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Abstract—Sets have been used for modeling various types of
objects, and measuring similarity between them has been a key
building block of a wide range of applications. However, as
sets have grown in numbers and sizes, the computational cost
and storage required for set similarity computation have become
substantial. In this work, we propose SET2BOX, which represents
sets as boxes to precisely capture overlaps of sets and thus accu-
rately estimate various similarity measures. Additionally, based
on the proposed box quantization scheme, we design SET2BOX+,
which yields more concise but more accurate box representations
of sets. Through extensive experiments on 8 real-world datasets,
we show that, compared to baseline approaches, SET2BOX+ is
(a) Accurate: achieving up to 40.8× smaller estimation error while
requiring 60% fewer bits to encode sets, (b) Concise: yielding up
to 96.8× more concise representations with similar estimation
error, and (c) Versatile: enabling the estimation of four set-
similarity measures from a single representation of each set. For
reproducibility, the source code and datasets used in the paper
are available at https://github.com/geon0325/Set2Box.

I. INTRODUCTION

Sets are ubiquitous, modeling various types of objects
in many domains, including texts, purchase records, social
circles, and online discussions. Moreover, a number of set
similarity measures (e.g., Jaccard Index), most of which are
based on the overlaps between sets, have been developed.

As a result of the omnipresence of sets, measuring their
similarity has been employed as a fundamental building block
of a wide range of applications, including (a) plagiarism
detection: a document is modeled as a “bag of words,” and
documents whose set representations are highly similar are
suspected of plagiarism [1], (b) gene expression mining: the
functionality of a set of genes is estimated by comparing
the set with other sets with known functionality [2], (c)
recommendation: users who purchased similar sets of items
are identified for collaborative filtering [3], and more (e.g.,
graph compression [4] and medical image analysis [5]).

As sets grow in numbers and sizes, computation of set
similarity requires substantial computational cost and storage.
For example, similarities between tens of thousands of movies,
which are represented as sets of up to hundreds of thousands
of users who have rated them, were measured for movie
recommendation [3]. In order to reduce the space and com-
putation required for set-similarity computation, a number of
approaches based on hashing and sketching [6], [7] have been
developed. While their simplicity and theoretical guarantees

are tempting, significant gains are expected if patterns in a
given collection of sets can be learned and exploited.

In this paper, we propose SET2BOX, a learning-based
approach for compressed representations of sets from which
various similarity measures can be estimated accurately in
constant time. The key idea of SET2BOX is to represent sets as
boxes, which share primary characteristics of sets, to capture
the overlaps between sets and thus their similarity based on
them. In addition, we propose SET2BOX+, which yields even
more concise but more accurate boxes based on the proposed
box quantization scheme. Our contributions are as follows:
• Accurate & Versatile Algorithm: We propose SET2BOX, a

set representation learning method that accurately preserves
similarity between sets in terms of four measures.

• Concise & Effective Algorithm: Based on an end-to-
end box quantization scheme, we devise SET2BOX+ which
yields more accurate and concise similarity estimation.

• Extensive Experiments: Using 8 real-world datasets, we
validate the advantages of SET2BOX+ over its competitors
and the effectiveness of each of its components.
In Section II, we review related work. In Section III, we pro-

vide preliminaries. In Section IV, we present SET2BOX and
SET2BOX+. In Section V, we provide experimental results.
Lastly, we offer conclusions in Section VI.

II. RELATED WORK

Similarity-Preserving Embedding: Representation learning
for preserving similarities between instances has been studied
for graphs [8], [9], images [10], and texts [11]. These methods
aim to yield high-quality embeddings by minimizing the
information loss of the original data. However, most of them
are designed to preserve the predetermined similarity matrix,
which are not extensible to new measures [9].
Box Embedding: Thanks to the powerful expressiveness of
boxes [12], they have been used in diverse applications includ-
ing knowledge bases [13]–[15], word embedding [16], image
embedding [17], and recommender systems [18], [19]. In an
algorithmic aspect, methods for improving the optimization of
learning boxes (e.g., Gaussian convolutions [20] and Gumbel
random variables [21]) have been presented.
Differentiable Product Quantization: Product quantization
[22], [23] is an effective strategy for vector compression, and
recently, deep learning methods for learning discrete codes in
an end-to-end manner have been proposed [24], [25].



