Under consideration for publication in Knowledge and Information
Systems

Fast and Memory-Efficient Algorithms
for High-Order Tucker Decomposition

Jiyuan Zhang!, Jinoh OhZ2, Kijung Shin®, Evangelos E. Papalexakis?, Christos Faloutsos®, Hwanjo Yu®

I Dept. of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA;
2 Adobe Systems, San Jose, CA, USA;

3 School of Electrical Engineering, KAIST, Daejeon, South Korea;

4 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA;

5 Dept. of Computer Science and Engineering, UC Riverside, Riverside, CA, USA;

6 Dept. of Computer Science and Engineering, POSTECH, Pohang, South Korea

Abstract. Multi-aspect data appear frequently in web-related applications. For ex-
ample, product reviews are quadruplets of the form (user, product, keyword, times-
tamp), and search-engine logs are quadruplets of the form (user, keyword, location,
timestamp). How can we analyze such web-scale multi-aspect data on an off-the-shelf
workstation with a limited amount of memory?

Tucker decomposition has been used widely for discovering patterns in such multi-
aspect data, which are naturally expressed as large but sparse tensors. However, existing
Tucker decomposition algorithms have limited scalability, failing to decompose large-
scale high-order (> 4) tensors, since they explicitly materialize intermediate data, whose
size grows exponentially with the order.

To address this problem, which we call “Materialization Bottleneck”, we propose
S-HOT, a scalable algorithm for high-order Tucker decomposition. S-HOT minimizes
materialized intermediate data by using an on-the-fly computation, and it is optimized
for disk-resident tensors that are too large to fit in memory. We theoretically analyze
the amount of memory and the number of data scans required by S-HOT. Moreover,
we empirically show that S-HOT handles tensors with higher order, dimensionality,
and rank than baselines. For example, S-HOT successfully decomposes a real-world
tensor from the Microsoft Academic Graph on an off-the-shelf workstation, while all
baselines fail. Especially, in terms of dimensionality, S-HOT decomposes 1000x larger
tensors than baselines.

Keywords: Tensor, High-order Tensor, Tensor Decomposition, Tucker Decomposition,
Out-of-core Algorithm

Received xxz
Revised rzx
Accepted zxx

2 J. Zhang et al

3
Out of :
55 . | memory @ S-HOTspace , o @ Out of memory
: q"‘J 10 @ “,.-"B;aselineOpt P T gao_; § 102 nef" BaselineOpt
= S Naive e 50X = vy
SE L’ A 5T A "SI0 scan 4
3 H I b i
E,: 100 .4'y et S-HOTmemo ég 0 S-HOTmemo ISX
[~ @t . o 10 Y SERY XX SEETCERREY SETETE P EEEEEEE R 4
10_1 +—— 15X —>» . 4— >1000X —»
3 4 5 6 107, T 5 Q 7
Tensor order 10 10 Alo . 19 10
Tensor dimensionality
(a) Scalability w.r.t. order (b) Scalability w.r.t. dimensionality
10° 10°
. e @ Out of memory o BaselineOpt ‘_‘.'./.:
oo 2 x . e . ¥ 4X
=9 10t #"" BaselineOpt ° 9 i
MES i
B o 1 d + o
= X 3
g ® 10 e Al - > 4I § E’:
2= IV SIEEL G 2.3
%g 10° .’/‘ . ~e S-HOTmem &=
] - —
Cha ot = .
* < >2.6X Ay’
10" 105 5 5 7
2 4 6 8 10 12 14 16 10 10 10 10
Rank The number of Non-Zero
(c) Scalability w.r.t. rank (d) Scalability w.r.t. non-zeros

Fig. 1. S-HOT scales up. Every version of S-HOT successfully decomposes
tensors with high order, dimensionality, and rank, while the baseline algorithms
fail, running out of memory as those three factors increase. Especially, every ver-
sion of S-HOT handles a tensor with 1000 times larger dimensionality. We use
two baselines: 1) BaselineNaive (described in Section 3.1): naive algorithm for
Tucker decomposition, and 2) BaselineOpt (Kolda and Sun, 2008) (described in
Section 3.2): the state-of-the-art memory-efficient algorithm for Tucker decom-
position. Note that all the methods have the same convergence properties (see
Observation 1 in Section 4).

1. Introduction

Tensor decomposition is a widely-used technique for the analysis of multi-aspect
data. Multi-aspect data, which are naturally modeled as high-order tensors,
frequently appear in many applications (Cai et al, 2011; Kolda et al, 2005;
Maruhashi et al, 2011; Moghaddam et al, 2012; Rendle and Schmidt-Thieme,
2010; Shin et al, 2017; Shin et al, 2018), including the following examples:

— Social media: 4-way tensor (sender, recipient, keyword, timestamp)

— Web search: 4-way tensor (user, keyword, location, timestamp)

— Internet security: 4-way tensor (source IP, destination IP, destination port,
timestamp)

— Product reviews: 5-way tensor (user, product, keyword, rating, timestamp)

Fast and Memory-Efficient Algorithms for High-Order Tucker Decomposition 3

| =10 millions J =10 |

_

" . \,—J J
I-... - ..-l.- " ' JJ" ...'III
I [. o
I : : 7o . :
) - AT || | l.. ol

S-order Input Tensor (Sparse) Intermediate Tensor (Dense) OQutputs (Dense)
Non-Zeros = 100 millions # Non-Zeros = 100 billions # Non-Zeros = 500 millions

Fig. 2. Illustration of M-Bottleneck. For a high-order (> 4) sparse input ten-
sor, the amount of space required for the intermediate tensor Y can be much
larger than that for the input tensor and the outputs. As in the figure, Y is
usually thinner but much denser than the input tensor. In such a case, materi-
alizing intermediate data becomes the scalability bottleneck of existing Tucker
decomposition algorithms.

Most of these web-scale tensors are sparse (i.e., most of their entries are zero).
For example, since typical customers buy and review a small fraction of prod-
ucts available at e-commerce sites, intermittently, most entries of the aforemen-
tioned product-review tensors are zero. To analyze such multi-aspect data, sev-
eral tensor decomposition methods have been proposed, and we refer interested
readers to an excellent survey (Kolda and Bader, 2009). Tensor decompositions
have provided meaningful results in various domains (Acar et al, 2005; Kolda
and Bader, 2009; Kolda et al, 2005; Lamba et al, 2016; Cai et al, 2011; Franz
et al, 2009; Kolda et al, 2005; Moghaddam et al, 2012; Rendle and Schmidt-
Thieme, 2010; Shin et al, 2017). Especially, Tucker decomposition (Tucker, 1966)
has been successfully applied in many applications, including web search (Sun
et al, 2005), network forensics (Sun et al, 2006), social network analysis (Chi et
al, 2006), and scientific data compression (Austin et al, 2016).

Developing a scalable Tucker decomposition algorithm has been a challenge
due to a huge amount of intermediate data generated during the computation.
Briefly speaking, Alternating Least Square (ALS), the most widely-used Tucker
decomposition algorithm, repeats two steps: 1) computing an intermediate ten-
sor, denoted by Y, and 2) computing the SVD of the matricized Y (see Sec-
tion 2 or (Kolda and Bader, 2009) for details). Previous studies (Kolda and
Sun, 2008; Jeon et al, 2015) pointed out that a huge amount of intermediate
data are generated during the first step, and they proposed algorithms for re-
ducing the intermediate data by carefully ordering computation.

However, existing algorithms still have limited scalability and easily run out of
memory, particularly when dealing with high-order (> 4) tensors. This is because
existing algorithms explicitly materialize Y, which is usually thinner but much
denser than the input tensor, despite the fact that the amount of space required
for storing Y grows rapidly with respect to the order, dimensionality, and rank of
the input tensor. For example, as illustrated in Fig. 2, the space required for Y, is

4 J. Zhang et al

about 400 Giga Bytes for a 5-way tensor with 10 million dimensionality when the
rank of Tucker decomposition is set to 10. We call this problem Materialization
Bottleneck (or M-Bottleneck in short). Due to M-Bottleneck, existing algorithms
are not suitable for decomposing tensors with high order, dimensionality, and /or
rank. As seen in Fig. 1, even state-of-the-art algorithms (Kolda and Sun, 2008)
easily run out of memory as these factors increase.

To avoid M-Bottleneck, in this work, we propose S-HO'T, a scalable Tucker
decomposition algorithm for large-scale, high-order, but sparse tensors. S-HOT
is designed for decomposing high-order tensors on an off-the-shelf workstation.
Our key idea is to compute Y on the fly, without materialization, by combining
both steps in ALS without changing its results. Specifically, we utilize the reverse
communication interface of a recent scalable eigensolver called Implicitly Restart
Arnoldi Method (IRAM) (Lehoucp et al, 1997), which enables SVD computation
without materializing Y. Moreover, S-HOT performs Tucker decomposition by
streaming non-zero tensor entries from the disk, which enables it to handle disk-
resident tensors that are too large to fit in memory. We offer the following versions
of S-HOT with distinct advantages':

— S-HOTpace: the most space-efficient version that does not require additional
copies the input tensor.

— S-HOTycan: a faster version that requires multiple copies of the input tensor.

— S-HOT emo: the fastest version that requires multiple copies of the input
tensor and a buffer in main memory.

Our experimental results demonstrate that S-HOT outperforms baseline al-
gorithms by providing significantly better scalability, as shown in Fig. 1. Specif-
ically, all versions of S-HO'T successfully decompose a 6-way tensor, while base-
lines fail to decompose even a 4-way tensor or a 5-way tensor due to their high
memory requirements. The difference is more significant in terms of dimension-
ality. As seen in Fig. 1(b), S-HOT decomposes a tensor with 1000x larger
dimensionality than baselines.

Our contributions are summarized as follows.

— Bottleneck Resolution: We identify M-Bottleneck (Fig. 2), which limits the
scalability of existing Tucker decomposition algorithms, and we avoid it by
using an on-the-fly computation.

— Scalable Algorithm Design: We propose S-HO'T, a scalable Tucker decom-
position algorithm carefully designed for sparse high-order tensors that are too
large to fit in memory. Compared to baselines, S-HO'T scales up to 1000x big-
ger tensors (Fig. 1) with identical convergence properties (Observation 1).

— Theoretical Analyses: We provide theoretical analyses on the amount of
memory space and the number of data scans that S-HOT requires.

Reproducibility: The source code of S-HOT and the datasets used in the
paper are available at http://dm.postech.ac.kr/shot.

