
Resource2Box: Learning To Rank Resources in
Distributed Search Using Box Embedding

Ulugbek Ergashev∗, Geon Lee†, Kijung Shin†, Eduard C. Dragut‡, Weiyi Meng∗
∗Binghamton University, Binghamton, USA

†KAIST, Seoul, Republic of Korea
‡Temple University, Philadelphia, USA

uergash1@binghamton.edu, geonlee0325@kaist.ac.kr, kijungs@kaist.ac.kr, edragut@temple.edu, meng@binghamton.edu

Abstract—The rapid and continuous growth of internet content
poses significant challenges to conventional web search engines.
Distributed Search (DS) offers a solution by integrating multiple
information sources into a unified search system. When a user
submits a query, the DS system selects relevant resources and
ranks the documents within these selected resources. Recently,
representation learning of queries and resources has been em-
ployed to enhance DS performance. However, existing methods
that represent resources as vector embeddings may not suffi-
ciently capture the semantic diversity within each resource.

To address this limitation, we propose Resource2Box, a novel
representation learning method for DS that models resources
as boxes (i.e., hypercubes) in the latent space. Resource2Box
more effectively captures the diverse and intricate information
of documents within resources compared to single-point vector
embeddings. It learns a box embedding for each resource,
characterized by a center and offset, through two key processes:
(1) aggregating document information within each resource using
attentive pooling and (2) propagating information across re-
sources. These box embeddings are learned to reflect the semantic
relationships with training queries, utilizing a unique box-vector
distance metric. Comprehensive experimentation on benchmark
datasets demonstrates that Resource2Box significantly enhances
resource selection, improving ranking performance by up to
24.7% across various metrics.

Index Terms—Distributed Search, Federated Search, Learning
to Rank, Representation Learning, Box Embedding

I. INTRODUCTION

The World Wide Web is expanding with a diverse and
scattered assortment of data. Traditional web search engines
and centralized information retrieval systems may not be able
to keep up with the rapid changes and additions to web content
[1], [2], leading to decreased retrieval quality and negatively
impacting user experience.

Distributed Search (DS) [3], also referred to as Feder-
ated Search [4]–[7], has emerged as a promising solution
to this challenge. DS systems integrate multiple distributed
information sources, or resources, each of which organizes
relevant documents, into a unified search system. When a user
submits a query, instead of directly ranking a vast number of
documents, a DS system selects a subset of resources most
likely to meet the user’s needs. Each selected resource then
ranks its relevant documents [8]. These ranked lists are then
combined into a single, unified ranking, which is presented
to the user [9]–[11]. As a result, the DS system enhances

Document Embeddings
of Resources

Vector Embeddings
(e.g. FedGNN)

Box Embeddings
(Resource2Box)

arXiv.org Nature MS Academic

Fig. 1: Acquiring informative and representative resource
embeddings is essential for accurate ranking algorithms. Our
proposed method, Resource2Box, represents three resources
in the Academic domain in FedWeb14 as boxes to effectively
capture the information from the extensive and diverse set of
documents within each resource.

the quality of search results by selectively ranking documents
within the specialized resources.

In light of the need for effective DS, various methods have
been proposed for ranking resources and selecting relevant
ones for users’ queries. In recent years, with advancements
in deep learning, a popular approach for DS has been the
representation learning of queries and items (i.e., documents
and/or resources) as embeddings in a low-dimensional latent
space. In the latent space, resources can be ranked according
to their proximity to query embeddings. This paper focuses
on resource representation and selection in DS.

Most existing representation learning methods for DS rep-
resent resources as vector embeddings [12]. However, a vector
embedding, which is essentially a single point in the embed-
ding space, may be suboptimal for capturing the semantic
diversity and uncertainty of documents within each resource.
For example, the ACM Digital Library 1 contains about
560,000 full-text articles (i.e., documents) spanning various
subjects (i.e., resources) including data mining, information
retrieval, data mining, and computer vision. Each subject
(resource) encompasses numerous articles (documents) that,
while relevant, can be very diverse and complex. For example,
the data mining subject can include articles on clustering,
anomaly detection, and pattern mining. Due to the semantic
diversity within each resource, representing them as a single

1https://libraries.acm.org/digital-library

https://libraries.acm.org/digital-library

point in the latent space may not be sufficient to capture the
full range of information and context, as shown in Figure 1.