III. PRELIMINARIES

In this section, we introduce notations and define the prob-
lem. Then, we review some intuitive methods for the problem.
Notations: Consider a set S = {s1, · · · , s|S|} of sets and a set
E = {e1, · · · , e|E|} of entities. Each set s ∈ S is a non-empty
subset of E and its size (i.e., cardinality) is denoted by |s|. A
representation of the set s is denoted by zs and its encoding
cost (the number of bits to encode zs) in bits is denoted by
Cost(zs). Refer to Table I for frequently-used notations.
Problem Definition: The problem of learning similarity-
preserving set representations is formulated as:

Problem 1 (Similarity-Preserving Set Embedding).
1) Given: (1) a set S of sets and (2) a budget b
2) Find: a latent representation zs of each set s ∈ S
3) to Minimize: the difference between (1) the similarity

between s and s′, and (2) the similarity between zs and
zs′ for all s ̸= s′ ∈ S

4) Subject to: the total encoding cost Cost({zs : s ∈ S}) ≤ b.

In this paper, we consider four set-similarity measures and
use the mean squared error (MSE)1 to measure the differences,
while our proposed methods are not specialized to the choices.
Desirable Properties: We expect set embeddings for Prob-
lem 1 to be: (a) accurate: similarities approximated using
learned representations are close to those between sets, (b)
concise: less amount of memory is desirably used to store em-
beddings while keeping them informative, (c) generalizable:
embeddings of unseen sets can be obtained, (d) versatile:
representations can be used to approximated diverse similarity
measures, and (e) fast: set similarities are rapidly estimated.
Intuitive Methods: We discuss simple and intuitive set-
embedding methods for similarity preservation.
• Random Hashing [6]: Each set s is encoded as a binary

vector zs by mapping each entity into one of the d different
values using a hash function h(·) : E → {1, · · · , d}. Specif-
ically, the representation zs ∈ {0, 1}d is derived by zs[i] is
1 if ∃e ∈ s s.t. h(e) = i and 0 otherwise. The size of the
set s is estimated from the L1 norm of zs, i.e., |s| ≈ ∥zs∥1.
In addition, sizes of the intersection and the union of sets
s and s′ are estimated from |s ∩ s′| ≈ ∥zs AND zs′∥1
and |s ∪ s′| ≈ ∥zs OR zs′∥1, respectively, where AND
and OR are dimension-wise operations. Based on these
approximations, any set similarities can be estimated.

• Vector Embedding: Another popular approach is to repre-
sent sets as vectors and compute the inner products between
them to estimate a predefined set similarity. More precisely,
given two sets s and s′ and their vector representations zs
and zs′ , it aims to approximate predefined sim(s, s′) by the
inner product of zs and zs′ , i.e., ⟨zs, zs′⟩ ≈ sim(s, s′).

However, random hashing cannot accurately represent sets
whose sizes are larger than d, and vector embedding shows
weakness in its versatility, i.e., it can only preserve a prede-
fined similarity measure. The proposed end-to-end methods,
SET2BOX and SET2BOX+, effectively address these issues.

1∑
s̸=s′∈S |sim(s, s′)− ŝim(zs, zs′ )|

2
sim(·, ·) and ŝim(·, ·) are similar-

ity between sets and that between latent representations, respectively.

TABLE I: Frequently-used symbols.

Notation Definition

S = {s1, ..., s|S|} set of sets
E = {e1, ..., e|E|} set of entities

B = (c, f) a box with center c and offset f
V(B) volume of box B

T + and T − a set of positive & negative samples

Qc ∈ R|E|×d center embedding matrix of entities
Qf ∈ R|E|×d

+ offset embedding matrix of entities

D number of subspaces
K number of key boxes in each subspace

IV. PROPOSED METHOD

In this section, we first present SET2BOX, a novel algorithm
for learning similarity-preserving set representations using
boxes. Then we propose SET2BOX+, an advanced version of
SET2BOX, which derives better conciseness and accuracy.

A. SET2BOX: Preliminary Version

We first present SET2BOX, a preliminary set representation
method that effectively learns the set itself and the structural
relations with other sets for similarity preserving.
Concepts: A box is a d-dimensional hyper-rectangle whose
representation consists of its center and offset [12]. The center
describes the location of the box in the latent space and the
offset is the length of each edge of the box. Formally, given a
box B = (c, f) whose center c ∈ Rd and offset f ∈ Rd

+ are in
the same latent space, the box is defined as a bounded region:

B ≡ {p ∈ Rd : c− f ⪯ p ⪯ c + f}.

