC to be connected

so that it can potentially reach every part of the SC.

Due to the second limitation, in our experiments

in Section 7.5, SCRW is applied to the largest con-

nected component (LCC)22 rather than the entire SC

for datasets that are not connected. This is equivalent

to making random walks start from a 1-simplex in the

LCC. Fortunately, due to the existence of giant con-

nected components [21] in real-world datasets, we ob-

serve that the simplet concentration difference between

the LCC and the entire SC is negligible (refer to Ap-

pendix G for details).

6 Characterization of simplicial complexes

using simplet counts

In this section, we show (1) the counts given by SC3

are accurate in that they are close to the ground-truth

counts, and (2) the counts given by SC3 can be used

for characterizing SCs.

Characteristic Profile (CP): We use a measure

called characteristic profile [44] (CP). Given a sim-

plet size k ∈ N and an SC K, CP measures the sig-

nificance of each simplet Sk
i ∈ Sk (i ∈ [sk]) in the

given SC K. With the relative count of every sim-

plet that we obtained, we define the significance vector

µ = µ(K) = (µ0, µ1, . . . , µsk−1) ∈ Rsk of K by

µi =
ñoc(Sk

i ;K)− ñoc(Sk
i ;KR)

ñoc(Sk
i ;K) + ñoc(Sk

i ;KR) + ϵ
, (1)

where KR is any random SC generated by a null model

(we will define the null model that we use later) from

K, and ϵ > 0 is a small enough constant. In our ex-

periments, we set ϵ to 10−3. Based on the significance

vector, we compute the CP of K as a normalized signif-

icance vector with each entry being

CPi =
µi√∑
i∈[sk]

µi
2
.

22 The largest connected component of the input SC is its
largest connected subcomplex of it. Note that an SC is con-
nected if and only if its primal graph is connected, as proven
in Footnote 12.
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The CP of an SC contains information on local patterns

and allows us to compare multiple SCs, even when they

have different sizes.

Null model: As mentioned above, a null model is re-

quired to compute the significance vector and CP of

an SC. Regarding the choice of the null model, we

aim to preserve the number of simplices and the size

of each simplex. Given an SC K = (V,E), we extract

all its maximal simplices. First, we randomly choose a

size t with probability |{e ∈ E : |e| = t}|/|E|. Then, we
choose a pair of maximal simplices of size t uniformly at

random among all the pairs of size-t maximal simplices.

Finally, we repeatedly switch nodes independently be-

tween the pair for ⌊i/2⌋ times. We obtain all the max-

imal simplices of the random SC KR by repeating the

above procedure cshuffle|E| times and expanding all

the maximal simplices. Based on our observations in

Appendix E, which show that cshuffle set to 1,000 is

sufficient for rewiring an SC, we use cshuffle set to 1,000

in our experiments.

7 Experiments

We performed experiments on sixteen real-world SCs

using SC3 and several baseline methods, aiming to an-

swer the following questions:

– Q1. Accuracy: How accurate are the counts of sim-

plets obtained by SC3? How well do the counts con-

verge to the ground truth values, as the number of

samples increases?

– Q2. Scalability and speed: How fast is SC3 com-

pared to the baseline algorithms? How does the run-

ning time of SC3 grow as the number of samples in-

creases?

– Q3. Characterization power across domains:

How well does the characteristic profile obtained

from the counts by SC3 cluster the real-world SCs

from different domains?

– Q4. Simplet counting under restricted access:

How accurately and rapidly do the relative counts of

simplets obtained by SCRW converge?

7.1 Experimental Setting

Machine: We performed all the experiments on a ma-

chine with a 3.7GHz Intel i5-9600K CPU and 64GB of

memory.

Dataset: We used 16 real-world SC datasets. We pro-

vide the basic statistics of the datasets and their largest

connected components in Table 3.

Competitors: We compare SC3 with two existing al-

gorithms designed for SCs: (1) B-Exact [7] and (2)

Table 3: Some basic statistics of the real-world datasets.

The second row in each cell presents statistics from the

largest connected component (LCC) of the correspond-

ing dataset.

Dataset K = (V,E) Abbrev. |V | |M(K)|

coauth-DBLP [7] cD 1,924,991 1,730,664
-LCC 1,654,109 1,563,050

coauth-MAG-Geology [55,7] cMG 1,256,385 925,027
-LCC 898,648 681,954

coauth-MAG-History [55,7] cMH 1,014,734 774,495
-LCC 219,435 130,579

congress-bills [7,23,24] cb 1,718 48,898
-LCC 1,718 48,898

contact-high-school [7,40] chs 327 4,862
-LCC 327 4,862

contact-primary-school [7,57] cps 242 8,010
-LCC 242 8,010

DAWN [7] D 2,558 72,421
-LCC 2,290 72,153

email-Eu [7,70,36] eEu 979 8,083
-LCC 979 8,083

email-Enron [7] eEn 143 433
-LCC 143 433

NDC-classes [7] Nc 1,161 563
-LCC 628 324

NDC-substances [7] Ns 5,311 6,555
-LCC 3,065 4,533

tags-ask-ubuntu [7] taau 3,029 95,639
-LCC 3,021 95,631

tags-stack-overflow [7] taso 49,931 3,781,514
-LCC 49,931 3,781,514

threads-ask-ubuntu [7] thau 125,602 149,025
-LCC 82,075 109,292

threads-math-sx [7] thms 176,445 519,573
-LCC 152,702 496,379

threads-stack-overflow [7] thso 2,675,955 8,694,667
-LCC 2,301,070 8,330,001

FreSCo [47]. Below, we provide a concise overview

of them with a brief analysis of their time complexity.

Note that B-Exact has not been extended for k ≥ 5,

and extending it is non-trivial.