Thus, a richer representation method for resources is
needed. To this end, we propose Resource2Box, a novel repre-
sentation method of resources via hypercubes (i.e., boxes), as
shown in Figure 1. Unlike vector embeddings, which represent
a single point in the latent space, boxes represent a bounded
range in the latent space. Specifically, while vectors capture
only the position of the embedding in the latent space, boxes
also capture the range of the embedding in each dimension.
This approach is geometrically more expressive, allowing it to
more effectively capture the diverse and intricate information
of documents contained in resources. While box embeddings
have received significant research attention in ranking and
recommendation tasks [12]–[15], their application to resource
ranking remains unexplored.

Specifically, Resource2Box begins with data preprocessing,
which involves sampling representative documents from each
resource and extracting features using a pre-trained language
model. Each resource is then represented as a box in the
latent space, characterized by a center and an offset, to
effectively encapsulate the diverse information contained in
the documents. To this end, we aggregate document features
through attentive pooling (intra-resource) and refine them by
incorporating resource-wise relationships using a graph neural
network (inter-resource). The box embeddings are learned for
each resource, and they are subsequently ranked based on the
distance to the user’s query vector using a novel box-vector
distance metric. Resource2Box addresses the limitations of
representing a resource with a single vector, as empirically
demonstrated by our experiments, leading to more accurate
and effective resource ranking.

In summary, the contributions of our work are:
• We propose a novel resource representation method in DS.

To our knowledge, this is the first study to adapt boxes
to more accurately capture and model diverse data in each
resource in the latent space.

• We conduct extensive experiments on three real-world
benchmark datasets. The empirical results (specifically, im-
proving ranking performance up to 24.7%) demonstrate that
our proposed approach outperforms state-of-the-art base-
lines. We also give a detailed analysis of box showing its
added benefits to resource representation compared to single
vector representation.
The rest of this paper is organized as follows. Section II dis-

cusses related work. Sections III and IV present preliminaries
and the details of the proposed method, respectively. Section
V describes the experimental results. The conclusion to this
study and future work are given in Section VI.

II. RELATED WORK

We give an overview of the related literature in this section.

A. Distributed Search

We group existing resource selection methods broadly into
four groups: lexicon-based, sample-based, combination-based,

and supervised methods [4], [16], [17].
Lexicon-based methods treat each resource as a bag of

words, and many initial studies view each resource as a big
document, meaning the confines of each document within
a resource are combined to form one extensive document
consisting only of a collection of words [3], [18]. When a
user’s query is received, the broker calculates the similarity
of the query with the lexical statistics of each information
resource and ranks them according to their relevance score
[19]. However, these methods cannot capture semantics at
both the word and sentence granularity, which diminishes the
quality of the resource representation [20].

Sample-based methods aim to avoid the practice of merg-
ing document boundaries as seen in the big document method.
Instead, they view each resource as a collection of documents,
and the importance of a resource is assessed, in aggregate,
based on the significance of its collection of documents. Many
methods in this group, such as ReDDE [21], CRCS [22] and
SUSHI [23], utilize various voting algorithms over documents
to infer a ranking of the resources. The latest method in
this category, KBCS [20], characterizes resources as a set
of entities weighted according to context- and structure-based
metrics, and orders resources based on the similarity between
the query and the resource. Lexicon-based and sample-based
methods have been demonstrated to work well when resources
are largely uniform [16], however, they are not fully capable
of exploiting the structural attributes of text inputs.

Combination-based methods combine the approaches
mentioned above. ECOMSVZ [24] combines a number of
strategies to rank resources according to a given query, namely
i) topical closeness between a query and resources, ii) estima-
tion of resource popularity from online sources, and iii) query
expansion. The method presented in [25] aggregates all three
strategies proposed in [24] and ranks resources by giving more
weight to small (specialized) resources.