In Section 2, we give preliminaries on tensors and Tucker decomposition.
In Section 3, we review related work and introduce M-Bottleneck, which past
algorithms commonly suffer from. In Section 4, we propose S-HOT, a scalable

1 S-HOTspace and S-HOTscan appeared in the conference version of this paper (Oh et al, 2017).
This work extends (Oh et al, 2017) with S-HOTmemo, which is significantly faster than S-
HOTspace and S-HOTscan, space complexity analyses, and additional experimental results.

http://dm.postech.ac.kr/shot

Fast and Memory-Efficient Algorithms for High-Order Tucker Decomposition 5

Table 1. Table of Symbols
Symbol Definition

N number of modes
X N-order input tensor € RI1 % xIn
X(i1,...in) (i1,...,4n)-th entry of X (also denoted by x;;...iy)
0(X) set of the indices of all non-zero entries in X
@Z(.")(DC) subset of ©(X) where the n-th mode index is %
X(n) mode-n unfolding of X
M number of non-zero entries in X
In dimensionality of the n-th mode of X
JIn number of component (rank) for the n-th mode
<] N-order core tensor € RJ1 %" xJN
{A} set of all the factor matrices of X
A mode-n factor matrix (€ RIn»XJn) of X
ﬁgn) i-th row-vector of A(™)
a;n) j-th column-vector of A(™)
o outer product
Xn n-mode vector product
Xn n-mode matrix product

algorithm for high-order tucker decomposition, to address M-Bottleneck. After
presenting experimental results in Section 5, we make conclusions in Section 6.

2. Preliminaries

In this section, we give the preliminaries on tensors (Section 2.1), basic ten-
sor operations (Section 2.2), Tucker decomposition (Section 2.3), and Implicitly
Restarted Arnoldi Method (Section 2.4).

2.1. Tensors and Notations

A tensor is a multi-order array which generalizes a vector (an one-order tensor)
and a matrix (a two-order tensor) to higher orders. Let X € R/1*XIN he the
input tensor, whose order is denoted by N. Like rows and columns in a ma-
trix, X has N modes, whose lengths, also called dimensionality, are denoted by
Ii,...,In € N, respectively. We assume that most entries of X are zero (i.e.,
X is sparse), as in many real-world tensors (Papalexakis et al, 2015; Perros et
al, 2015; Smith and Karypis, 2017).

We denote general N-order tensors by boldface Euler script letters e.g., X,
while matrices and vectors are denoted by boldface capitals, e.g., A, and boldface
lowercases, e.g., a, respectively. We use the MATLAB-like notations to indicate
the entries of tensors. For example, X(i1,...,in) (or x4,y in short) indicates
the (i1, ..., 4x)-th entry of X. Similar notations are used for matrices and vectors.
A(Z,:) and A(:,j) (or & and a; in short) indicate the i-th row and the j-th
column of A. The i-th entry of a vector a is denoted by a(i) (or a; in short).

6 J. Zhang et al
2.2. Basic Tensor Terminologies and Operations

We review basic tensor terminologies and operations, which are the building
blocks of Tucker decomposition. Table 1 lists the symbols frequently used in this
paper.

Definition 1 (Fiber). A mode-n fiber is an one-order section of a tensor, ob-
tained by fixing all indices except the n-th index.

Definition 2 (Slice). A slice is a two-order section of a tensor, obtained by
fixing all indices but two.

Definition 3 (Tensor Unfolding/Matricization). Unfolding, also known as ma-
tricization, is the process of re-ordering the entries of an N-order tensor into
a matriz. The mode-n matricization of a tensor X € RV XIN s o matriz

Xn) € R *Uasn 1a) whose columns are the mode-n fibers.

Definition 4 (N-order Outer Product). The N-order outer product of vectors
vi € Rt vy € R2, ... vy € RV s denoted by viovgo---ovy and is an
N-order tensor in RIvx*12XXIN - Elementwise, we have

[Viovgo---ovy|(i1,...,in) = vi(i1)va(i2) ... VN (in).

For brevity, we use the following shorthand notations for outer products:

iy, i) 1A} = 5511) ©---0 55?, and
o(_ii___dN){A} = ﬁgll) 0---0 55:;11) o[l]o 51(:1_11) 0---0 551];[).

Definition 5 (n-mode Vector Product). The n-mode vector product of a tensor
X € RIvXIN gnd a vector v € R is denoted by XX, v, and is an (N-1)-order
tensor in RIV<In—1 XInp1xeXIn - Blementwise, we have

I
[:x:inv](ila v 7in—1,in+17 v 7ZN) = Z Xy Vig +

in=1

Definition 6 (n-mode Matrix Product). The n-mode matriz product of a tensor
X € ROXIN and a matrizc U € R7»*In s denoted by Xx,, U, and is an N -
order tensor in RIVX - In-1XInXInp1XXIn = Blementwise, we have

In
[:x:XnU](i17 . ,inil,jn,inJ’,l’ e 7ZN) = Z XilmiNuJ‘"i”.

ip=1

We adopt the shorthand notations in (Kolda and Sun, 2008) for all-mode
matrix product and matrix product in every mode but one:

X x {U} = Xx;UD . xyUN | and
Xx_p{U} = X UD o, U= s utd s uy),

2.3. Tucker decomposition

Tucker decomposition (Tucker, 1966) decomposes a tensor into a core tensor and
N factor matrices so that the original tensor is approximated best. Specifically,

Fast and Memory-Efficient Algorithms for High-Order Tucker Decomposition 7

Algorithm 1: Tucker-ALS (also known as HOOI)

Input : X, an N-order tensor of RI1 X xIn
Ji,...,Jn, rank in each mode.
T, the number of iterations.
Output : {A}, a set of factor matrices {A(M) ..., AN} where A(™) ¢ RIn*In,

G, an N-order core tensor of R/1 X" XJn
Initialize all A(")
for t + 1..T do
for n + 1..N do

Yn) < [X x—n {AT}](n)
A™M) top-J, left singular vectors of Y (n)

oW N R

o

6 G« Y(N)XNA(N)T
7 return G, {A}

X € RIv<xIn ig approximated by
X~Gx{A} =G x; AW xu A@ ...y AW

where (a) G € R1%I¥_(b) J, denotes the rank of the n-th mode, and (c)
{A} is the set of factor matrices A, ... AN) each of which is in RI»*Jn,

The most widely used way to solve Tucker decomposition is Tucker-ALS (Al-
gorithm 1), also known as Higher Order Orthogonal Iteration (HOOI) (De Lath-
auwer et al, 2000).% Tt finds factor matrices whose columns are orthonormal by
Alternating Least Squares (ALS). Since G is uniquely computed by X x {AT}
once {A} is determined (Kolda and Sun, 2008), the objective function is simpli-
fied as

X T .
max[[X < {AH] (1)

2.4. Implicitly Restarted Arnoldi Method (IRAM)

Vector iteration (or power method) is one of the fundamental algorithms for solv-
ing large-scale Eigenproblem (Saad, 2011). For a given matrix U € R"*"™ vector
iteration finds the leading eigenvector corresponding to the largest eigenvalue by
repeating the following updating rule from a randomly initialized v(®) € R™.

(k)
V(k+1) = Uv .
[ov®]

As k increases, v(**1) converges to the leading eigenvector (Saad, 2011).
Arnoldi, which is a subspace iteration method, extends vector iteration to
find k leading eigenvectors simultaneously. Implicitly Restarted Arnoldi Method
(IRAM) is one of the most advanced techniques for Arnoldi (Saad, 2011). Briefly
speaking, IRAM only keeps k orthonormal vectors that are a basis of the Krylov
space, updates the basis until it converges, and then computes the k leading

2 Other methods include the truncated higher-order singular value decomposition (THOSVD)
(De Lathauwer et al, 2000) and the sequentially THOSVD (?).

8 J. Zhang et al

eigenvectors from the basis. One virtue of IRAM is the reverse communica-
tion interface, which enables users to compute Eigendecomposition by viewing
Arnoldi as a black box. Specifically, the leading k eigenvectors of a square matrix
U are obtained as follows:

1) User initializes an instance of IRAM.

IRAM returns v (initially v(%)).
User computes v/ < Uv), and gives v/ to IRAM.

Repeat steps (3)—(4) until the internal variables in TRAM converges.

)
)
4) After an internal process, IRAM returns new vector v\/+1),
)
)

TRAM computes eigenvalues and eigenvectors from its internal variables, and
it returns them.

For details of IRAM and the reverse communication interface, we refer interested
readers to (Lehoucp et al, 1997; Saad, 2011).

3. Related Work

We describe the major challenges in scaling Tucker decomposition in Section 3.1.
Then, in Section 3.2, we briefly survey the literature on scalable Tucker decompo-
sition to see how these challenges have been addressed. However, we notice that
existing methods still commonly suffer from M-Bottleneck, which is described
in Section 3.3. Lastly, we briefly introduce scalable methods for other tensor
decomposition methods in Section 3.4.

3.1. Intermediate Data Explosion

The most important challenge in scaling Tucker decomposition is the intermedi-
ate data explosion problem which was first identified in (Kolda and Sun, 2008)
(Definition 7). It states that a naive implementation of Algorithm 1, especially
the computation of [X x_, {AT}](n), can produce huge intermediate data that
do not fit in memory or even on a disk. We shall refer to this naive method as
BaselineNaive.

Definition 7 (Intermediate Data Explosion in BaselineNaive (Kolda and Sun,
2008)). Let M be the number of non-zero entries in X. In Algorithm 1, naively
computing X x _, {AT} requires O(M [, Jp) space for intermediate data.?

For example, if we assume a 5-order tensor with M = 100 millions and
Jn = 10 for all n, MHp;é” Jp = 1 trillions. Thus, if single-precision floating-

point numbers are used, computing X x_,, {AT} requires about 4TB space,
which exceeds the capacity of a typical hard disk as well as RAM.

3 When the input tensor is sparse, a straightforward way of computing X x_, {AT} is to

(1) compute X(i1,...,iN) [oi_ln in {A}]() for each non-zero element X(i1,...,in) and (2)
s n

combine the results together. The result of X(i1,...,in) [o_" in {A}]() takes O(T1,,, Jp)
’ n

i1,

space. Since there are M non-zero elements, O(M [],,_.,, Jp) space is required in total.

Fast and Memory-Efficient Algorithms for High-Order Tucker Decomposition 9

Table 2. The S-HOT family is space efficient. The S-HOT family requires
orders of magnitude less space than state-of-the-art methods. As an example,
we assume a tensor where N = 5, I, = I = 10 millions for every mode n, and
M = 100 millions. We also assume that J, = J = 10 for every mode n, and
B = 40MB, where B is the memory budget for memoization in S-HOT emo-
The space required by IRAM is included in the space for output data. Note
that all the methods have the same convergence properties (see Observation 1
in Section 4).