– B-Exact exactly counts 3- or 4-node configurations

using combinatorial methods. Notably, each simplet

may correspond to zero, one, or multiple node con-

figurations of the same size. See Appendix B for

detailed correspondence relations between simplets

and node configurations. Regarding time complex-

ity, the dominant step of B-Exact is to enumerate

all 4-cliques in the primal graph using the Chiba and

Nishizeki algorithm [18]. For a given SC K = (V,E),

it takes O(α(K) · |E1|) time per clique, where E1 =

{e ∈ E : |e| = 2} is the set of 1-simplices of K and

α(K) ≤ ⌈
√

2|E1|+ |V |/2⌉. Therefore, the total time

complexity becomes O(α(K) · |E1| · |K4|), where K4

is the set of 4-cliques in the primal graph of K.
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Fig. 3: The error of the proposed methods, SC3 and SCRW, shows a clear tendency to decrease as the number of

samples or queries increases. We present the normalized error, errK, of SC3 with several fixed sample sizes (left

figure) and with sample sizes proportional to the dataset size (center figure). We also present the normalized error,

ˆerrK, of SCRW with varying query sizes (right figure). The means of the errors over 5 trials on each dataset is

reported.

– FreSCo indirectly estimates the count of each sim-

plet using a surrogate measure called support (see

Appendix B or [47] for the formal definition). The

support satisfies that if two simplices σ1 ⊆ σ2 then

the support of σ1 is at least that of σ2. We com-

pare SC3 with FreSCo that exactly computes the

support of each simplet. See Appendix B (esp. Ta-

ble 5) for comparisons between the exact or esti-

mated counts and the supports from FreSCo, where

we observe that the supports computed in 10 hours

(the time limit that we set) are not strongly re-

lated to the exact counts. The time complexity of

FreSCo depends on the time complexity of checking

isomorphism between a simplet and subcomplexes.

The number of simplets with k nodes is bounded by

2
∑k

i=2 (
k
i), and determining the frequency of a simplet

with k nodes involves checking all its isomorphisms,

requiring up to O(|V |k). Hence, the total time com-

plexity of FreSCo becomes O
(
2
∑k

i=2 (
k
i)|V |k

)
[47],

which becomes O
(
|V |4

)
when k is fixed to 4.

Implementations: We implemented SC3 and SCRW

in C++. For SC3, we adopted multi-threading for the

building and scanning steps. For SCRW, we adopted

multi-threading for all steps. We consistently used six

threads for all methods. We set the time budget τ to 20

based on empirical observations that this was sufficient

across all datasets. Refer to Appendix H for experimen-

tal results with other time budgets.

For B-Exact, we used the open-source implemen-

tation in Julia provided by the authors. Note that Julia

uses LLVM as a compiler, which is written in C++. For

FreSCo, we used the open-source implementation in

Java provided by the authors. For fairness, we must

note potential differences in the efficiency of program-
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Fig. 4: The estimated counts by SC3 are closer to the
exact counts as the number of samples increases.

When k is 4, we report the mean value of each the

counts of each simplet as a point, and the standard

deviation as an error bar.

ming languages. Nonetheless, our primary contribution

remains significant, as further discussed in Appendix F.

7.2 Q1. Accuracy

To evaluate the accuracy, we compare the ground

truth counts computed by B-Exact and the estimated

counts obtained by SC3 while varying the number of

samples from 100 to 100,000. That is, we measured the

error based only on the counts of simplets considered

by both B-Exact and SC3, whose ground-truth counts

can be computed by B-Exact. For the error measure,
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Fig. 5: The estimated counts converge as the number

of samples increases. When k is 5 and 6, we computed

the estimated counts on the chs dataset when the num-

ber of samples, x, is 10,000 (left) and 100,000 (right).

we used a normalized error errK defined as

errK =

∑
i∈[sk]

|Noc(Sk
i ;K)− Ñoc(Sk

i ;K)|∑
i∈[sk]

Noc(Sk
i ;K)

.

SinceB-Exact only provides the exact counts when

k ≤ 4, we fixed k to 4. As seen in Figure 3 (spec., the

left and center subfigures), the count of each Sk
i ∈ Sk

approaches the exact count, as the number of samples

increases. Specifically, on 15 out of 16 datasets, the nor-

malized error errK is below 0.05, showing the high ac-

curacy of SC3 on real-world datasets.

In addition, we visualized how the count of each

simplet converges to the exact count as the number of

samples increases on the cMG dataset. As shown in Fig-

ure 4, the count of each simplet successfully converges

to the actual count, and the standard deviation of the

estimation for each simplet also decreases, as the num-

ber of samples increases. We additionally computed the

mean values and the standard deviations of the esti-

mated counts when k is 5 and 6 on the chs datasets.

As seen in Figure 5, the count of each simplet converges

when the actual count is large enough, e.g., when we set

the number of samples to 10,000 and 100,000.

7.3 Q2. Scalability and Speed

We compare the running times of the considered algo-

rithms. Specifically, we measured the running time of

SC3 with the number of samples x ∈ {103, 104, 105}.
For the baseline algorithms, we used B-Exact for k
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Fig. 6: SC3 is significantly faster than the baseline algo-
rithms. FreSCo ran out of time (> 10 hours) for some

datasets, and B-Exact can be used only for k ≤ 4.

set to 4 and FreSCo for k set to 4, 5 and 6. As seen

in Figure 6, SC3 is fastest on 10 (out of 16 datasets)

and is second fastest on the others. On average, SC3

is 41× faster than B-Exact. Furthermore, to alleviate

the issue arising from baselines implemented in differ-

ent languages, in Appendix F, we compare the growth

rate of running times relative to that of dataset sizes,

which is independent of absolute running times. The

results in Appendix F indicate that, in most cases, SC3

exhibits a lower relative growth rate compared to the

baseline methods, demonstrating its scalability.

To evaluate the scalability, we additionally mea-

sured the running time of each step of SC3 on the

cD, taso, and thso datasets. We measured the running

times with different numbers of samples. As shown in

Figure 7, the running times of sampling, scanning, and

matching steps increase sub-linearly as the number of

samples increases. Note that the running time of the

building step is constant and does not depend on the

number of samples.