Supervised methods employ machine learning approaches
to build a model to tackle the resource selection problem.
There are three types of supervised methods: query classi-
fication, resource classification, and learning to rank methods.
Dai et al. [26] presented SVMrank model where they learn
a ranking function based on three different sets of features,
query-independent, term-based, and sampled-documents. An-
other method is LTRRS [27], which combines all the features
proposed in [26] and topic relevance feature. They used
LambdaMART model which directly optimizes nDCG metric
to rank resources. The most recent method, FedGNN [28],
which is a graph neural network (GNN) based approach
to learning-to-rank that models resource-query and resource-
resource relationships. FedGNN leverages pre-trained lan-
guage model and GNN to extract both semantic and structural
relationships of resources, and rank them for the given query.
The primary disadvantages of these types of methods are that
they either require extensive feature engineering or resources
are represented by a single vector embedding which is less
capable of capturing the diversity of documents in a resource
in the latent space [29].

B
E
R
T

B
E
R
T

Attentive
Pooling

Attentive
Pooling

Center cR

Offset oR

Box BR

Box BR

GNNOffset

Center

Information Aggregation Within Resources Information Propagation Across Resources

dist in

dist out

Query vQ

N Documents
of Resource R

Query Q

Fig. 2: The overall architecture of Resource2Box. Top N documents, with the highest relevance scores per each resource, and
query are fed into pre-trained large language model BERT. Then, attentive pooling is used to aggregate document embeddings
to obtain intermediate box centers and offsets for the resource. Finally, after employing GNN to capture the dependencies
between resources, we generate final resource box embeddings. This gives us a richer resource representation, which in turn
allows us to better identify the relevant resources for a query.

It is essential to distinguish our work within the Feder-
ated Search paradigm from other forms of distributed tasks.
Federated Search, also known as Distributed Information Re-
trieval (DIR), focuses on integrating and querying multiple,
heterogeneous information sources without centralized access
to their entire content. This is distinct from other domains like
Distributed Computing [30] and Distributed Databases [31],
which often involve distributed processing and storage with a
unified control. Our work contributes to the Federated Search
field by proposing Resource2Box, a method that specifically
addresses the weakness of single vector embedding representa-
tions of resources by using boxes to better capture the semantic
diversity and uncertainty within resources.

B. Box Embeddings

Box embeddings provide effective abstractions for capturing
complex, higher-order information within the data. Their ex-
pressiveness has supported the success of applications across
diverse domains, such as in knowledge base [32]–[38] and
recommender systems [13]–[15]. Moreover, box embeddings
have been demonstrated to enhance accurate representation
learning for words [39], images [40], and sets [41]. For
example, Query2Box [32] embeds queries as boxes in the
knowledge graph, including a set of answer entities within
the box, enabling more diverse logical reasoning. In Cu-
beRec [13], groups of users with multi-faceted preferences are
represented as boxes. Set2Box [41] represents sets as boxes
for accurate and versatile preservation of similarities across
sets of varying sizes. These examples motivate our adoption
of the box paradigm in our DS scenario, where resources
consist of documents encompassing a diverse range of topics.
Specifically, our approach involves representing resources as
boxes, facilitating a more accurate representation not only of
the resources themselves but also their relationships with user
queries.

III. PRELIMINARIES & PROBLEM DEFINITION

In this section, we introduce the problem setting with
notations and define the problem of learning to rank resources.

A. Problem Setting.

Consider a set R = {R1, · · · , RN} of resources and a set
D = {D1, · · · , DM} of documents where N ≪ M holds.
Each resource Ri ∈ R consists of an arbitrary number of
documents, forming a non-empty subset of D, i.e., Ri ⊆ D.
Notably, the same documents can be shared across resources.
Given a user query Q, a predefined query-document relevance
score s(Q,Dk) is associated with each document Dk ∈ D.