. Input Data Output Data Intermediate Data
Methods Locations))]
(in Theory) (in Theory) (in Theory)
BaselineNaive Memory O(NM) O(NIJ+ JN) O(MJN—1)
BaselineOpt
asehmep Memory O(NM) O(NIJ+JN) O(1JN=1)
(Kolda and Sun, 2008)
HATEN2 Memory - - O(JN~1 + max. degree*)
(Jeon et al, 2015) Disk O(NM) O(NIJ+ JN) OIJN=1 + MN2J)
Memor - O(NIJ+ JN oI+ JgN-1t
SHOTw s nory () ()
Disk O(NM) - -
- N N-1
S-HOT,enn Memory O(NIJ + JV) o(J)
Disk O(N2M) - -
M - NI N B4 JgN—!
S-HOT eme emory O(NI1J + J%) OB+ J)
Disk O(N2M) - -

* the degree of an n-th mode index is the number of non-zero entries with the index

(see Definition 8 for a formal definition of degree)

. Input Data Output Data Intermediate Data
Methods Locations
(in Example) (in Example) (in Example)
BaselineNaive Memory ~ 2GB ~ 2GB ~ 4TB
BaselineOpt
aseimet’p Memory ~ 2GB ~ 2GB ~ 400GB
(Kolda and Sun, 2008)
HATEN2 Memory - - 2 40KB
(Jeon et al, 2015) Disk ~ 2GB ~ 2GB ~ 500GB
Memor - ~ 2GB ~ 40MB
S-HOT:pace oLy
Disk ~ 2GB - -
M . ~ 2GB ~ 40KB
S-HOT\cun emory
Disk ~ 10GB - -
M - ~ 2GB ~ 40MB
S-HOT meme emory

Disk ~ 10GB - -

10 J. Zhang et al
3.2. Scalable Tucker decomposition

Memory Efficient Tucker (MET) 7QKolda and Sun, 2008): MET carefully
orders the computation of X x_,, {A*} in Algorithm 1 so that space required
for intermediate data is reduced. Let Y = X x _,, {AT}. Instead of computing
entire Y at a time, MET computes a part of it at a time. Depending on the
unit computed at a time, MET has various versions, and METP°" is the most
space-efficient one.

In METfer each fiber (Definition 1) of X is computed at a time. The specific
equation when X is a 3-way tensor is as follows:

I

——~

Y(:, g2, js) XXoal Kzals. 2)
The amount of intermediate data produced during the computation of a fiber
in Y by Eq. (2) is only O([1), and this amount is the same for general N-
order tensors. However, since entire (matricized) Y still needs to be materialized,
METfbPer suffers from M-Bottleneck, which is discussed in Section 3.3. METfiPer
is one of the most space-optimized tensor decomposition methods, and we shall
refer to METfPe" as BaselineOpt from now on.

Hadoop Tensor Method (HaTen2) (Jeon et al, 2015): HATEN2, in
the same spirit as MET, carefully orders the computation of X x_,, {AT} in
Algorithm 1 on MapReduce so that the amount of intermediate data and the
number of MapReduce jobs are reduced. Specifically, HATEN2 first computes
X x, (AP)T for each p # n, then combines the results to obtain X x _,, {AT}.
However, HATEN2 requires O(MN _ , J,) disk space for intermediate data,

which is much larger than O(1,,) space, which BaselineOpt requires.

Other Work Related to Scalable Tucker Decomposition: Several al-
gorithms were proposed for the case when the input tensor X is dense so that
it cannot fit in memory. Specifically, (Tsourakakis, 2010) uses random sampling
of non-zero entries to sparsify X, and (Austin et al, 2016) distributes the entries
of X across multiple machines. However, in this chapter, we assume that X is a
large but sparse tensor, which is more common in real-world applications. More-
over, our method stores X in disk, and thus the memory requirement does not
depend on the number of non-zero entries (i.e., M).

Another line of research focused on reducing redundant computations that
occur during a tensor-times-matrix chain operation (TTMc) (i.e., X x _,, {AT}
in line 4 of Algorithm 2), which is the dominant computation in Tucker-ALS. It
was observed in (Baskaran et al, 2012) that partial computations of TTMcs can
be reused. For example, Xx3 AT . x yAMT which is a partial computation
of X x_; {AT}, can be reused when computing X x_5 {AT}. To exploit this,
in (Baskaran et al, 2012), the N modes are partitioned into two groups: Ny :=
{1,...,[N/2]} and Ny := {[N/2]+1,...,N}. Then, Xx t AMT . x [y /9 ATN/ZDT
is stored and used for computing X x_,, {AT} for each n € Ny. Similarly,
f)Cx[N/ngA(rN/QHl)T o xNyAMT 5 stored and used for computing X x_,,
{AT} for each n € Nj. In (Kaya and Ugar, 2016), partial computations of
TTMcs are stored in the nodes of a binary tree and reused so that the number
of n-mode products is limited to log(N) per TTMc. It was shown in (Smith and
Karypis, 2017) that the partial computations can be reused “on the fly” and

Fast and Memory-Efficient Algorithms for High-Order Tucker Decomposition 11

faster without having to be stored, while an additional amount of user-specified
memory can be used for further reducing the number of n-mode products. To
this end, the input tensor is stored in the compressed sparse fiber (CSF) format
(Smith and Karypis, 2015), where a tensor is stored as a forest of I,, trees with
N levels so that each path from a root to a leaf encodes a non-zero entry. All
these algorithms are parallelized in shared-memory (Baskaran et al, 2012; Smith
and Karypis, 2017; Kaya and Ugar, 2016) and/or distributed-memory (Kaya and
Ucar, 2016) environments, and a lightweight but near-optimal scheme for dis-
tributing the input tensor among processors was proposed in (7). Note that these
algorithms do not suffer from intermediate data explosion (see Definition 7),
which may occur in TTMcs (line 4 of Algorithm 1), by computing Y,y row by
row. However, they suffer from M-Bottleneck, which is described in the following
subsection, since they compute (truncated) singular value decomposition (as in
line 5 of Algorithm 1) on materialized Y) .4 To minimize memory requirements,
our proposed methods, described in Section 4, store the input tensor on disk in
the coordinate format and stream its non-zero entries one by one. Alternatively,
the CSF format (Smith and Karypis, 2015) can be used to reduce redundant
computations that occur during TTMcs, as in (Smith and Karypis, 2017), while
it requires additional memory space.

In (Oh et al, 2017; Choi et al, 2017), several algorithms were proposed for
(coupled) Tucker decomposition when most entries of the input tensor are un-
observed (or missing), and they were extended to heterogeneous platforms (?).
However, since they have time complexities proportional to the number of ob-
served entries, they are inefficient for fully observable tensors (i.e., tensors with-
out missing entries), which our algorithms assume. A fully-observable tensor has
I; x ... x In observed entries.

3.3. Limitation: M-bottleneck

Although BaselineOpt and HATEN2 successfully reduce the space required for
intermediate data produced while Y,y < [X x_, {AT}](n) is computed, they
have an important limitation. Both algorithms materialize Y (), but its size
O(In],z Jp) is usually huge, mainly due to I, and more seriously, it grows

rapidly as N, I,, or {J,})_, increases. For example, as illustrated in Fig. 2
in Section 1, if we assume a 5-order tensor with I, = 10 millions and J, =
10 for every p # n, then I, Hp;én Jp = 100 billions. Thus, if single-precision
floating-point numbers are used, materializing Y (,) in a dense matrix format
requires about 400GB space, which exceeds the capacity of typical RAM. Note
that simply storing Y (,) in a sparse matrix format does not solve the problem
since Y () is usually dense.

Considering this fact and the results in Section 3.2, we summarize the amount
of intermediate data required during the whole process of tucker decomposition in
each algorithm in Table 2. Our proposed S-HOT algorithms, which are discussed
in detail in the following section, require several orders of magnitude less space
for intermediate data.

4 For example, see line 13 of Algorithm 4 in (Kaya and Ucar, 2016).

12 J. Zhang et al

3.4. Scalable Algorithms for Other Tensor Decomposition
Models

Comprehensive surveys on scalable algorithms for various tensor decomposition
models can be found in (Papalexakis et al, 2016; Sael et al, 2015). Among other
models except Tucker decomposition, PARAFAC decomposition, which can be
seen as a special case of Tucker decomposition where the core tensor has only
super-diagonal entries, has been widely used. Below, we summarize previous
approaches for scalable PARAFAC decomposition:

— Parallelize standard approaches: Standard optimization algorithms in-
cluding ALS, (stochastic) gradient descent, and coordinate descent, are opti-
mized and parallelized in distributed-memory (Choi and Vishwanathan, 2014;
Kaya and Ugar, 2015) and MAPREDUCE (Kang et al, 2012; Beutel et al, 2014;
Jeon et al, 2015; Jeon et al, 2016; Shin et al, 2017) settings.

— Sampling or Subdivision: Smaller subtensors of the input tensor are ob-
tained by sampling (Papalexakis et al, 2015) or subdivision (De Almeida and
Kibangou , 2013; De Almeida and Kibangou , 2014). Then, each subtensor is
factorized. After that, the factor matrices of the entire tensor are reconstructed
from those of subtensors.

— Compression: In (Sidiropoulos and Kyrillidis, 2012; Cohen et al, 2015), the
input tensor is compressed before being factorized.

— Concise Representation: Several data structures, including compressed sparse
fiber (CSF) (Smith and Karypis, 2015), flagged coordinate (F-COOQO) (Li et
al, 2018), hierarchical coordinate (HICOO) (Li et al, 2018), have been devel-
oped for concisely representing tensors and accelerating tensor decomposition.

— Memoization: A sequence of matricized tensor times Khatri-Rao products
(MTTKRPs) is the dominant computation in PARAFAC decomposition. In
(Li et al, 2017), partial computations of MTTKRPs are memoized and reused
to reduce redundant computations that occur during MTTKRPs.

4. Proposed Method: S-HOT

In this section, we develop a novel algorithm called S-HOT, which avoids M-
Bottleneck caused by the materialization of Y. S-HOT enables high-order Tucker
decomposition to be performed even in an off-the-shelf workstation. In Table 3,
the different versions of S-HOT are compared with baseline algorithms in terms
of objectives, update equations, and materialized data.

Specifically, we focus on the memory-efficient computation of the following
two steps (lines 4 and 5 of Algorithm 1):

Yy ¢ [0x_n{AT Y]y (€ R Tz 7))
A — top-J, left singular vectors of Y ;).