7.4 Q3. Characterization Power across Domains

To analyze the characterization power of the counts of

simplets obtained by SC3, we computed the character-

istic profile (CP) for each dataset (refer to Section 6 for

its definition). We first analyzed SCs within the same

domain using CPs and demonstrated them in Figure 8.
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Fig. 7: Each step of SC3 is scalable. The running times

of sampling, scanning, and matching steps increase sub-

linearly as the number of samples increases.

Compared to the random SCs generated by the null

model, the original SCs in the coauth-* domain (cD,

cMG, cMG) commonly contain more S4
3 and S4

7 with no-

ticeable differences. In the threads-* domain (thau,

thms, thso), two simplets S4
3 and S4

5 , which do not

contain any 2-simplex, are less in the original SCs, com-

pared to the random SCs generated by the null model.

For the contact-* domain (chs, cps), the numbers of

S4
8 (4-clique) in the real-world SCs are much higher

than those in the random SCs generated by the null

model. In the email-* domain (eEu, eEn), two sim-

plets S4
5 and S4

8 , which do not contain any 2-simplex,

are fewer, while S4
4 and S4

7 , which contain one or more

2-simplices, are more frequent, compared to the corre-

sponding random SCs generated by the null model.

To further evaluate the characteristic power across

domains, we obtained CP vectors for the considered al-

gorithms. Let CP 4, CP 5, CP 6, CPB , and CPF denote

the CPs obtained from SC3 when k is 4, 5, 6, B-Exact

when k is 4, and FreSCo when k is 4, respectively. For

each type of CP, we computed the cosine similarity be-

tween each pair of the datasets. Specifically, for CPB ,

we computed CP using 4-node configurations described

in the original paper instead of simplets; for CPF , we

used the lowest θ ∈ {105, 104, 103, 102, 10, 1} such that

FreSCo terminates in 10 hours.23 Since FreSCo com-

putes the supports instead of the counts of simplets, we

computed CPF using the ratio of the supports (instead

of the counts used for SC3 and B-Exact).

As seen in Figures 9(a)-9(c), CP 4, CP 5, and CP 6

show strong characterization power, and the superiority

of SC3 w.r.t the characterization power becomes clearer

when k is 5 and 6. Both competitors failed to clearly dis-

tinguish the SCs in different domains, which indicates

their poor characterization power, and were unable to

run on certain datasets, as shown in Figures 9d and 9e.

23 Here, θ serves as the minimum support for FreSCo, and
lowering its value results in computing the support for more
simplets with smaller support values.

Table 4: The result of k-means++ (i.e., the assignment

of each dataset in clusters C1 and C5) for 10 trials.

When k is 5 or 6, it always succeeded in distinguishing

domains, but when k is 4, it succeeded only once in ten

trials.

k
coauth-* threads-* contact-* email-* tags-*

trials
cD cMG cMH thau thms thso cps chs eEn eEu taau taso

6 C1 C1 C1 C2 C2 C2 C3 C3 C4 C4 C5 C5 10/10

5 C1 C1 C1 C2 C2 C2 C3 C3 C4 C4 C5 C5 10/10

4
C1 C1 C1 C2 C2 C3 C4 C4 C5 C5 C5 C5 9/10
C1 C1 C1 C2 C2 C2 C3 C3 C4 C4 C5 C5 1/10

Specifically, we suspect that FreSCo has low charac-

terization power because support, used as a surrogate

measure, offers limited information on counts. Addi-

tionally, B-Exact does not capture certain simplets,

such as trees, which may impact its characterization

power.

We further embedded the CP (refer to Section 6 for

its definition) of each SC in Euclidean space. That is,

we treated the CP from each SC, which is a vector, as

the vector representation of the SC in Euclidean space.

Then, we performed k-means++ clustering [4] for 10

independent trials.

In Table 4, we report the clustering results using

the CP computed from the counts obtained by SC3,

where the clustering results were perfect when k is 5

and 6, while for k equals 4, it often failed to cluster the

SCs properly. The clustering results suggest that the

CP vectors w.r.t the counts of simplets can be applied

to further downstream tasks, such as SC clustering or

classification.

7.5 Q4. Simplet counting under Restricted Access

In Section 5, we have proposed a random-walk-based

method SCRW for restricted access scenarios where we

can only access a portion of an input SC instead of

the whole SC. In this section, we compare SCRW with

SC3, showing the comparable trade-off between speed

and counting accuracy and the high memory efficiency

of SCRW. Note that, since SCRW operates with lo-

cal information obtained from neighbor queries, we can

expect memory efficiency compared to SC3. For fairer

comparisons, we further introduce a more memory-

efficient version of SC3, called SC3-E, which does not

save the calculated probabilities used for sampling the

next subtree (Line 5 of Algorithm 3) but calculates

probability each time. Hence, SC3-E uses less mem-



18 Hyunju Kim, Heechan Moon, et al.

0 3 6 9 12−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8

No
rm

al
ize

d
Si

gn
ifi

ca
nc

e

0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12
Index of simplet of size 4

cD cMG cMH thau thms thso cps chs eEn eEu taau taso

0 50 100 150−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8

No
rm

al
ize

d
Si

gn
ifi

ca
nc

e

0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
Index of simplet of size 5

Fig. 8: The SC datasets from the same domain show similar CPs. We report the characteristic profile (CP) of each

dataset based on the counts of simplets of sizes 4 (top), 5 (center), and 6 (bottom) estimated by SC3.

ory but requires more time than SC3.24 Moreover, for

comparing with SCRW, we modify the steps in SC3 and

SC3-E as follows: scanning and matching are performed

right after obtaining each sample, removing the need for

memory storage for all samples, similar to SCRW. Ad-

ditionally, to facilitate a direct comparison with SC3,

neighbor queries are answered from the input SC loaded

in the main memory, which is included in the memory

usage of SCRW.

Speed and counting accuracy: We compare the ac-

curacy of simplet counting and running time of dif-

ferent methods with the number of samples/queries

x ∈ {102, 103, 104, 105}. For the largest thso dataset,

we varied the number of queries for SCRW up to 106.