Let m ∈ Rd and M ∈ Rd be the vectors of the minimum and
the maximum at each dimension, respectively, i.e., m = c− f
and M = c+ f . The intersection of two boxes BX = (cX , fX)
and BY = (cY , fY ) is also a box, represented as:

BX ∩ BY≡{p ∈ Rd : max(mX ,mY ) ⪯ p ⪯ min(MX ,MY )}.

The volume V(B) of the box B is computed by the product
of the length of an edge in each dimension, i.e., V(B) =∏d

i=1(M[i]−m[i]). The volume of the union of the two boxes
is simply computed by V(BX) + V(BY )− V(BX ∩ BY ).
Representation: The core idea of SET2BOX is to model
each set s as a box Bs = (cs, fs) so that the relations with
other sets are properly preserved in the latent space. To this
end, SET2BOX approximates the volumes of the boxes to
the relative sizes of the sets, i.e., V(Bs) ∝ |s|. In addition,
it aims to preserve the relations between different sets by
approximating the volumes of the intersection of the boxes to
the intersection sizes of the sets, i.e., V(Bsi ∩Bsj ) ∝ |si∩sj |.
Objective: Recall that our goal is to derive accurate and
versatile representations of sets, and towards the first goal,
we take relations beyond pairwise into consideration. To this
end, we design an objective function that aims to preserve
elemental relations among triple of sets. Specifically, given a
triple {si, sj , sk} of sets, we consider seven cardinalities from
different levels of subsets: (1) |si|, |sj |, |sk|, (2) |si ∩ sj |,
|sj ∩ sk|, |sk ∩ si|, and (3) |si ∩ sj ∩ sk| which contain single,



pair, and triple-wise information, respectively, and we denote
them from c1(si, sj , sk) to c7(si, sj , sk). These elements fully-
describe the relations among the three sets, and any similarity
measures are computable using them. In this regard, we aim
to preserve the ratios of the seven cardinalities by the volumes
of the boxes Bsi , Bsj , and Bsk by minimizing the objective:

J (si, sj , sk,Bsi ,Bsj ,Bsk) =∑7

ℓ=1

(
pℓ(si, sj , sk)− p̂ℓ(Bsi ,Bsj ,Bsk)

)2
,

where pℓ is the ratio of the ℓth cardinality among the three
sets (i.e., pℓ = cℓ/

∑
ℓ′ cℓ′ ) and p̂ℓ is the corresponding ratio

estimated by the boxes. We sample a set T + of positive triples
(three overlapping sets) and a set T − of negative triples (three
uniform random sets) and, using T = T + ∪ T −, minimize

L =
∑

{si,sj ,sk}∈T
J (si, sj , sk,Bsi ,Bsj ,Bsk ). (1)

Notably, the proposed objective function aims to capture not
only the pairwise interactions between sets, but also the triple-
wise relations to capture high-order overlapping patterns of the
sets. In addition, it does not rely on any predefined similarity
measure. It is a general objective for learning key structural
patterns of sets and their neighbors, and thus it enables the
model to yield accurate estimates to diverse metrics.
Box Embedding: Then, how can we derive the box Bs of a
set s, i.e., its center cs and offset fs? To make the method
generalizable to unseen sets, we introduce a pair of learnable
matrices Qc ∈ R|E|×d and Qf ∈ R|E|×d

+ of entities, where
Qc

i ∈ Rd and Qf
i ∈ Rd

+ represent the center and offset of an
entity ei, respectively.

Then, the embeddings of the entities in the set s are
aggregated to obtain cs and rs.

Here, we use attentions to highlight the entities that are
important to obtain the center or the offset of the box. To
this end, we define a pooling function that takes the context
of each set into account, termed set-context pooling (SCP).
Specifically, given a set s and an item embedding matrix Q
(which can be either Qc or Qf ), it first obtains the set-specific
context vector bs:

bs =
∑
ei∈s

αiQi where αi =
exp(a⊺Qi)∑

ej∈s exp(a
⊺Qj)

where a is a global context vector shared by all sets. Then
using the context vector bs, which specifically contains the
information on set s, it obtains the output embedding from:

SCP(s,Q) =
∑
ei∈s

ωiQi where ωi =
exp(b⊺sQi)∑

ej∈s exp(b
⊺
sQj)

.