Our key idea is to tightly integrate the above two steps, and compute the
singular vectors through IRAM directly from X without materializing the entire
Y at once. We also use the fact that top-J, left singular vectors of Y, are

equivalent to the top-J, eigenvectors of Y(n)Y(n)T € RI»xIn 5 Specifically, if

5 Instead of computing the eigenvectors of Y(n)Y(n)T, we can use directly obtain the sin-

Fast and Memory-Efficient Algorithms for High-Order Tucker Decomposition 13

Table 3. Summary of the algorithms. We show the key differences in the
objectives, update equations, materialized data of the algorithms. The figures,
where the colored regions need to be explicitly materialized in memory at once,
illustrate how the algorithms work.

BaselineNaive and
Method S-HOTspace

BaselineOpt (Kolda and Sun, 2008)

Objective Left singular vectors of Y,

VR Y () Y () TYVF s+ > peom) Vi, X(P) {O;"{A}] -

k+1 T —n
Ve T o o TX0) [(AY]

Update equations

Materialization Y € RIn*Iptn Jp s € RIlpzn 7
—
T
x Yo x l l * ®)
. =2
Hlustration < | Yo B | Yo First scan of X to S
All of Y,y must be compute s on the fly
materialized = Second scan of X to
compute v*** on the fly
Method S-HOTscan S-HOTmemo
Objective Right singular vectors of Y,
Update equations ¥i e 8o X0) [7 AN W e Bl (W) s
PEO; " (X) (n) =
Materialization yi € RIp#n Tp
— _T’ L
— l l ~ Yoy X | o< 2
— Y5 X X% —
) — o 1Y(n)1
Illustration Yy Materialized and cached
— Single scan of X, to in memory
compute y; and wk*1 — Single scan of a part of
on the fly. X, to compute y; and

wk* on the fly.

we use the reverse communication interface of IRAM, the above two steps are
computed by simply updating v’ repeatedly as follows:

vV e Yo Yo v, (3)

where we do not need to materialize Y, (and thus we can avoid M-Bottleneck)
if we are able to update v’ directly from the X. Note that, using IRAM does not

gular vectors of Y (,) using, for example, Lanczos bidiagonalization (Berry, 1992). We leave
exploration of such variation for future work.

14 J. Zhang et al

change the result of the above two steps. Thus, final results of Tucker decompo-
sition are also not changed, while space requirements are reduced drastically, as
summarized in Table 3.

The remaining problem is how to update v’ directly from X, which is stored
in disk, without materializing Y (). To address this problem, we first examine a
naive method extending BaselineOpt and then eventually propose S-HOTpace,
S-HOTycan, and S-HOT ,emo, which are the three versions of S-HOT with
distinct advantages.

Note that all our ideas described in this section do not change the outputs
of BaselineNaive and BaselineOpt. Thus, all versions of S-HOT have the same
convergence properties of BaselineNaive and BaselineOpt, as described in Ob-
servation 1.

Observation 1 (Convergence Property of S-HOT). When all initial conditions
are identical, S-HOT space, S-HOT sean, and S-HOT emo give the same result
of BaselineNaive and BaselineOpt after the same number of iterations.

4.1. First step: “Naive S-HOT”

How can we avoid M-Bottleneck? In other words, how can we compute Eq. (3)
without materializing the entire Y7 We describe NAIVE S-HOT, which com-
putes Y fiber by fiber, for computing Eq. (3). Thus, NAIVE S-HOT computes
v’ progressively on the basis of each column vector of Y, which corresponds
to a fiber in Y, as follows:

Ve Y Y v=> v (v V), (4)

where y. € R is a column vector of Y).
This equation can be reformulated by X and {AT}. For ease of explanation,

let X be a 3-order tensor. For each column vector y., there exists a fiber Y(:
,J2,J3) corresponding to y.. By plugging Eq. (2) into Eq. (4), we obtain

v Zyc (yCTV) = Z y(:aj27j3) (y(:7j27j3)Tv>

Y(j2,J3)

= Z (X§<2a§2)§<3a§-?)> ((szag)xga;?>Tv) .
V(j2,43)
As clarified in Eq. (2), x%zagz) §<3a§g) is computed within O(I;) space, which is
significantly smaller than space required for Y).
However, NAIVE S-HOT is impractical because the number of scans of X
increases explosively, as stated in Lemma 1 and Lemma 2.

Lemma 1 (Scan Cost of Computing a Fiber). Computing a fiber on the fly
requires a complete scan of X.

Proof. Computing a fiber consists of multiple n-mode vector products. Each n-
mode vector product is considered as a weighted sum of (N — 1)-order section

Fast and Memory-Efficient Algorithms for High-Order Tucker Decomposition 15

of X as follows:

xan—fo ..,,zn,,...,:)vin. (5)
in=1
n n—l N-—n
Thus, a complete scan of X is required to compute a fiber. |

Lemma 2 (Minimum Scan Cost of NAIVE S-HOT). Let B be the memory
budget, i.e., the number of floating-point numbers that can be stored in mem-
ory at once. Then, NAIVE S-HOT requires at least 12 Hp;én Jp scans of X for

computing Eq. (4).

Proof. Since we compute y,. (yC) ¥ should be stored in memory requiring I,,
space, until the computation of y!v finishes. Thus, we can compute at most B

fibers at the same time within one scan of X. Therefore, NAIVE S-HOT requ1res
at least 1z pzn Jp scans of X to compute Eq. (4). |

4.2. Proposed: “S-HOTgpace”

How can we avoid the explosion in the number of scans of the input tensor
required in NAIVE S-HOT? We propose S-HOTgpace, which computes Eq. (3)
within two scans of X. S-HOTgpace progressively computes v/ from each row
vector of Y ;). Specifically, v/ is computed by:

In

L<Vi< L, V(i) < 3:iYw) ' v=y3: > v(k)y} (6)
k=1

where y; is the ith row vector of Y.y, which corresponds to an (N — 1)-order
segment of Y where the n-th mode index is fixed to i. When entire Y does not
fit in memory, Eq. (6) should be computed in the following two steps:

I

s > v(i)y! (7)
i=1

1<Vi < 1T, V(i) + y;s. (8)

This is since we cannot store all y; in memory until the computation of Efil v(i)yl

K3
finishes.
A pictorial description and a formal description of S-HOTpace are provided
in Fig. 3 and Algorithm 2, respectively. As shown in Lemma 3, S-HOTpacc
requires two scans of X for computing Eq. (3).

Lemma 3 (Scan Cost of S-HOTspace). S-HOT space requires two scans of X for
computing Eq. (3).

16 J. Zhang et al

hind Outer Step 1
n-t l|n ex product Nz
X(:,..,'l) — X &,
X(,e02,0001)
— Y,
A XC,.01,.001) AT s n) o v
.] e 21
scan XDl — >< — il
of X X, 30001)
X, 2,00,10) —
X(@,.03.00) | —> 47:
poopBoap <[5
X
Outer Step 2
n-th index B
i product Ay, s
X(CIYRIPPED) m— X
: g Y
-~ - |
A I_XL‘A" S v’ m s
scan XCer2,.0,1) | T X = X
of X X(G,eer3,001)) — 7,
X, 2,00,10) : AT ¥3
V3 S
X@,..,3..,1) :>,—|XI/I
X

Fig. 3. Illustration of the two steps of S-HOTgpace for computing Eq. (6). Note
that we scan the non-zero entries of X once during each step. (a) First step for
Eq. (7): For each non-zero element, we add its contribution to s. To compute
the contribution to s, we first compute the contribution to the corresponding
row of Y,y (i.e., Ay; where i is the n-th mode index of the element) by outer
products and then multiply it and the corresponding element of v (i.e., v(7)). (b)
Second step for Eq. (8): For each non-zero element, we add its contribution
to the corresponding entry of v/ (i.e., v/(i) where i is the n-th mode index of the
element). To compute the contribution to v’(4), we first compute the contribution
to the corresponding row of Y, (i.e., Ay;) by outer products and then multiply
it and s, which is obtained in the first step.

Proof. Each y; can be computed as follows.

i e XA Y () = Y X(p)x—n{AT}

pee;” (x)
= > X [p"{AY,, (9)
pe6{™ ()
where p is a tuple (i1,...,iy) whose n-th mode index is fixed to ¢; X(p) is an

entry specified by p. Based on each y;, Eq. (7) can be computed progressively

Fast and Memory-Efficient Algorithms for High-Order Tucker Decomposition 17

as follows:
I, n
seY vy =Y v Y Xm) [AY],,
i=1 i=1 pe0l™ (%)
= 3 v)X0) [0, (AY],, - (10)
PEO(X)

Thus, computing Eq. (7) requires only one scan of X. Similarly, Eq. (8) also can
be computed within one scan of X. Therefore, Eq. (6), which consists of Eq. (7)
and Eq. (8), can be computed within two scans of X.]

In Lemma 4, we prove the amount of space required by S-HOT,, for in-
termediate data.

Lemma 4 (Space Complexity in S-HOTgpace). The update step of S-HOT gpace
(lines 16-22 of Algorithm 2) requires

N
o) <1£nnanN(In + H1 Jp/Jn)>
p:

memory space for intermediate data.

Proof. S-HOTgpace maintains v, v/, and s in its update step. When each factor
matrix A is updated, v and v’ are I,, by 1 vectors, and s is a Hévzl Ip/ In
by 1 vector. Thus, O(I, + H;\;l Jp/Jn) space is required in the update step
for each factor matrix A(™). Since the factor matrices are update one by one,
O(maxi<n<n (I + H;V:I Jp/Jn)) space is required at a time. |

4.3. Faster: “S-HOT,..,”

How can we further reduce the number of required scans of the input tensor? We
propose S-HOTg.n, which halves the number of scans of X at the expense of
requiring multiple (disk-resident) copies of X sorted by different mode indices.
In effect, S-HOTcan trades off disk space for speed.

Our key idea for the further optimization is to compute .J, right leading
singular vectors of Y (,,), which are eigenvectors of Y(")TY(n)7 and use the result
to compute the left singular vectors. Let Y(,) = UXVT be the SVD of Y (n)-
Then,

Y, Ve =UZVIVE T =U. (11)
Thus, left singular vectors are obtained from right singular vectors.
S-HOTscan computes top-J,, right singular vectors of Y,y by updating the

vector w € RIlozn 7r a5 follows:
I

w4 Y Yw = Z(YﬁTW)S’r (12)

i=1

The virtue of S-HOT .y is that it requires only one scan of X for calculating
Eq. (12), as stated in Lemma 6.

18 J. Zhang et al

Algorithm 2: Formal description for S-HOT.