As mentioned in Section 5.4, SCRW is limited to output

the relative counts of simplets instead of counts and op-

erate on the largest connected component (LCC) (refer

to Appendix G for the analysis between LCC and the

entire SC). When k is 4, we calculated the error be-

tween the relative counts of simplets of LCC from each

method and the ground truth on the entire SC obtained

by B-Exact. Specifically, we used the normalized error

24 The worst-case time and space complexities of SC3-E and
SC3 are equivalent, assuming all sampled trees are disjoint
(see Appendix I for more details).

ˆerrK for accuracy comparison, which is defined as

ˆerrK =
∑
i∈[sk]

|noc(Sk
i ;K)− ñoc(Sk

i ;K)|.

Since B-Exact does not support k ≥ 5, we cannot ob-

tain the ground truth and utilize the normalized error

ˆerrK. Instead, we used the sum of standard deviations

as an accuracy measure. Specifically, we calculated the

standard deviation for each simplet over 20 trial out-

puts and then compared the overall accuracy using the

sum of these standard deviations. Figure 10 shows the

trade-off between speed and accuracy for each method

on the two largest datasets, taso and thso. When com-

paring the running times of methods for achieving sim-

ilar counting accuracies, the superior method varies de-

pending on the dataset. Specifically, SCRW requires up

to 3.6× less time to obtain similar counting accura-

cies on the thso datasets when k is 4, while SCRW re-

quires up to 4.6× more time on the taso dataset when

k is 4. On average, SCRW requires 4.7× less time on 5

datasets when k is 4, while it requires 9.5× more time

on 11 datasets when k is 4. The relative superiority is

largely determined by the pre-processing time required

for the building step of SC3. The results and analysis for

all datasets are provided in Appendix J [33]. Further-
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Fig. 10: SCRW and SC3 offer comparable speed-accuracy trade-offs. We report the trade-offs between speed and

counting accuracy for each method across the taso and thso datasets when k is 4 (left), 5 (center), and 6 (right).

We report the mean value of the measurement outputs and times over 20 trials on each dataset. When comparing

the running times of methods for achieving similar counting accuracies, SCRW requires up to 3.6× less time than

SC3 on the thso datasets, while SCRW requires up to 4.6× more time on the taso dataset.

more, the accuracy of simplet counting, when varying

the number of queries y, is provided in Figure 3 (spec.,

the right subfigure). It shows that the counts obtained

by SCRW approach the exact counts, as the number of

queries increases.

Memory: We compare the memory usage of differ-

ent methods with the number of samples/queries x ∈
{102, 103, 104, 105}. Figure 11 shows that, as the num-

ber of samples increases, the memory usage for SC3 in-

creases, while the memory usages for SC3-E and SCRW

remain consistent. Specifically, SC3, which stores the

probabilities of a subtree to sample the next one, gen-

erally requires more memory space than SC3-E (refer

to Appendix I). Also, while SC3-E requires memory

for the building step, accessing the entire SC, SCRW

does not, and thus SCRW requires the smallest amount
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X88.2
X9.2

Fig. 11: SCRW is memory efficient. SC3 and SC3-E memory requirements of each dataset compared to SCRW as

the number of samples/queries increases for k values of 4 (left), 5 (center), and 6 (right). We report the mean

value of memory requirements over 5 trials. As the number of samples increases, the memory requirements for SC3

increase, while those for SC3-E and SCRW remain consistent. The straight line (SCRW = SC3), which corresponds

to the points where the memory usage of both methods is equal, is added for easier comparison.

of memory (refer to Theorem 3 and 5). In particular,

SCRW uses up to 88.2× less memory than SC3 (on the

cb dataset) when k is 5 and, on average, it uses 16.5×
less memory across 16 datasets. Furthermore, SCRW

uses 9.2× less memory than SC3-E (on the cD dataset)

when k is 6 and, on average, 2.6× less memory across

16 datasets.

8 Conclusions

In this section, we provide a summary of our work and
discuss our contributions.

8.1 Summary of the Work

In this study, we tackle the challenge of counting sim-

plets by introducing two sampling-based algorithms,

SC3 and SCRW. We also show that the counts of sim-

plets are effective in characterizing real-world simplicial

complexes (SCs). Our contributions are summarized as

follows:

– New Problem. To the best of our knowledge, we

are the first to formulate and study the problem of

directly counting simplets in a given SC, especially

for the simplets beyond four nodes.

– Accurate and Fast Algorithm. SC3 is orders of

magnitude faster than its competitors. Empirically,

its running time is sub-linear w.r.t the number of

samples. As a result, SC3 succeeds in estimating the

count of every simplet of size 4, 5, and 6 in large

SCs, and the result is accurate with theoretical guar-

antees.

– Characterization of Real-world SCs. We

demonstrate that the output of SC3 can be used to

characterize SCs. Especially, the characteristic pro-

files (CPs) based on the count of simplets of size 5 or

6 obtained by SC3 better distinguish the domains of

real-world SCs than the CPs from its competitors.

– Realistic scenarios. We explore simplet counting

under scenarios where the input SC is only par-

tially accessible, introducing SCRW for such sce-

narios. Compared to SC3, SCRW is more memory-

efficient, with a comparable trade-off between speed

and counting accuracy.

For reproducibility, our code and data are available at

https://github.com/hhyy0401/simplet_counting.

8.2 Discussion on Technical Contributions and Beyond

In this work, we address the novel problem of counting

simplet occurrences. While the problem is not directly

reducible to graphlet counting (in the primal graph)

and our methods do have simplet-specific steps (e.g.,

simplet matching), as previously emphasized, ideas

from graph counting methods (especially, CC [12–14]

and SRW [15]) help address key technical challenges.

We stand on the shoulders of giants in this regard.