To be precise, cs = SCP(s,Qc) and fs = |s| 1d SCP(s,Qf). For
the offset fs, we multiply an additional regularizer |s| 1d without
which a natural condition for boxes (spec., minei∈s Q

f
i ⪯ fs ⪯

maxei∈s Q
f
i) does not hold (see [26] for details).

Smoothing Boxes: By definition, a box B = (c, f) is a
bounded region with hard edges whose volume is V(B) =∏d

i=1 ReLU(M[i] − m[i]) where m = c − f and M = c + f .

This, however, disables gradient-based optimization when
boxes are disjoint [20], and thus we smooth the boxes by
V(B) =

∏d
i=1 Softplus(M[i] − m[i]) where Softplus(x) =

1
β log (1 + exp(βx)) is an approximation to ReLU(x), and it
becomes closer to ReLU as β increases. In this way, any pairs
of boxes overlap each other, and thus non-zero gradients are
computed for optimization.
Encoding Cost: Each box consists of two vectors, a center
and an offset, and it requires 2 · 32d = 64d bits to encode
them. 2 Thus, 64|S|d bits are required for |S| sets.

B. SET2BOX+: Advanced Version

We describe SET2BOX+, which enhances SET2BOX in
terms of conciseness and accuracy, based on an end-to-end
box quantization scheme. Specifically, SET2BOX+ compresses
the the box embeddings into a compact set of key boxes and
a set of discrete codes to reconstruct the original boxes.
Box Quantization: We propose box quantization, a novel
scheme for compressing boxes by using substantially smaller
number of bits. Note that conventional product quantization
methods [24], which are for vector compression, are straight-
forwardly applicable, by independently reducing the center
and the offset of the box. However, it hardly makes use of
geometric properties of boxes, and thus it does not properly
reflect the complex relations between them. The proposed box
quantization scheme effectively addresses this issue through
two steps: (1) box discretization and (2) box reconstruction.
◦ Box Discretization. Given a box Bs = (cs, fs) of set s,
we discretize the box as a K-way D-dimensional discrete
code Cs ∈ {1, · · · ,K}D which is more compact and requires
much less number of bits to encode than real numbers. To
this end, we divide the d-dimensional latent space into D
subspaces (Rd/D) and, for each subspace, learn K key boxes.
Specifically, in the ith subspace, the jth key box is denoted
by K

(i)
j = (c

(i)
j , f

(i)
j ) where c

(i)
j ∈ Rd/D and f

(i)
j ∈ Rd/D

+ are
the center and offset of the key box, respectively. The original
box Bs is also partitioned into D sub-boxes B

(1)
s , · · · ,B(D)

s

and the ith code of Cs is decided by:

Cs[i] = argmax
j

sim
(
B(i)

s , K
(i)
j

)
where sim(·, ·) measures the similarity between two boxes, and
we can flexibly select the criterion. In this paper, we specify
the sim function, using softmax, as:

Cs[i] = argmax
j

exp
(

BOR
(
B

(i)
s ,K

(i)
j

))
∑

j′ exp
(

BOR
(
B

(i)
s ,K

(i)

j′

)) (2)

where BOR (Box Overlap Ratio) is defined to measure how
much a box BX and a box BY overlap:

BOR(BX ,BY ) =
1

2

(
V(BX ∩ BY )

V(BX)
+

V(BX ∩ BY )

V(BY )

)
.

As shown in Figure 1, the proposed box quantization scheme
incorporates the geometric relations between boxes, differently

2We assume that we are using float-32 to represent each real number.
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Fig. 1: An example of (a) product quantization and (b)
box quantization when D (number of subspaces) = 2 and
K (number of key boxes) = 3. The proposed box quantiza-
tion incorporates geometric relations between boxes.

from conventional product quantization methods on vectors.
To sum up, for each ith subspace, we search for the key sub-
box closest to the sub-box B

(i)
s and assign its index as the ith

dimension’s value of its discrete code.
◦ Box Reconstruction. Once the discrete code Cs of set
s is generated, in this step, we reconstruct the original box
based on it. To be specific, we obtain the reconstructed box
B̂s = (ĉs, f̂s) by concatenating D key boxes from each
subspace encoded in Cs, i.e., B̂s = ∥Di=1K

(i)
Cs[i]