Input : N-order tensor: X,
Rank in each mode: J; X --- X Jy
Output: Core tensor: G € R/t X xJIn
Factor matrices: {A}
Initialize {A}
repeat
forn«+1...N do
v < IRAM_init ({,, J,)
repeat
v’ < UpdateMethod (X, n, v)
v < IRAM_doIter(v’)
until IRAM_isconv();

A « getSingularVec()

© 00 N O Uk W N

10 until terminal condition;
11 G+ X x {AT}
12 return G, {A}

13 Subroutine NaiveTucker (X, n,v)
14 Materialize Y,y = [X x_, {AT}] (n) if it does not exist.

15 | return Y(,L)Y(H)Tv

16 Subroutine S-HOTgpace (X, 7, V)
17 s, v <0
18 forall (i1,...,ixy) € O(X) do

19 L s s+v;, X(i1,...,in) [O(il,...,m){A}] .
20 forall (i1,...,in) € O(X) do
21 L Vi v 4+ 8TX (i, i) [o_" “’iN){A}L |

(i1,-

22 return v’

23 Subroutine S-HOTgcan (X, n, W)

24 w 0

25 fori«+1...1, do

26 Yi < Zpe@g'ﬁ(x) x(p) [O;R{A}] (n)
27 W w A+ (v w)y;

28 Deallocate y;

29 return w’

Lemma 5 (Scan Cost for Computing y;). y; can be computed by scanning only
the entries of X whose n-mode index is i.

Proof. Proven by Eq. (9). |

Fast and Memory-Efficient Algorithms for High-Order Tucker Decomposition 19

Lemma 6 (Scan Cost of S-HOTgcan). S-HOT sean computes Eq. (12) within
one scan of X when X is sorted by the n-mode index.

Proof. By Lemma 5, only a section of tensor whose n-mode index is 7 is required
for computing y;. If X is sorted by the nth mode index, we can sequentially
compute each y; on the fly. Moreover, once y; is computed, we can immediately
compute (y7w)y;. After that, we do not need y; anymore, and can discard it.
Thus, Eq. (12) can be computed on the fly within only a single scan of X. W

In this paper, we satisfy the sort constraint for all modes by simply keeping
N copies of X sorted by each mode index.

A formal description for S-HOTgcay is in Algorithm 2. It is assumed that w
is initialized by passing (Hp;ﬁn Jp, Jn) instead of (I, J,,) at Line 4. Although
one additional scan of X is required for computing left singular vectors from the
obtained right singular vectors (Eq. (11)), S-HOTgcay still requires fewer scans
of X than S-HOTgpace since it saves one scan during w’ computation, which is
repeated more frequently.

In Lemma 7, we prove the amount of space required by S-HOT .., for in-
termediate data.

Lemma 7 (Space Complexity of S-HOTscan). The update step of S-HOT sear
(lines 23-29 of Algorithm 2) requires

N
o (12%XN(H Jp/Jn)>
p=1
memory space for intermediate data.

Proof. In its update step for each factor matrix A(”), S-HOT.an maintains
w, W', and y; at a time. All of them are H]ng=1 Jp/Jn by 1 vectors. Thus,

O(HN Jp/Jn) space is required in the update step for each factor matrix A,

p=1
Since the factor matrices are updated one by one, O(maX1§n§N(H;,V:1 Ip/Jn))
space is required at a time. |

4.4. Even Faster: “S-HOT,.cimo”’

How can we make good use of remaining memory when memory is underutilized
by S-HOTscan, which requires little space for intermediate data (see Table 2)?
We propose S-HOT emo, which improves S-HOT ., in terms of speed by in-
troducing the memoization technique. The memoization technique leverages the
spare memory space, which we call memo, to store a part of intermediate data
(i.e., some rows of Y (,)) in memory instead of computing all of them on-the-fly.
Especially, within a given memory budget, S-HOT oo carefully decides the
rows of Y(,) to be memoized so that the speed gain is maximized. A formal
description of S-HOT emo is given in Algorithm 3, where the steps added for
memoization (i.e., lines 5, 14-19, 23-24) are in red.

Given a memory budget B, let k;,, be the maximum number of rows of Y,

that can be memoized within B. When updating each factor matrix A, S-
HOT,,emo memoizes the k,, rows that are most expensive to compute. Such rows

20 J. Zhang et al

810+ 8
5 +, 5 10°
c c
-— 10'5_ —
() ()
3 8
S 10 =
— u= 10
o o
£ 101 =
> > -
o - T (@] - °r T
O 10 16 O 100 180 10
Degree Degree
(a) Degree distribution in the (b) Degree distribution in the
author mode keyword mode
8 100 8 100410%
= I}
@ 751 3
e o
g W7 g
1 p >75%
S 254 S
4 Z
[[
c 0=) :
T T T T T T T T T T
® 0 25 50 75 100 ¥ 0 25 50 75 100
% of Memoized Rows % of Memoized Rows
(¢) % of non-zero entries (d) % of non-zero entries
required for computing required for computing
memoized rows in the author memoized rows in the keyword
mode mode

Fig. 4. Power-law degree distributions in the Microsoft Academic Graph dataset
(see Section 5.3 for a description of the dataset). (a) and (b) show the skewed
degree distributions in the author and keyword modes, which are exploited by S-
HOT memo for speed-up. (¢) and (d) show that S-HOT ,6m0 can avoid accessing
many (e.g., 50-75%) non-zero entries by memoizing a small percentage (e.g.,
10%) of rows.

can be found by comparing the degrees of the n-th mode indices (see Definition 8
for the definition of degree), as described in lines 14-19.

Definition 8 (Degree of Mode Indices). The degree of each n-th mode index i is

defined as |@En) (X)], i.e., the number of non-zero entries whose n-th mode index
18 1.

This is because computing each row y; of Y, takes time proportional the
degree of n-th mode index i (i.e., |@§n) (X)), as shown in Eq. (9). The remaining
steps for updating A(™ are the same as those of S-HOTean except for that the
memoized rows are used, as described in lines 20-29.

This careful choice of the rows of Y (,,) to be memoized in memory is crucial to
speed up the algorithm. This is because, in real-world tensors, the degree of mode
indices often follows a power-law distribution (Clauset et al, 2017), and thus there
exist indices with extremely high degree (see Figs. 4(a) and 4(b) for examples).
By memoizing the rows of Y ,) corresponding to such high-degree indices, S-
HOT emo avoids accessing many non-zero entries (see Figs. 4(c) and 4(d) for

Fast and Memory-Efficient Algorithms for High-Order Tucker Decomposition 21

Algorithm 3: Formal description for S-HOT ,emo. The steps added for
memoization (i.e., lines 5, 14-19, 23-24) are in red.

Input : N-order tensor: X,
Rank in each mode: J; x --- x Jy,
Memory budget for memoization: B (or equivalently ki, ..., kn)

Output: Core tensor: G € R/t X xJIn
Factor matrices: {A}

1 Initialize {A}

2 repeat

3 forn+1...N do

4 v < IRAM_init ({,, J,)

5 Map + Memoization(X, n, k)

6 repeat

7 v/ < Update(X, n, v, Map)

8 v < IRAM_doIter(v’)

9 until IRAM isconv();

10 A « getSingularVec()

11 until terminal condition;
12 G+ X x {AT}
13 return G, {A}

14 Subroutine Memoization(X, n, k,)

15 Top < top-k,, highest-degree n-th mode indices
16 Map <+ an empty map

17 forall i € Top do

18 t Map.put (i, Zpe(f)f”)(DC) X(p) [0, "{A}] (n>)

19 return Map

20 Subroutine Update (X, n, w, Map)

21 w 0

22 fori«+1...1, do

23 if i € Map.keys() then

24 | yi < Map.get(i)

25 else

% [Y1 ¢ Epeor X@) [(A,
27 w —w + (yI'w)y;

28 | Deallocate y;

29 return w’

examples) and thus saves considerable computation time, as shown empirically
in Section 5.5.

We prove the scan cost of S-HOT emo in Lemma 8 and the space complexity
of SSHOT emo In Lemma 9.

Lemma 8 (Scan Cost of S-HOT emo). S-HOT emo computes Eq. (12) within
one scan of X when X is sorted by the n-mode index.

22 J. Zhang et al

Proof. Given memoized rows, S-HOT ,emo computes Eq. (12) in the same way
as does S-HOTgca, only except for that S-HOT j,emo uses the memoized rows.
Thus, S-HOT ,emo and S-HOT..n require the same number of scans of X,
which is one, as shown in Lemma 6. We do not need an additional scan of X for
the memoization step if it is done while Eq. (12) is first computed. |

Lemma 9 (Space Complexity of S-HOT yemo). The update step of S-HOT 1emo
(lines 20-29 of Algorithm 3) requires

N
O (B + 1gia<xj\’(l_[Jp/Jn)>
<ngN
memory space for intermediate data.
Proof. In addition to those maintained in S-HOTg.,,, which require 0(1 max
(Hﬁ;l Jp/Jn)) space at a time (see Lemma 7), S-HOT pemo maintains the mem-

oized rows, whose size is within the given budget B. Thus, O(B—|—max1§n§N(H;V:l Ip/Jn))
space is required at a time. |

Table 3 summaries the key differences of BaselineOpt, S-HOT, S-HOTscan,
S-HOT emo in terms of objective, update equations, and materialized data of
methods. The table also presents the figures illustrating how the methods work.

5. Experiments

In this section, we present experimental results supporting our claim that S-
HOT outperforms state-of-the-art baselines. Specifically, our experiments are
designed to answer the following two questions:

— Q1. How scalable is S-HOT compared to the state-of-the-art competitors with
respect to the dimensionality, the rank, the order, and the number of non-zero
entries?

— Q2. Can S-HOT decompose real-world tensors that are both large-scale and
high-order?

— Q3. How does the memory budget affect the speed of S-HOT 1 emo?

— Q4. How does the degree distribution of the input tensor affect the speed of
S_HOTHIGHIO?

5.1. Experimental setting

Competitors: Throughout all experiments, we use two baseline methods and
three versions of our proposed method:

(1) BaselineNaive: a naive method computing Xx_,{A} in a straight-forward
way.

(2) BaselineOpt (Kolda and Sun, 2008): the state-of-the-art Memory Efficient
Tucker decomposition which computes Y fiber by fiber.

(3) S-HOTpace (Section 4.2): the most space-efficient version of S-HOT.

Fast and Memory-Efficient Algorithms for High-Order Tucker Decomposition 23

Table 4. Statistics of the real-world tensors used in our experiments.

Tensor Non-zeros Order Dimensionality

LBNL 1,698,825 5 1,605 x 4,198 x 1,631 x 4,209 x 868,131
MS Academic Graph 35,400,035 4 9,380,418 x 18,894 x 2,016 x 37,000
Enron 54,202,099 4 6,066 x 5,699 x 244,268 x 1,176

(4) S-HOTscan (Section 4.3): a faster version of S-HOT.