Given this new problem, one of our non-trivial steps

is to identify the appropriate building blocks that can

be extended to this new problem without introducing

unnecessary complexity. Note that, among a wide range
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of (approximate) graphlet counting algorithms, not all

can be adapted for simplet counting without significant

additional complexity. In this respect, we believe that

demonstrating how simplet counting can be done both

effectively and efficiently using proper graphlet-related

techniques as a foundation is a non-trivial contribution

in itself. Another important contribution is the scalable

(and open-sourced) implementation of these algorithms

that significantly outperform existing methods on real-

world datasets. We believe that turning ideas into con-

crete implementations and verifying their effectiveness

adds substantial value to the research. Lastly, beyond

the technical aspects, the strong characterization power

of simplet counting and the novel discoveries gained

from real-world datasets (e.g., domain-based similarity)

highlight the practical significance of our work.
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42. T. Milenković, W. L. Ng, W. Hayes, and N. Pržulj. Op-
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A Proofs

Lemma 1 Given primal graph GK = (VG, EG), k ∈ N,
and a user-defined number x of samples, the building and
sampling steps (Algorithms 2 and 3) output Tct consisting
of x node sets Vk ∈ Vcon in O(ck|EG| + xk) time and
O(ck|EG|) space for some absolute constant c > 1, where

Vcon = {Vk ∈
(
VG

k

)
: GK[Vk] is connected}. Moreover, in

each iteration of sampling, a Vk is sampled with a probability
proportional to nst(GK[Vk]), the number of spanning trees of
GK[Vk].

Proof Similar to the algorithms in [13], SC3-build (Algo-
rithm 2) takes O(ck|EG|) time and space and obtaining each
sample using SC3-sample (Algorithm 3) takes O(k) time and
O(ck|EG|) space (see the statement of Theorem 5.1 in [13]).
The same complexities can be obtained since a subcomplex
of an SC K induced by a node set V ′ is connected if and only
if the induced subgraph of its primal graph on the same node
set is connected (refer to Footnote 12 for a proof). Specif-
ically, in SC3-build (Algorithm 2), for each T and each S,
each (u, v) ∈ EG is considered twice (once for u and once for
v), and there are O(2|S|) = O(2k) ways to split S into S1

and S2. Also, the total numbers of possible T ’s and possible
S’s are both O(2k), which gives the time and space complex-
ities O(ck1 |EG|) for a constant c1 > 1. In SC3-sample, in each
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sampling, choosing v and T takes O(1) time [62], each call
of the function “Sample” also takes O(1) time [62], and the
function is called O(|T |) = O(k) times.

Lemma 2 Given Tct and K = (V,E), Algorithm 4 correctly

outputs M(K[VT ]) for all VT ∈ Tct in O(|M(K)|M̂ct) time

and O(M̂ct) space, where M̂ct =
∑

VT∈Tct
|M(K[VT ])|.

Proof For each VT ∈ Tct, the number of σ’s to check is
O(|M(K)|), and maintaining the set of all the maximal sets
takes O(|M(K)||M(K[VT ])|) time [69]. The space complex-
ity is O(

∑
VT∈Tct

|M(K[VT ])|) since we output M(K[VT ]) for
each VT ∈ Tct, and the correctness immediately follows the
definition of maximal simplices and how we updateM(K[VT ])
by only including maximal ones.

Lemma 3 Given (i) k, the considered size of simplets, (ii)
Sk, derived from k, (iii) Nct, obtained from the building
step, (iv) Tct, obtained from the scanning step, (v)M(K[VT ])
(∀VT ∈ Tct), obtained from the sampling step, Algorithm 5

takes O(k!M̂k + |Tct| + kω) time and O(M̂k + M̂ct) space,

where M̂k =
∑

S∈Sk |M(S)|, M̂ct =
∑

VT∈Tct
|M(K[VT ])|,

and ω is the exponent of the time complexity of matrix mul-
tiplication. Here, M̂k is a function of k: M̂4 is 47 and M̂5 is
807.

Proof Building the permutation-invariant maps takes
O(|M(S)|) for each bijection ϕ and for each S ∈ Sk. The
number of spanning trees for each S ∈ Sk can be computed
by using Kirchhoff’s Matrix-Tree theorem, with a time
complexity of O(kω), where ω is the matrix multiplication
exponent. Enumerating the whole Tct and accumulating the
estimated counts takes O(|Tct|) times. The space complexity
is O(

∑
S∈Sk |M(S)| +

∑
VT∈Tct

|M(K[VT ])|) since we need

M(K[VT ]) for each VT ∈ Tct and create |M(S)| entries in f
for each S ∈ Sk.

Theorem 1 (unbiasedness) Given k, K, Sk, and any x,
for each S ∈ Sk, the Ñoc(S) given by Algorithm 6 satisfies
that E[Ñoc(S)] = Noc(S).

Proof By Lemma 1, for each S ∈ Sk, let VS ⊆
(
V
k

)
with

|VS | = Noc(S) denote the set of occurrences of S. Each
connected VT ∈ VS is colorful with probability k!/kk,
and at each iteration of sampling, VT is sampled with
probability nst(GK[VT ])/Nct. By the correctness of all
the steps (Lemmas 1-3), the corresponding simplet of each
sampled VT is correctly found. Therefore, E[Ñoc(S)] =∑

VT∈VS
|Tct| k!

kk

nst(GK[VT ])

Nct

1
nst(GK[VT ])

Nct

|Tct|
kk

k!
=∑

VT∈VS
1 = Noc(S).

Theorem 2 (convergence) Given any k, K = (V,E), and
Sk, for each S ∈ Sk, let Ñi

oc(S) denote the output by Al-
gorithm 6 in the i-th trial. For any ϵ, λ > 0, there ex-
ists Rt = O(−λ−2|V |2k ln ϵ) such that if R > Rt, then
Pr[|

∑
i∈[R] Ñ

i
oc(S)/R−Noc(S)| ≤ λ] ≥ 1− ϵ, for any x ≥ 1,

where x is the number of samples in the sampling step. For
a single trial, Pr[|Ñoc(S) − Noc(S)rcolor| ≤ λσ] ≥ 1 − 1

λ2

where σ2 = V ar[Ñoc(S)] = O( 1
x
) (in terms of x only), and

rcolor is the ratio between the actual count of occurrences of
colorful treelets corresponding to S and the expected count.