. That is, B̂s is
reconstructed by concatenating the centers and the offsets of
the D key boxes respectively. Since Cs encodes key boxes
that largely overlap with the box Bs (i.e., high BOR), if
properly encoded, we can expect the reconstructed box B̂s

to be geometrically similar to the original box Bs.
Differentiable Optimization: Recall that SET2BOX+ is an
end-to-end differentiable algorithm. However, the argmax
operation in Eq. (2) is non-differentiable, and to this end, we
utilize the softmax with the temperature τ :

C̃(i)
s [j] =

exp
(

BOR
(
B

(i)
s ,K

(i)
j

)
/τ

)
∑

j′ exp
(

BOR
(
B

(i)
s ,K

(i)

j′

)
/τ

) . (3)

C̃
(i)
s is a K-dimensional probabilistic vector whose jth element

indicates the probability for K(i)
j being assigned as the closest

key box, i.e., the probability of Cs[i] = j. Then, the key box
K̃

(i)
s = (c̃

(i)
s , f̃

(i)
s ) in the ith subspace is the weighted sum of the

K key boxes, i.e., K̃(i)
s =

∑K
j=1 C̃

(i)
s [j]·K(i)

j . If τ = 0, Eq. (3)
is equivalent to the argmax function, i.e., a one-hot vector
where Cs[i]

th dimension is 1 and others are 0. In this case, K̃(i)
s

becomes equivalent to K
(i)
Cs[i]

, which is the exact reconstruction
derivable from the discrete code Cs. However, since this hard
selection is non-differentiable and thus prevents an end-to-
end optimization, we resort to the approximation by using the
softmax with τ ̸= 0 which is fully differentiable. Specifically,
we use different τs’ in forward (τ = 0) and backward (τ = 1)
passes, which effectively enables differentiable optimization.
Joint Training: For further improvement, we introduce a joint
learning scheme in the box quantization scheme. Given a triple
{si, sj , sk} of sets from the training data T , we obtain their
boxes Bsi , Bsj , and Bsk and their reconstructed ones B̂si , B̂sj ,
and B̂sk using the box quantization. While the basic version of
SET2BOX+ optimizes J (si, sj , sj , B̂si , B̂sj , B̂sk), we jointly
train the original boxes together with the reconstructed ones

so that both types of boxes can achieve high accuracy. To this
end, we consider the following eight losses:

J (si, sj , sj ,Bsi ,Bsj ,Bsk), J (si, sj , sj , B̂si ,Bsj ,Bsk),

J (si, sj , sj ,Bsi , B̂sj ,Bsk), J (si, sj , sj ,Bsi ,Bsj , B̂sk),

J (si, sj , sj , B̂si , B̂sj ,Bsk), J (si, sj , sj , B̂si ,Bsj , B̂sk),

J (si, sj , sj ,Bsi , B̂sj , B̂sk), J (si, sj , sj , B̂si , B̂sj , B̂sk),

where we denote them by J1 to J8, for the sake of brevity.
Notably, J1, which utilizes only the original boxes, is an
objective used for SET2BOX, and J8 considers only the
reconstructed boxes. Based on these joint views from different
types of boxes, the final loss function we aim to minimize is:

L =
∑

{si,sj ,sk}∈T

λ (J1 + J2 + J3 + J4 + J5 + J6 + J7) + J8, (4)

where λ is the coefficient for balancing the losses between
the joint views and the loss from the reconstructed boxes.
In this way, both original and reconstructed ones are trained
together in the latent space. Note that even though both types
of boxes are jointly trained to achieve high accuracy, only the
reconstructed boxes are used for inference.
Encoding Cost: To encode the box for each set, SET2BOX+

requires (1) key boxes and (2) discrete codes to encode each
set, which requires 64Kd bits and |D log2 K bits, respectively.
Thus, it requires 64Kd+ |S|D log2 K bits to encode |S| sets.
Notably, if K ≪ |S|, then 64Kd bits are negligible, and
typically, D log2 K ≪ 64d holds. Thus, the encoding cost
of SET2BOX+ is considerably smaller than that of SET2BOX.
Similarity Computation: Once we obtain set representations,
it is desirable to rapidly compute the estimated similarities
in the latent space. Boxes, which SET2BOX and SET2BOX+

derive, require constant time (O(d)) to compute a pairwise
similarity between two sets (formalized in [26]).

V. EXPERIMENTAL RESULTS

We review our experiments designed for answering Q1-Q3.
Q1. Accuracy & Conciseness: Does SET2BOX+ derive con-

cise and accurate set representations than its competitors?
Q2. Effectiveness: How does SET2BOX+ yield concise and

accurate representations? Are all its components useful?
Q3. Effects of Parameters: How do the parameters of

SET2BOX+ affect the quality of set representations?