(5) S-HOT 1emo (Section 4.4): the fastest version of S-HOT with the memoization
technique. We set the size of memo so that we can memoize up to 30 rows of
Y () for each n-th mode unless otherwise stated.5

For BaselineOpt and BaselineNaive, we use the implementation in MATLAB Ten-
sor Toolbox 2.6 (Bader and Kolda, 2015). We exclude HATEN2 because HATEN2
is designed for Hadoop, and thus it takes too much time in a single machine.
For example, in order to decompose a synthetic tensor with default parameters,
HATEN2 takes 10,700 seconds for an iteration, which is almost 100x slower
than S-HOTgcan.

Real-world Datasets: We use the following high-order real-world tensors, whose
statistics are given in Table 4:

— LBNL (Smith et al, 2017): This dataset, which was collected during the Traces
project (Pang, 2006), contains information on internal network traffics from
LBNL/ICSI. It is modeled as a 5-order tensor whose modes are sender IPs,
sender ports, destination IPs, destination ports, and timestamps.

— MS Academic Graph (Sinha et al, 2015): This dataset is a snapshot of the
Microsoft Academic Graph on Feb 5, 2016. It contains 42 million papers; 1,283
conferences and 23,404 journals; 115 million authors; and 53,834 keywords used
to annotate the topics of the papers. It is modeled as a 4-order tensor whose
modes are authors, venues, years, and keywords. Since the papers with missing
attributes are ignored, the final tensor is of size 9,380,418 x 18,894 x 2,016 x
37,000.

— Enron (Smith et al, 2017): This dataset, which was collected for an investigation
by the federal energy regulatory commission, contains information on emails
from or to the employees of Enron Corporation (Shetty et al, 2004). It is
modeled as a 4-order tensor whose modes are senders, receivers, words, and
dates, respectively.

Note that both BaselineNaive and BaselineOpt methods fail to run on the three
real-life tensors due to “out-of-memory” errors, while our S-HOT family suc-
cessfully decompose them.

Synthetic Datasets: We also use synthetic tensors mainly to evaluate the
scalability of methods with respect to various factors (i.e., the dimensional-
ity, rank, order, and the number of non-zero entries) by controlling each factor
while fixing the others. We generate synthetic tensors where the degree of their
mode indices follows a Zipf distribution, which is common in real-world data
(Powers, 2017; Adamic and Huberman, 2017). Specifically, to create an N-order

6 The size of the memo never exceeds 200KB unless otherwise stated.

24 J. Zhang et al

tensor, we sample M entries where each n-th mode index is sampled from the
following probability density function:

—

x
Ity

where « is a parameter determining the skewness of the distribution. We set the
value of each entry to 1.7 As default parameter values, we use N = 4, M = 105,
I, = 103 for every n, J, = 8 for every n, and o = 1.5. These default values
are chosen to effectively compare the scalability of competitors. We show that
baselines (i.e., BaselineNaive and BaselineOpt) run out of memory if we increase
these values. All experiments using synthetic datasets are repeated nine times
(three times for each of three randomly generated tensors), and reported values
are the average of the multiple trials.

p(x)

Equipment: All experiments are conducted on a machine with Intel Core i7
4700@3.4GHz (4 cores), 32GB RAM, and Ubuntu 14.04 trusty. Every version
of S-HOT is implemented in C++ with OpenMP library and AVX instruction
set; and the source code is available at http://dm.postech.ac.kr/shot. We
used ARPACK (Lehoucp et al, 1997), which implements IRAM supporting re-
verse communication interface. It is worth noting that ARPACK is an underlying
package for a built-in function called eigs(), which is provided in many popular
numerical computing environments including SCIPy, GNU OCTAVE, and MAT-
LAB. Therefore, S-HOT is numerically stable and has the similar reconstruction
error with eigs() function in the above mentioned numerical computing environ-
ments.

For fairness, we must note that, a fully optimized C++ implementation could
potentially be faster than that of MATLAB, (although that is unlikely, since
MATLAB is extremely well optimized for matrix operations). But in any case,
our main contribution still holds: regardless of programming languages, S-HOT
scales to much larger settings, thanks to our proposed “on-the-fly” computation
(Equations (6) and (12)).

5.2. Q1: Scalability of S-HOT

We evaluate the scalability of the competing methods with respect to various
factors: (1) the order, (2) the dimensionality, (3) the number of non-zero entries,
and (4) the rank. Specifically, we measure the wall-clock time of a single iteration
of each algorithm on synthetic tensors. Note that all the methods have the same
convergence properties, as described in Observation 1 in Section 4.

Order: First, we investigate the scalability of the considered methods with re-
spect to the order by controlling the order of the input tensor from 3 to 6 while
fixing the other factors to their default values. As shown in Fig. 1(a), S-HOT
outperforms baselines. BaselineNaive fails to decompose the 4-order tensor
because it suffers from the intermediate explosion problem. BaselineOpt, which
avoids the problem, is more memory-efficient than BaselineNaive. However, it

7 However, this does not mean that S-HOT is limited to binary tensors nor our implementation
is optimized for binary tensors. We choose binary tensors for simplicity. Generating realistic
values, while we control each factor, is not a trivial task.

http://dm.postech.ac.kr/shot

Fast and Memory-Efficient Algorithms for High-Order Tucker Decomposition 25

fails to decompose a tensor whose order is higher than 4 due to M-Bottleneck.
On the contrary, every version of S-HOT successfully decomposes even the 6-
order tensor. Especially, S-HOT emo is up to 50x faster than S-HOTgpace and
S-HOTscan-

Dimensionality: Second, we investigate the scalability of the considered meth-
ods with respect to the dimensionality. Specifically, we increase the dimension-
ality I,, of every n from 10® to 107. That is, since the default order is 4, we
increase the tensor from 10 x 10% x 10% x 103 to 107 x 107 x 107 x 107. As
shown in Fig. 1(b), S-HOT is several orders of magnitude scalable than
the baselines. Specifically, BaselineNaive fails to decompose any 4-order ten-
sor, and thus it does not appear in the plot. BaselineOpt fails to decompose
tensors with dimensionality larger than 10* since the space for storing Y in-
creases rapidly with respect to the size of dimensionality (M-Bottleneck). On the
contrary, every version of S-HOT successfully decomposes the largest tensor of
size 107 x 107 x 107 x 107. Moreover, the running times of S-HOT e, and S-
HOT hemo are almost constant since they solve the transposed problem, whose
size is independent of the dimensionality. Between them, S-HOT om0 is up to
6x faster than S-HOTcan. On the other hand, the running time of S-HOTpace
depends on dimensionality and increases as the dimensionality becomes greater
than 10°. For smaller dimensionalities, however, the effect of dimensionality on
its running time is negligible because the outer products (i.e., lines 19 and 21 of
Algorithm 2) are the major bottleneck.

Rank: Third, we investigate the scalability of the considered methods with re-
spect to the rank. To show the difference between the competitors clearly, we set
the dimensionality of the input tensor to 20,000 in this experiment. However, the
overall trends do not depend on the parameter values. As shown in Fig. 1(c), the
S-HOT has better scalability than baselines. Specifically, BaselineNaive
fails to decompose any tensor and does not appear in this plot. BaselineOpt fails
to decompose the tensors with rank larger than 6. On the contrary, every version
of S-HOT successfully decompose the tensors with larger ranks. Among them,
S-HOT memo is up to 7x faster than S-HOT oy and S-HOTpace. S-HOTgcan
is faster than S-HOT¢pace but the difference between them decreases as the rank
increases. This is because, as the rank increases, the outer products (i.e., lines 19
and 21 of Algorithm 2) become the major bottleneck, which are common in
S-HOTspace and S-HOTgcan.

Nonzero entries: Lastly, we investigate the scalability of the considered meth-
ods with respect to the number of non-zero entries. We increase the number of
non-zero entries in the input tensor from 10* to 107. As shown in Fig. 1(d),
every version of S-HOT scales near linearly with respect to the number
of non-zero entries. This is because the S-HOT family scans most non-zero en-
tries (especially, S-HO Tpace and S-HOTcay scan all the non-zero entries), and
processing each non-zero entry takes almost the same time. Among them, S-
HOT emo is 4% faster than S-HOTscan and S-HOTgpace. With respect to the
number of non-zero entries, BaselineOpt shows better scalability than S-HOT
since it explicitly materializes Y. Once Y is materialized, since its size does not
depend on the number of non-zero entries, the remaining tasks of BaselineOpt
are not affected by the number of non-zero entries.

26 J. Zhang et al

Table 5. Sample clusters of venues in the Microsoft Academic Graph dataset.

CS-related International Conference on Networking(ICN), Wired/Wireless Internet Com-
munications(WWIC), Database and Expert Systems Applications(DEXA),
Data Mining and Knowledge Discovery, IEEE Transactions on Robotics, ...

Nanotech. Nature Nanotechnology, PLOS ONE, Journal of Experimental Nanoscience,
Journal of Nanoscience and Nanotechnology, Journal of Semiconductors,
Trends in Biotechnology, ...

Clinical European Journal of Cancer, PLOS Biology, Clinical and Applied Thrombosis-
Hemostasis, Journal of Infection Prevention, RBMC Clinical Pharmacology,
Regional Anesthesia and Pain ...

5.3. Q2: S-HOT at work

We test the scalability of S-HOT on the MS Academic Graphdataset. We note
that, since this tensor is high-order and large, both baseline algorithms fail to
handle it running out of memory. However, every version of S-HOT successfully
decomposes the tensor.

To better interpret the result of Tucker decomposition, we runs k-means
clustering (Arthur and Vassilvitskii, 2007) where we treat each factor matrix as
the low-rank embedding of the entities in the corresponding mode, as suggested
in (Kolda and Sun, 2008). Specifically, for Tucker decomposition, we set the
rank of each mode to 8 and run 30 iterations. For k-means clustering, we set the
number of clusters to 400 and run 100 iterations.

Table 5 shows sample clusters in the venue mode. The first cluster contains
many venues related to Computer Science. The second cluster contains many
nano-technology-related venues such as Nature Nanotechnology, Journal of Ex-
perimental Nanoscience. The third one have many venues related to Medical
Science and Diseases. This result indicates that Tucker decomposition discovers
meaningful concepts and groups entities related to each other. However, there is a
vast array of methods for multi-aspect data analysis, and we leave a comparative
study as to which one performs the best for future work.

5.4. Q3: Effect of the memory budget on the speed of
S'HOTmemo

We measure the effect of memory budget B for memoization on the speed of S-
HOT emo using synthetic and real-world tensors. We use three 4-order tensors
with dimensionality 20, 000 for each mode. All the tensors have 10% non-zero en-
tries, while they have different degree distributions characterized by the skewness
« of the Zipf distribution. We also use the real-world datasets listed in Table 4.