Proof It also relies on the correctness of all the steps (Lem-
mas 1-3). The statement for one trial follows Chebyshev’s in-

equality with σ2 = V ar[Ñoc(S)] = Noc(S)

x

(
Nct·kk/k!

nst(S)
− 1

)
,

where x is the number of samples during the sampling step.
In addition, we have a Chebyshev bound (notations bor-
rowed from Corollary 5.5 in [13]) of the probability that
a uniformly-randomly-drawn colorful simplet corresponds to
S: the probability is in µS ± 2ϵ/(1 + ϵ) with probability
1−Ω((xϵ)−2). The convergence is obtained from Hoeffding’s
inequality. Since each trial is i.i.d. and unbiased and each
Ñoc = O(|V |k), we have Pr[|

∑
i∈[R] Ñ

i
oc(S)/R −Noc(S)| ≤

λ] ≥ 1 − 2 exp(−2Rλ2O(|V |−2k)). Hence, there exists R =
Θ(−λ−2|V |2k ln ϵ) such that 2 exp(−2Rλ2O(|V |−2k)) ≤ ϵ.

Theorem 3 (complexities) Given k, K = (V,E), Sk, and
the number of samples x, Algorithms 6 takes O(ck|EG| +
x|M(K)|2+k!M̂k) time and O(ck|EG|+x|M(K)|+M̂k) space

for some absolute constant c > 1, where EG = E ∩
(
V
2

)
, and

M̂k =
∑

S∈Sk |M(S)| is a function of k.

Proof By Lemmas 1-3, the total time complexity is
O(ck|EG|+xk+ |M(K)|M̂ct+k!M̂k+x+kω) = O(ck|EG|+
x|M(K)|2 + k!M̂k), where EG = E ∩

(
V
2

)
, and we have used

M̂ct = O(x|M(K)|) and k = O(M(K)). The total space

complexity is O(ck|EG| + M̂ct + M̂k + M̂ct) = O(ck|EG| +
x|M(K)|+ M̂k).25

Lemma 4 For a given SC K = (V,E), the state space
of SCRW corresponds to the set of 1-simplices in E, i.e.,
X = {e ∈ E : |e| = 2}. The stationary distribution of each

state X ∈ X is uniquely determined as |Nb(eX)|
M

(defined as

Line 11). The transition probability from X to X′ is 1
|Nb(eX)| .

Proof The transition probability from X to X′ is 1
|Nb(eX)|

since the next state is randomly and uniformly chosen from
Nb(eX). Using the fact that the stationary distribution
uniquely exists, it is sufficient to verify that it satisfies πP =
π, where P is the transition matrix. For the set E of all
1-simplices in K, π(e) · P =

∑
e′∈E π(e′) · pb(Xe′ , Xe) =∑

e′∈E |{e∈Nb(e′)}|
M

= |Nb(e)|
M

= π(e).

Theorem 4 (unbiasedness and convergence) Given k,
K, Sk, for any S ∈ Sk and y > 0, the ñoc(S) given by Al-
gorithm 7 satisfies E[ñoc(S)] = noc(S) and Pr[|ñoc(S) −
noc(S)| ≤ λσ] ≥ 1 − 1

λ2 for any λ > 0, where σ2 =
Var[ñoc(S)].

Proof Let XS be a set whose elements are ordered sequences
of 1-simplices isomorphic to a simplet S ∈ Sk and Z =⋃

S∈Sk XS be the total sample space. Recall that for any
−→
V ∈ Z, p̃(

−→
V ) is the value defined in Line 16 on Algo-

rithm 7, and M is the global coefficient that ensures the

ratio p̃(
−→
V )/M corresponds to the probability of V being

sampled, whose correctness is ensured by Lemma 4. Using
the fact |XS | = αS · Noc(S), for each S ∈ Sk, E[ñoc(S)]

is
∑

−→
V ∈XS

1

αS p̃(
−→
V )
· p̃(

−→
V )

M
= |XS|

αS·M = Noc(S)

M
, divided by∑

S′∈Sk

∑
−→
V ∈XS′

1

αS′ p̃(
−→
V )
· p̃(

−→
V )

M
=

∑
S′∈Sk Noc(S′)

M
, result-

ing in noc(S). Note that, since M is not used during the
procedure, there is no need to compute it. The statement of
convergence holds by Chebyshev’s inequality: for any λ > 0,

25 The terms can be simplified by using max(|EG|,M(K)) ≤
|E| and regarding x as a constant, which gives total time

complexity O(ck|E|+|E|2+k!M̂k) and total space complexity

O(ck|E|+ k!M̂k).
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Table 5: The outputs of B-Exact, FreSCo, and SC3

on the Ns dataset when k is 4. We run SC3 with x set

to 100,000 samples and report the means over 5 trials.

For FreSCo, we set the threshold θ to 1 to obtain the

most accurate output, and set a time limit of 10 hours.

index of S4 B-Exact SC3 FreSCo

0 - 953999597.1 2973
1 - 1481594205.7 3096
2 - 19876052.5 3024
3 528575876 527726043.0 2964
4 278014263 279769791.8 2955
5 68051012 68128876.7 2940
6 61794552 61601934.2 2935
7 17027710 17451818.3 2917
8 7538854 7648915.7 2908
9 10806231 10907215.3 2903
10 6040967 6102560.0 2896
11 1577597 167242.9 2885
12 168752 139459.2 2885
13 - 3290324.8 2885

where X̄ (which corresponds to ñoc(S) in our statement) is
the sample mean of i.i.d. random variables X1 = X, . . . ,Xn,

µ = E[X], and Σ2 = Var[X], since Pr
[
|X̄ − µ| ≤ λΣ√

n

]
≥

1− 1
λ2 can be transformed into Pr

[
|X̄ − µ| ≤ λ′Σ

]
≥ 1− 1

nλ′2

under λ′ = λ√
n
, the right-hand term approaches 1 as n→∞,

i.e., X̄ converges to µ w.h.p.