A. Experimental Settings

Below, we briefly describe settings (see [26] for details).
Machines & Implementations: All experiments were con-
ducted on a Linux server with RTX 3090Ti GPUs.
Datasets: Yelp (YP), Amazon (AM), Netflix (NF), and Movie-
Lens (ML) are review datasets where each sets is a group of
items that a user rated. Gplus (GP) and Twitter (TW) are social
networks where each set is a group of neighbors of each node.
Baselines: We compare SET2BOX and SET2BOX+ with:
• SET2BIN encodes each set s as a binary vector zs ∈ {0, 1}d

using a random hash function. See Section III for details.
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Fig. 2: SET2BOX+ preserves set similarities more accurately than SET2BIN, SET2VEC, SET2VEC+, and SET2BOX. Note that
in SET2BOX+, only 0.31− 0.40 of the bits costed by the competitors are used to embed sets. Moreover, while SET2VEC and
SET2VEC+ need to be trained for specifically each similarity metric, SET2BOX and SET2BOX+ do not separate training.

• SET2VEC embeds each set s as a vector zs ∈ Rd which is
obtained by pooling learnable entity embeddings using SCP.

• SET2VEC+ incorporates entity features X ∈ R|E|×d into
the set representation. Features are projected using a fully-
connected layer and then pooled to a set embedding.

Recall that vector-based methods, SET2VEC and SET2VEC+,
are not versatile, and thus they need to be trained specifically
to each metric, while the proposed methods SET2BOX and
SET2BOX+ do not separate training. The encoding cost of each
method is analyzed in [26].
Evaluation: We used 20% of the sets for training (5% in
Netflix), and the remaining sets are split into two halves for
validation and test. We sampled 100,000 pairs uniformly at
random for and measured the Mean Squared Error (MSE)
to evaluate the accuracy of the set similarity approximation.
We consider four representative set-similarity measures for
evaluation: Overlap Coefficient (OC), Cosine Similarity (CS),
Jaccard Index (JI), and Dice Index (DI).

B. Q1. Accuracy & Conciseness

We compare the MSE of the set similarity estimation
derived by SET2BOX+ and its competitors. We set dimensions
to 256 for SET2BIN, 8 for vector based methods (SET2VEC
and SET2VEC+), and 4 for SET2BOX, so that they use the
same number of bits to encode sets. For SET2BOX+, we set
(d,D,K) = (32, 16, 30), which results in only 31−40% of the
encoding cost of the other methods, unless otherwise stated.
Accuracy: As seen in Figure 2, SET2BOX+ yields the most
accurate set representations while using a smaller number of
bits to encode them. For example, in the Twitter, SET2BOX+

gives 40.8× smaller MSE for the Jaccard Index compared to
SET2BIN. In both cases, SET2BOX+ uses about 31% of the
encoding costs used by the competitors.
Conciseness: To verify the conciseness of SET2BOX+, we
measure the accuracy of competitors across various encoding
costs. As seen in Figure 3, SET2BOX+ yields compact rep-
resentations of sets while keeping them informative. Vector-
based methods are prone to the curse of dimensionality and
hardly benefit from high dimensionality. While the MSE of
SET2BIN decreases with respect to its dimension, it still
requires larger space to achieve the MSE of SET2BOX+. For
example, SET2BIN requires 34.9× more bits to achieve the

Set2Box! Set2Box Set2Bin Set2Vec Set2Vec!

8.0X

(a) MovieLens 1M

34.9X

(b) Yelp

Metric ML1 ML10 ML20 YP AM GP TW NF

JI 8.0 11.1 12.9 34.9 33.6 76.2 41.2 16.2
DI 8.0 15.9 17.7 27.3 27.2 63.5 31.7 22.7
OC 8.0 12.7 16.1 34.9 28.8 96.8 60.3 19.5
CS 8.0 15.9 16.1 28.8 28.8 68.2 38.0 22.7

(c) The number of times of the encoding cost that SET2BIN
requires to catch up the accuracy of SET2BOX+.

Fig. 3: SET2BOX+ yields concise set representations.

same accuracy of SET2BOX+ in Yelp. This is more noticeable
in larger datasets, where SET2BIN requires up to 96.8× of
the encoding cost of SET2BOX+, as shown in Figure 3c.