Fig. 5(a) shows the result with the synthetic tensors where we set the rank
of each mode to 6. S-HOT ,emo tends to be faster as we use more memory
for memoization. However, the speed-up slows down because we prioritize rows
to be memoized by the degree of the corresponding mode indices, as described
in Section 4.4. As the memory budget increases, S-HOT emo memoizes rows
corresponding to mode indices with smaller degree, which saves less computation.
Notice that, with only the 10KB memory budget, S-HOT ,emo becomes over
3.5x faster than S-HOTg..,, which does not use memoization.

As shown in Figs. 5(b)-5(d), we obtain the same trend with the real-world

Fast and Memory-Efficient Algorithms for High-Order Tucker Decomposition

Speedup under different memoization budgets:

5.5
5.00 +— >2,000X —»
4.5t PPSIEIEILE YSCREXEREREN] A
% 4.0> e Ll LB -}
3 3.5
Q 3.0r¢ > 3.5X speedup
D 2.5 Uk :
2.0 NG all rows are
1' 5@”2’*1 memoized
: & i \
1.0 1 2 3 1
10 10 10 10 10 10

Memo size (KiloBytes)
(a) Synthetic

3.5
3.0
>200X =
525
°
o
% 2.0
> 2X speedup
1.5 all rows are
memoized
L9 10T 107 10° 10° 10° 10°

Memo size (KiloBytes)

(c) Enron

5

3.0 T
> 2,000X —>:
2.5¢ //"d;_
o
=]
o]
3 2.0 1
Q > 2X speedup
[72]
1.5 all rows are
memoized
1.0%3 3 . 5 ‘G\A 7
10° 10° 10° 107 10" 10
Memo size (KiloBytes)
(b) MS Academic Graph
7
e > 20,000X
6
a5
=}
Da
]
o
w3
2 > 2X speedup
10% 107 107 107 10° 10° 10° 107

Memo size (KiloBytes)

(d) Speed-up in the LBNL tensor

FLOPS under different memoization budgets:

1.0
G
308
-g £ > %60 reduction

G

Ta 3 :
L 04)\ “S [#——>2000X —
TQ A :
g w 0.2 all rows are @
S . :
= . memoized :

0 i A,

foo 10t 107 100 10T 10°
Memo size (KiloBytes)
(e) Synthetic

1.0
G
gé 0.8
2 g 0.6 > %60 reduction
Ta
.g » 0.4
©O = > 200X =
§ e 0.2 all rows are
2 memoized

0-P5v 107 107 10° 10° 100 10°

Memo size (KiloBytes)

(g) Enron

1.0

FLOPs Performed
© o ©°
> o o

Normalized number of
©
N

0.

o
Ww s> o N o

FLOPs Performed
N

Normalized Number of
© 0000090 Qo

=y

> %60 reduction

< >2,000X —>

all rows are
memoized

0% 10! 10% 10°

10% 10° 10° 107
Memo size (KiloBytes)

(f) MS Academic Graph

> %60 reduction

>20,000X =

{bﬂ 10T 10%7 10° 10* 10° 10° 10’

Memo size (KiloBytes)
(h) LBNL

27

Fig. 5. S-HOTemo significantly reduces computational cost on both
synthetic and real-world tensors. In the synthetic tensors, S-HOT emo achieves
over 3.5X speed-up by memoizing less than 0.05% of rows with a 10KB memory
budget. In the MS Academic Graphdataset, S-HOT im0 achieves over 2x speed-
up by memoizing less than 0.05% of the rows with a 5MB memory budget. In
(e)-(h), the y-axis represents the number of floating-point operations (FLOPS)
for recomputing ‘unmemoized’ rows of Y ;).

28 J. Zhang et al

tensors. Notice that, in the MS Academic Graphdataset, S-HOT emo becomes
over 2x faster than S-HOT..,, which does not use memoization, with only a
4MB memory budget. S-HOT.,, saves much computation by memoization a
small number of rows due to the power-law degree distributions, shown in Fig. 4.

Additionally, Figs. 5(e)-5(h) show how the normalized number of floating-
point operations (FLOPs) required for recomputing the ‘unmemoized’ rows of
Y (n) changes depending on the memory budget B for memoization. The com-
putation costs are significantly reduced even when a small fraction of rows are
memoized, due to our prioritization scheme.

5.5. Q5: Effect of the skewness of data on the speed of
S'HOTmemo

We measure the effect of the skewness of degree distribution on the speed of
S-HOT emo. To this end, we use three 4-order tensors with different degree
distributions characterized by the skewness « of the Zipf distribution. All of them
have 10% non-zero entries, and their dimensionality for each mode is 20, 000.

Fig. 5(a) shows how rapidly the speed-up of S-HOT emo increases depending
on the skewness «. In tensors with larger «, the speed-up of S-HOT emo tends to
increase faster. For example, with a 2KB memory budget, S-HOT 1m0 achieves
over 2.5x speed-up in the tensor with o = 2.5, while it achieves less than 1.5x
speed up in the tensor with a = 1.5. This is because, with larger o, more non-zero
entries are concentrated in few mode indices.

For every realistic degree distribution with o > 1, S-HOT 1m0 achieves over
3.5x speed-up with a 10KB memory budget. S-HOT ,emo reverts to S-HO Tgean
if the input tensor has an unrealistic uniform degree distribution with o = 0.

6. Conclusions

In this paper, we propose S-HOT, a scalable algorithm for high-order Tucker de-
composition. S-HOT solves M-bottleneck, which existing algorithms suffer from,
by using an on-the-fly computation. We provide three versions of S-HOT: S-
HOTspace,; S-HOTgcan, and S-HOT yemo, Which provide an interesting trade-off
between time and space. We theoretically and empirically show that all versions
of S-HOT have better scalability than baselines.

In summary, our contributions are as follows.

— Bottleneck Resolution: We identify M-Bottleneck (Fig. 2), the scalability
bottleneck of existing Tucker decomposition algorithms and avoid it by a novel
approach based on an on-the-fly computation.

— Scalable Algorithm Design: We propose S-HOT, a Tucker decomposi-
tion algorithm that is carefully optimized for large-scale high-order tensors. S-
HOT successfully decomposes 1000x larger tensors than baselines algorithms
(Fig. 1) with identical convergence properties (Observation 1).

— Theoretical Analyses: We prove the amount of memory space and the num-
ber of data scans that the different versions of S-HOT require (Table 2 and
Lemmas 3-9).

Future work includes reducing redundant computations that occur during TTMcs,

Fast and Memory-Efficient Algorithms for High-Order Tucker Decomposition 29

which is a subroutine of S-HOT, using advanced data structures (e.g., com-
pressed sparse fiber (Smith and Karypis, 2015)), as suggested in (Smith and
Karypis, 2017). For reproducibility and extensibility of our work, we make the
source code of S-HOT publicly available at http://dm.postech.ac.kr/shot.

Acknowledgements. This research was supported by Disaster-Safety Platform Tech-
nology Development Program of the National Research Foundation of Korea (NRF)
funded by the Ministry of Science and ICT (Grant Number: 2019M3D7A1094364) and
the National Research Foundation of Korea (NRF) Grant funded by the Korea govern-
ment (MSIP) (No. 2016R1E1A1A01942642).

A. Examples for Basic Tensor Terminologies and
Operations

We provide examples for basic tensor terminologies and operations defined in
Section 2.2.

Fiber: In a 3-order tensor X, there are 3 kinds of fibers, X(:, 7, k) (mode-1),
X(i,:, k) (mode-2), and X(4,,:) (mode-3) depending on fixed indices.

Slice: In a 3-order tensor X, there are 3 kinds of slices, X(¢,:,:), X(:,7,:), and
X(:,:, k) depending on fixed indices.

Tensor Unfolding/Matricization: The mode-1 unfolding of a 3-order tensor
X € RIx12xIs i5 denoted by X € R x(2Is) Note that, there are multiple
ways to unfold a tensor in terms of the order that the entries of each slice are
stacked. For example, the followings are two different ways of mode-1 unfolding

Xy(i,j + (k= 1)) = X(i, j, k) and X (i, k + (7 — 1)Is) = X(i, j, k).

However, specific orders do not have an impact on our algorithm as long as an
order is used consistently.

N-order Outer Product: The 3-order outer product of vectors a € R!, b €
R’ and ¢ € R¥ is a 3-order tensor of R/*/*K where each (i, j, k)-th entry is

[acboc|(i,j, k) = a(i)b(j)c(k).

References

E. Acar, S. A. Camtepe, M. S. Krishnamoorthy, and B. Yener. Modeling and multiway analysis
of chatroom tensors. In ISI, 2005.

L. A. Adamic and B. A. Huberman. Zipf’s law and the Internet. Glottometrics, 3(1):143-150,
2002.

D. Arthur, S. Vassilvitskii. k-means++: The advantages of careful seeding. SODA, 2007

W. Austin, G. Ballard, and T. G. Kolda. Parallel tensor compression for large-scale scientific
data. In IPDPS, 2016.

B. W. Bader, and T. G. Kolda Matlab tensor toolbox version 2.6. http://www.sandia.gov/
~tgkolda/TensorToolbox/

M. Baskaran, B. Meister, N. Vasilache, and R. Lethin. Efficient and Scalable Computations
with Sparse Tensors HPEC, 2012

http://dm.postech.ac.kr/shot
http://www.sandia.gov/~tgkolda/TensorToolbox/
http://www.sandia.gov/~tgkolda/TensorToolbox/

30 J. Zhang et al

M. W. Berry. Large-scale sparse singular value computations. The International Journal of
Supercomputing Applications 6(1):13—-49, 1992.

A. Beutel, A. Kumar, E. E. Papalexakis, P. P. Talukdar, C. Faloutsos, and E. P. Xing. Flexifact:
Scalable flexible factorization of coupled tensors on hadoop. In SDM, 2014.

Y. Cai, M. Zhang, D. Luo, C. Ding, and S. Chakravarthy. Low-order tensor decompositions
for social tagging recommendation. In WSDM, 2011.

Y. Chi, B. L. Tseng, and J. Tatemura. Eigen-trend: Trend analysis in the blogosphere based
on singular value decompositions. In CIKM, 2006.

D. Choi, J. G. Jang, and U Kang. Fast, Accurate, and Scalable Method for Sparse Coupled
Matrix-Tensor Factorization. arXiv preprint arXiv:1708.08640, 2017

J. Choi, X. Liu, V. Chakaravarthy. High-performance dense tucker decomposition on GPU
clusters. SC, 2018

J. H. Choi and S. Vishwanathan. Dfacto: Distributed factorization of tensors. In NIPS, 2014.

A. Clauset, C. R. Shalizi, and M. E. Newman. Power-law distributions in empirical data. SIAM
review, 51(4):661-703, 2009.