Theorem 5 (complexities) The space complexity of

SCRW is O(Qmax + M̂k), where Qmax = maxv∈V

∑
σ∈Q(v)

|σ| is determined by K, and M̂k =
∑

S∈Sk |M(S)| is a func-

tion of k. The time complexity of SCRW is O(y|M(K)|2 +

k!M̂k + yk + yQmax), where y is the maximum number of
queries used in Algorithm 7 under the assumption each neigh-
borhood query with query node v ∈ V takes O(

∑
σ∈Q(v) |σ|)

time.

Proof We can store each pb(·, ·) and |Nb(·)|, Nb(·), and Q̃
for k − 2, k − 2, 1, and 1 steps after calculation, respec-
tively, to obtain k − 1 consecutive states, then discard them
immediately thereafter to minimize memory usage. This re-
quires O(k +Qmax) space, with an additional O(M̂k) space

for matching. Also, let M̂rw =
∑

VS∈Vrw
|K[VS ]| where Vrw

is the set of sampled VS ’s while running Algorithm 7. Then
for time complexity, O(|M(K)|M̂rw) time and O(k!M̂k + y)
time are required in the scanning and matching step, respec-
tively (refer to Lemma 2 and 3). For obtaining Nb(·) and
pb(·) at each state, SCRW takes O(Qmax) time and O(k)
time, respectively. Therefore, the total time complexity is
O(|M(K)|M̂rw + k!M̂k + y + yQmax + yk) = O(y|M(K)|2 +

k!M̂k + yk + yQmax), where M̂rw = O(y|M(K)|).

B Baseline algorithms

B-Exact: For each size-4 simplet, we show which 4-node con-
figurations (see Table 7 in the appendix of [7] for the details),
if any, are corresponding to it: (1) S0

4 : ∅; (2) S1
4 : ∅; (3) S2

4 : ∅;
(4) S3

4 : ψ0; (5) S4
4 : ψ1, ψ2; (6) S5

4 : θ0,0; (7) S6
4 : θ0,1,

Algorithm 8: Simplet expansion from

graphlets

Input: (1) k: the considered size of graphlets and
simplets

(2) Gk: the set of all the graphlets of size k
Output: Sk: the set of all the simplets of size k

1 Sk ← ∅ ▷ Initialization
2 Function Expand(i, C, S):
3 if i ≤ 2 then
4 Sk ← Sk ∪ {S}
5 return

6 T ←
(
C
i

)
\ S; Q ← ∅

7 foreach Σ ⊆ T do
8 S′ ← S ∪

(⋃
I∈Σ 2I

)
9 if ∄q ∈ Q s.t. S′ ≃ q then

10 Q ← Q ∪ {S′}
11 Expand(i− 1, C, S′)

12 for G = (VG = [k], EG) ∈ Gk do

13 CG ← {C ⊆ [k] : |C| > 2 ∧
(
C
2

)
⊆ EG} ▷ Cliques

14 Expand(k,CG , {∅} ∪
(
[k]
1

)
∪ EG)

15 return Sk

θ0,2; (8) S7
4 : θ1,1, θ1,2, θ2,2; (9) S8

4 : π0,0,0,0; (10) S9
4 :

π0,0,0,1, π0,0,0,2; (11) S10
4 : π0,0,1,1, π0,0,1,2, π0,0,2,2; (12)

S11
4 : π0,1,1,1, π0,1,1,2, π0,1,2,2, π0,2,2,2; (13) S12

4 : π1,1,1,1,
π1,1,1,2, π1,1,2,2, π1,2,2,2, π2,2,2,2; (14) S13

4 : ∅. We can see
that the configurations in [7] and the simplets are not one-
to-one corresponded.

FreSCo: We provide the definition of support, the surrogate
measure used in [47], which is essentially different from the
count of simplets per se, both theoretically and empirically.

Definition 2 (support [47]) Let the image set IP (v) of
v ∈ VP of a simplet P be the set of nodes in K that are
mapped to v by some isomorphism ϕ, i.e., IP (v) = {u ∈
K : ∃ϕ s.t. ϕ(u) = v}. Then the support of P in K is
SUP (P,K) = minv∈VP

|IP (v)|.

Roughly speaking, the occurrence of a simplet (which our
algorithms count) is the count of subcomplex-level mappings,
while the support of a simplet is the minimum aggregation of
the counts of node-level mappings. To clarify their distinction,
we provide examples where they differ and where they are
the same as following. Consider counting S4

13 (refer to Fig. 2)
within S4

13 itself. While the occurrence is 1, the support is 4
since any node can be mapped with any of the four nodes due
to the symmetry of the topology. However, when counting S4

6

within S4
6 itself, both the occurrence and support are 1, as

each node can only be mapped to one specific node, due to the
lack of symmetry. Despite this potential distinction, FreSCo
uses support because it satisfies the anti-monotone property,
which FreSCo exploits for efficiency. Specifically, the support
of a simplet is always at most that of its sub-simplets.

In Table 5, when k is 4, we compare the outputs of B-
Exact,26 FreSCo, and SC3, where we can see that the out-
put of SC3 is an accurate estimator of the exact count of
simplets, while the output of FreSCo is hardly meaningful.

26 For B-Exact, for each simplet, we sum up the counts of
the node configurations corresponding to the simplet.
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Fig. 12: The subfigures correspond to the building, sam-

pling, scanning, and matching steps in order.
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Fig. 13: The error nearly converges when cshuffle ≥ 10.

This indicates that a cshuffle value of 1,000 is sufficient

to randomize the considered SCs.

C Simplet expansion from graphlets

In Algorithm 8, we provide a practical way to generate the set
of all possible simplets of size k. Essentially, we conduct an
expansion from all the graphlets of size k to all the simplets
of size k. We assume that all the graphlets of size k are known
beforehand,27 and use them as the input of SC3. Specifically,
we exploit the fact that, for each k, there is a surjection from
all the simplets of size k to all the graphlets of size k, where
each simplet is mapped to its primal graph.