C. Q2. Effectiveness

To verify the effectiveness of each component of
SET2BOX+, we conduct ablation studies by comparing it with
its variants. We first consider the following variants:
• SET2BOX-PQ: For a box B = (c, f), we apply an end-

to-end differentiable product quantization (PQ) [24] to the
center c and the offset f independently. It yields two
independent discrete codes for the center and the offset, and
thus its encoding cost is about twice that of SET2BOX+.

• SET2BOX-BQ: SET2BOX+ with λ = 0, where the pro-
posed box quantization is applied but joint training is not.

We set (d,D,K) to (32, 8, 30) for SET2BOX-PQ and
(32, 16, 30) for SET2BOX-BQ and SET2BOX+ so they all
require the the same amount of storage.
Effects of Box Quantization: We examine the effectiveness
of the proposed box quantization scheme by comparing
SET2BOX-BQ with SET2BOX-PQ. As shown in Table II, on
average, SET2BOX-BQ yields up to 26% smaller MSE than
SET2BOX-PQ while using about the same number of bits.
While SET2BOX-PQ discretizes the center and the offset of
the boxes independently, without considering their geometric



TABLE II: The proposed schemes: box quantization and joint
training in SET2BOX+ incrementally improves the accuracy (in
terms of MSE) averaged over all considered datasets.

Method OC CS JI DI

SET2BOX-PQ 0.0129 0.0028 0.0012 0.0023
SET2BOX-BQ 0.0106 (-17%) 0.0023 (-17%) 0.0009 (-26%) 0.0019 (-17%)

SET2BOX+ 0.0077 (-40%) 0.0016 (-44%) 0.0007 (-41%) 0.0013 (-42%)

properties, the proposed box quantization scheme effectively
takes the geometric relations between boxes into account and
thus yields high-quality compression.
Effects of Joint Training: We analyze the effects of the joint
training scheme of SET2BOX+ by comparing SET2BOX-BQ
(λ = 0) and SET2BOX+ (λ ≥ 0). As summarized in Table II,
joint training reduces the average MSEs on the considered
datasets, by up to 44%, together with the box quantization
scheme. These results imply that learning quantized boxes
simultaneously with the original boxes improves the quality
of the quantization and thus its effectiveness. We also observe
that joint training helps not only stabilize but also facilitate
the training optimization [26].
Effects of Boxes: To confirm the effectiveness of using boxes
for representing sets, we consider SET2BOX-ORDER, which is
also a region-based geometric embedding method:
• SET2BOX-ORDER [27]: A set s is represented as a d-

dimensional vector zs ∈ Rd
+ whose volume is computed as

V(zs) = exp(−
∑

i zs[i]). It is equivalent to restrict boxes
to be located in positive latent space.

We set the dimensions for SET2BOX-ORDER and SET2BOX to
8 and 4, respectively, so that their encoding costs are the same.
In Table III, we compare SET2BOX with SET2BOX-ORDER
in terms of the average MSE on the considered datasets for
each measure. SET2BOX yields more accurate representations
than SET2BOX-ORDER, implying the effectiveness of boxes
to represent sets for similarity preservation.

D. Q3. Effects of Parameters
We analyze how parameters in SET2BOX+ affect the em-

bedding quality of the set representations. In summary, the
estimation error decreases as the number of subspaces (D)
and the number of key boxes in each subspace (K) increase,
and especially it is affected more heavily by D than by K.
Detailed experimental results are available in [26].

VI. CONCLUSIONS

In this work, we propose SET2BOX and SET2BOX+, space-
efficient similarity-preserving embedding methods for sets.
Compared to the competitors, by representing sets as boxes
with novel quantization and training schemes, SET2BOX+ is
(a) Accurate: with 40.8× smaller estimation error (when
encoding costs are similar or smaller) (b) Concise: with 96.8×
smaller encoding costs (when accuracies are similar), and (c)
Versatile: accurate in terms of various similarity measures.
Acknowledgements: This work was supported by Institute of Infor-
mation & Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2022-0-00157,
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TABLE III: SET2BOX yields smaller MSE on average in the
considered datasets than SET2BOX-ORDER.

Method OC CS JI DI

SET2BOX-ORDER 0.0320 0.0033 0.0008 0.0027
SET2BOX 0.0121 (-62%) 0.0028 (-14%) 0.0006 (-22%) 0.0022 (-17%)
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