J. E. Cohen, R. C. Farias, and P. Comon. Fast decomposition of large nonnegative tensors.
IEEE Signal Processing Letters, 22(7):862-866, 2015.

A. L. de Almeida and A. Y. Kibangou. Distributed computation of tensor decompositions in
collaborative networks. In CAMSAP, pages 232—-235, 2013.

A. L. de Almeida and A. Y. Kibangou. Distributed large-scale tensor decomposition. In
ICASSP, 2014.

T. Franz, A. Schultz, S. Sizov, and S. Staab. Triplerank: Ranking semantic web data by tensor
decomposition. In ISWC, 2009.

L. Grasedyck. Hierarchical singular value decomposition of tensors. SIAM Journal on Matriz
Analysis and Applications, 31(4):2029-2054, 2010.

B. Jeon, I. Jeon, L. Sael, and U. Kang. Scout: Scalable coupled matrix-tensor factorization -
algorithm and discoveries. In ICDE, pages 811-822, 2016.

I. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos. Haten2: Billion-scale tensor decompo-

sitions. In ICDE, 2015.

Kang, E. Papalexakis, A. Harpale, and C. Faloutsos. Gigatensor: scaling tensor analysis up

by 100 times-algorithms and discoveries.e In KDD, 2012.

Kaya, and B. Ucar. Scalable sparse tensor decompositions in distributed memory systems.

SC, 2015

Kaya, and B. Ucar. High performance parallel algorithms for the tucker decomposition of

sparse tensors. /CCP, 2016

G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review,

51(3):455-500, 2009.

G. Kolda and J. Sun. Scalable tensor decompositions for multi-aspect data mining. In

ICDM, 2008.

G. Kolda, B. W. Bader, and J. P. Kenny. Higher-order web link analysis using multilinear

algebra. In ICDM, 2005.

. Lamba, V. Nagarajan, K. Shin, and N. Shajarisales. Incorporating side information in
tensor completion. In WWW Companion, 2016.

. De Lathauwer, B. De Moor, and J. Vandewalle On the best rank-1 and rank-(R1, R2,..., Rn)
approximation of higher-order tensors SIAM journal on Matriz Analysis and Applications
21(4):1324-1342, 2000.

L. De Lathauwer, B. De Moor, and J. Vandewalle A multilinear singular value decomposition

SIAM journal on Matriz Analysis and Applications 21(4):1253-1278, 2000.
R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK: Solution of Large Scale Eigenvalue
Problems by Implicitly Restarted Arnoldi Methods. Available from netlib@ornl.gov, 1997.
J. Li, J. Choi, I. Perros, J. Sun and R. Vuduc Model-driven sparse CP decomposition for
higher-order tensors In IPDPS, 2017

J. Li, J. Sun, and R. Vuduc HiCOO: hierarchical storage of sparse tensors. In SC, 2018

B. Liu, C. Wen, A. D. Sarwate, and M. M. Dehnavi A unified optimization approach for sparse

K

g2 2 =2 0 0 4

=

tensor operations on GPUs. In CLUSTER, 2017
. Maruhashi, F. Guo, and C. Faloutsos. Multiaspectforensics: Pattern mining on large-scale
heterogeneous networks with tensor analysis. In ASONAM, 2011.
S. Moghaddam, M. Jamali, and M. Ester. Etf: extended tensor factorization model for person-
alizing prediction of review helpfulness. In WSDM, 2012.
J. Oh, K. Shin, E. E. Papalexakis, C. Faloutsos, and H. Yu. S-hot: Scalable high-order tucker
decomposition In WSDM, pages 761-770, 2017.

Fast and Memory-Efficient Algorithms for High-Order Tucker Decomposition 31

S. Oh, N. Park, L. Sael and U Kang. Scalable Tucker Factorization for Sparse Tensors - Algo-
rithms and Discoveries In ICDE, pages 1120-1131, 2018.

E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos. Parcube: Sparse parallelizable
candecomp-parafac tensor decomposition. TKDD, 10(1):3, 2015.

E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos. Tensors for data mining and data
fusion: Models, applications, and scalable algorithms. TIST, 8(2):16, 2016.

I. Perros, R. Chen, R. Vuduc, and J. Sun. Sparse hierarchical tucker factorization and its
application to healthcare. In ICDM, 2015.

R. Pang, M. Allman, V. Paxson, and J. Lee. The devil and packet trace anonymization. ACM
SIGCOMM Computer Communication Review, 36(1):29-38, 2014.

D. M. Powers. Applications and explanations of Zipf’s law. In NeMLaP/CoNLL, 1998

S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor factorization for personalized

tag recommendation. In WSDM, 2010.

Saad. Numerical Methods for Large Eigenvalue Problems. Society for Industrial and Applied

Mathematics, 2011.

. Sael, I. Jeon, and U. Kang. Scalable tensor mining. Big Data Research, 2(2):82-86, 2015.

. Smith and G. Karypis. Tensor-matrix products with a compressed sparse tensor. [A3, 2015

. Smith and G. Karypis. Accelerating the tucker decomposition with compressed sparse

tensors. Furo-Par, 2017

. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis. FROSTT: The

formidable repository of open sparse tensors and tools. http://frostt.io/.

Shin, B. Hooi, and C. Faloutsos. Fast, Accurate, and Flexible Algorithms for Dense Sub-

tensor Mining. TKDD, 12(3)28:1-28:30, 2018.

Shin, B. Hooi, J. Kim, and C. Faloutsos. DenseAlert: Incremental Dense-Subtensor Detec-

tion in Tensor Streams. In KDD, 2017.

Shin, S. Lee, and U. Kang. Fully scalable methods for distributed tensor factorization.

TKDE, 29(1):100-113, 2017.

D. Sidiropoulos and A. Kyrillidis. Multi-way compressed sensing for sparse low-rank tensors.

IEEE Signal Processing Letters, 19(11):757-760, 2012.

Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. P. Hsu, and K. Wang. An overview of

microsoft academic service (mas) and applications. In WWW Companion, 2015.

Smilde, R. Bro, and P. Geladi. Multi-way analysis: applications in the chemical sciences.

John Wiley & Sons, 2005.

J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs: Dynamic tensor analysis. In
KDD, 2006.

J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and Z. Chen. Cubesvd: A novel approach to personalized
web search. In WWW, 2005.

C. E. Tsourakakis. Mach: Fast randomized tensor decompositions. In SDM, pages 689-700.
SIAM, 2010.

L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika,
31(3):279-311, 1966.

N. Vervliet, O. Debals, L. Sorber, and L. De Lathauwer. Breaking the curse of dimensionality
using decompositions of incomplete tensors: Tensor-based scientific computing in big data
analysis. IEEE Signal Processing Magazine, 31(5):71-79, 2014.

J. Shetty and J. Adibi. The Enron email dataset database schema and brief statistical report,
Information sciences institute technical report, University of Southern California.

nmH <

wn

> > 2z R = A

Author Biographies

Jiyuan Zhang is a Ph.D. student in Electrical and Computer Engi-
neering Dapartment of Carnegie Mellon University. Her research inter-
ests lies in high performance computing with applications in machine
learning and data mining.

http://frostt.io/

32

J. Zhang et al

Jinoh Oh is a computer scientist at Adobe Systems Inc. He received
his Ph.D. in Computer Science and Engineering from Pohang Univer-
sity of Science and Technology. His research interests include recom-
mendation and scalable machine learning.

Kijung Shin is an Assistant Professor of the School of Electrical En-
gineering at KAIST. He received his Ph.D. in Computer Science from
Carnegie Mellon University in 2019. He received his B.S. in Computer
Science and Engineering from Seoul National University in 2015. His
research interests include graph mining and scalable machine learning.

Evangelos E. Papalexakis is an Assistant Professor of the CSE
Dept. at University of California Riverside. He received his PhD de-
gree at the School of Computer Science at Carnegie Mellon University
(CMU). Prior to CMU, he obtained his Diploma and MSc in Elec-
tronic & Computer Engineering at the Technical University of Crete,
in Greece. Broadly, his research interests span the fields of Data Min-
ing, Machine Learning, and Signal Processing. His research involves
designing scalable algorithms for mining large multi-aspect datasets,
with specific emphasis on tensor factorization models, and applying
those algorithms to a variety of real world multi-aspect data prob-
lems. His work has appeared in KDD, ICDM, SDM, ECML-PKDD,
WWW, PAKDD, ICDE, ICASSP, IEEE Transactions of Signal Pro-
cessing, and ACM TKDD.

Christos Faloutsos is a Professor at Carnegie Mellon University. He
has received the Presidential Young Investigator Award by the Na-
tional Science Foundation (1989), the Research Contributions Award
in ICDM 2006, the SIGKDD Innovations Award (2010), 24 “best pa-
per” awards (including 5 “test of time” awards), and four teaching
awards. Eight of his advisees have attracted KDD or SCS disserta-
tion awards, He is an ACM Fellow, he has served as a member of the
executive committee of SIGKDD; he has published over 350 refereed
articles, 17 book chapters and two monographs. He holds seven patents
(and 2 pending), and he has given over 40 tutorials and over 20 in-
vited distinguished lectures. His research interests include large-scale
data mining with emphasis on graphs and time sequences; anomaly
detection, tensors, and fractals.

Hwanjo Yu is a Professor in the Department of Computer Science
and Engineering at POSTECH, South Korea since 2008. He received
his PhD under the supervision of Prof. Jiawei Han at the University of
Ilinois at Urbana-Champaign at 2004, and worked as an assistant pro-
fessor at the University of Iowa until 2007. He has a broad background
in data mining and machine learning and published over 100 papers in
top-tier conferences and journals. His recent research interests include
scalable machine learning and recommender system.

	Introduction
	Preliminaries
	Tensors and Notations
	Basic Tensor Terminologies and Operations
	Tucker decomposition
	Implicitly Restarted Arnoldi Method (IRAM)

	Related Work
	Intermediate Data Explosion
	Scalable Tucker decomposition
	Limitation: M-bottleneck
	Scalable Algorithms for Other Tensor Decomposition Models

	Proposed Method: S-HOT
	First step: ``Naive S-HOT''
	Proposed: ``S-HOTspace''
	Faster: ``S-HOTscan''
	Even Faster: ``S-HOTmemo''

	Experiments
	Experimental setting
	Q1: Scalability of S-HOT
	Q2: S-HOT at work
	Q3: Effect of the memory budget on the speed of S-HOTmemo
	Q5: Effect of the skewness of data on the speed of S-HOTmemo

	Conclusions
	Examples for Basic Tensor Terminologies and Operations
	References