We first save all the cliques of size more than 2 for each
graphlet G ∈ Gk (line 13), the candidates to be open or closed
(i.e., covered with a simplex of the same size). Then, start-
ing from cliques of possible maximum size (line 14) to edges
(line 3), we consider the number of all cases (Σ ∈ 2T on line 7)
that a clique of the current size i any of whose superset is not
closed (T on line 6) is either open or closed recursively. If
S′ made by closing every Σ ∈ 2T is not isomorphic ∀q ∈ Q
(line 9), then we put S′ into a simplet set Q (line 10) and
keep expansion until there is no clique to be closed. Finally,
when reaching the terminate condition, we put the simplet S
to the set of simplets Sk (line 4).

D A toy example for SC3

See Figure 12 for the entire procedure. For a given SC of
order 4 when k is 3, we aim to count Noc(S3

i ;K) for each
i ∈ [s3]. In the building step, we count the number of colorful
treelets rooted on each node (in bold next to each node) after
coloring every node with three colors uniformly at random. In
the sampling step, VT = {a, b, c} is sampled with probability
1, the only case of a size-3 colorful tree. In the scanning step,
an induced subcomplex on VT is found and matched to an
isomorphic simplet (S3

2 ) in the final step. The three processes
except for the building step are repeated.

27 Technically, they can be generated via isomorph-free ex-
haustive generation [41].

E Effect of the shuffling ratio cshuffle in the

null model on randomization

To generate a randomized SC KR, we repeatedly shuffled the
pair of maximal simplices cshuffle|E| times. We compare
the counts of a subset of simplets countable by B-Exact be-
tween real SCs and randomized SCs, while varying the value
of cshuffle from 0.001 to 1,000. For the error measure, we
used a normalized error errK,KR defined as

errK,KR =

∑
i∈[sk]

|Noc(Sk
i ;K)−Noc(Sk

i ;KR)|∑
i∈[sk]

Noc(Sk
i ;K)

,

where Noc(Sk
i ;KR) is the count from the randomized SC.

Figure 13 shows that the difference between the counts
from real SC and randomized SC increases as the value
of cshuffle increases. The error, errK,KR , nearly converges
once cshuffle exceeds 1,000, indicating that setting cshuffle

to 1,000 is sufficient for effectively randomizing the considered
SCs.

F Increases in running time with respect to

data size

To address the potential bias arising from the use of differ-
ent programming languages in baseline implementations, we
compare the growth rates of their running times relative to
that of dataset sizes, which is independent of absolute run-
ning times. Specifically, for each method and each dataset,
we measured the relative growth rate as follows:

T ime =
T ime/T ime0

|M(K)|/|M(K0)|

where T ime and |M(K)| represent the running time of the
considered method and the size of the considered dataset; and
T ime0 and |M(K0)| denote the running time of the method
on the smallest dataset (i.e., eEn) and its size. In particular,
when comparing the running times of the SC3 algorithm, we
use the running time when x is 100,000 as T ime0. Figure
14 shows that, the relative growth rate of SC3 is lower than
that of the baseline methods in most cases, demonstrating
the scalability of SC3.

G Simplet counts in largest connected

components

We compare the exact simplet counts in the largest con-
nected component (LCC) and the entire simplicial complex
(SC) computed by B-Exact using the normalized difference
errK defined as

errK =

∑
i∈[sk]

|Noc(Sk
i ;K)− N̄oc(Sk

i ;K)|∑
i∈[sk]

Noc(Sk
i ;K)

,

where N̄oc(Sk
i ;K) is the count of simplet Sk

i in the LCC of
SC K. Figure 15 shows that the normalized difference errK
between LCC and the entire SC does not exceed 0.01 across
all datasets. Especially, on 9 out of 16 datasets, both sim-
plet counts are exactly the same. Refer to Table 3 for basic
statistics of the LCC of each data.
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Fig. 14: SC3 exhibits smaller increase rates in running
time relative to the growth in dataset size, compared to

the baseline algorithms, in most cases. The red dotted

lines indicate the relative dataset sizes. FreSCo

ran out of time (> 10 hours) for some datasets, and

B-Exact can be used only for k ≤ 4.
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Fig. 15: The simplet count differences between the LCC

and the entire SC are negligible. We report the nor-

malized difference errK between the exact counts of the

LCC and the entire SC on each dataset. The difference

is lower than 0.01 across all datasets, and both simplet

counts are identical on the 9 datasets marked with *.

H Rationale for the selection of time budget τ

Recall that we used a pre-defined value of τ to sample sub-
complexes after τ steps. In this experiment, we examined how
varying the number of random walk steps (i.e., y− 2) from 1
to 50 affects the accuracy of SCRW while fixing τ to 0. As in
previous experiments, we compare the ground truth counts
computed by B-Exact and the estimated counts obtained
by SCRW, using the normalized error ˆerrK. Additionally, we
compare the ∆ ˆerrK,zi

= ˆerrK,zi
− ˆerrK,zi−1

to show the re-
duction in error compared to the previous number of steps,
where ˆerrK,zi

represents the ˆerrK when the number of steps
is zi. As seen in Figure 16, the error in SCRW tends to de-
crease as the number of steps increases, but the reduction in
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Fig. 16: The error in SCRW decreases more significantly

within the first 20 steps, compared to later steps. We

report the normalized error errK and its difference

∆ ˆerrK,z. Notably, the normalized error errK signifi-

cantly decreases at 20 steps across all datasets.

ˆerrK is particularly significant within the first 20 steps, com-
pared to later steps. These results justify our choice of setting
the time budget τ to 20 (i.e., disregarding the samples from
the first 20 steps) for running SCRW.

I Memory efficient version of SC3 (SC3-E)

SC3 is designed to store the probabilities used to sample the
next subtree (see Line 5 of Algorithm 3). Ideally, its memory
usage should remain consistent when the same subtrees are
sampled repeatedly. However, in practical scenarios, memory
usage tends to increase each time new probabilities are stored.
SC3-E does not save the calculated probabilities, ensuring a
consistent memory requirement. The time complexity of SC3-
E is equivalent to the worst-case scenario of SC3, where all
sampled subtrees are disjoint. For space complexity, the size
of distributions of all subtrees (see Line 5 of Algorithm 3) is
bounded by O(ck|EG|), making their complexities equivalent.
See Theorem 3 for the time and space complexity of SC3.