B. Problem Definition

Given a user query Q, the objective is to rank the resources
in R in such a way that it prioritizes those containing
a significant number of documents relevant to the query.
Specifically, our goal is to estimate the relevance score (or
the inverse/negative distance) between the query Q and each
resource Ri ∈ R. These relevance scores are then used to
rank the resources. Subsequently, a few high-ranked resources
are selected, and the documents within them are ranked to be
presented to the user.

IV. OUR METHOD

In this section, we present Resource2Box (Figure 2), our
proposed method for learning to rank resources. We begin by
detailing the preprocessing step applied to the dataset. Then,
we explain how we represent resources in the latent space.

A. Data Preprocessing

As a preliminary stage, we preprocess the dataset to prepare
it for training Resource2Box. This involves two substeps: (1)
sample selection and (2) feature extraction.

1) Sample Selection: Given that each resource can contain
thousands or even millions of documents, we sample a subset
of representative documents from each resource for representa-
tion learning to enhance efficiency. Following prior work [28],
for each resource R ∈ R, we compute the maximum relevance
score with respect to the training queries for each document it
contains, i.e., maxQ∈Qtrain s(Q,D) for each document D ∈ R
where Qtrain is the set of training queries. Then, we select
the top-N unique documents from the resource R with the

highest computed scores, represented by a subset R̃ ⊆ R
where |R̃| = N ; we use N = 100 throughout this paper.
It is important to note that while the subsets of documents
are used for training, during inference, we search the entire
collection of documents from the filtered resources.

2) Feature Extraction: We extract features from docu-
ments and queries to use as input for Resource2Box. For doc-
uments, we concatenate the title with the body text [42]. For
queries, we use the query text directly. Each text (document
or query) is tokenized into a sequence of tokens and fed into
the pre-trained Sentence-BERT model [43]. We then compute
the mean of the output token embeddings to form a single
feature vector for the input text. Formally, we denote the text
feature obtained for a document D or a query Q as FD ∈ Rd′

and FQ ∈ Rd′
, respectively, where d′ is the dimension of the

output token embeddings.

B. Resources as Boxes

Now that we have prepared the data, we move our attention
to representing resources within the latent space. Each pre-
processed resource R̃ consists of a set of N documents, each
potentially covering distinct aspects of information. Thus, it
is essential to represent resources to effectively aggregate the
information from the documents in the latent space.

While the common approach is to represent resources as
vectors, this reduces the resource to a single point in the
latent space, which can inadequately represent the range of
topics and context present in the documents. To address this
limitation, we propose using boxes to represent resources, as
they are geometrically more effective at capturing the diverse
information within each resource. We will first discuss the
concept of box embedding and then present our method for
representing resources as boxes.

A box is a d-dimensional hyper-rectangle, characterized by
its center (a vector) and an offset (also a vector) in the latent
space. The center describes the location of the box, while the
offset represents the length of each edge of the box in every
dimension, defining its shape and size. Formally, for a given
box B = (c, o), where the center c ∈ Rd and offset o ∈ Rd

+

both reside in the same latent space, this box is defined as a
bounded region:

B ≡ {p ∈ Rd : c− o ⪯ p ⪯ c+ o}.

where p denotes any point within the box.

C. Resource2Box: Learning Box Embeddings for Resources

To derive a box embedding BR = (cR, oR) of resource
R, we employ a two-step process. First, we aggregate the
document information within each resource. Then, we enhance
this aggregated embedding by considering relations across
resources. Formally, this can be expressed as:

BR = fres

(︂
fdoc

(︂
{D : D ∈ R̃}

)︂
,R

)︂
where fdoc is a function that aggregates document features
within a resource, and fres is a function that enhances the

resource embedding by considering resource-level relations.
This approach allows us to derive box embeddings that capture
both the internal document-level information within a resource
and the relational context among resources.

1) Information Aggregation Within Resources: We first
summarize each resource by aggregating the documents within
it. Instead of employing simple pooling functions like mean
or max, we use attentive pooling, which allows us to high-
light documents within each resource that are important for
obtaining the center and offset of the box. Specifically, for
a resource R̃ consisting of N sampled documents, let FR̃

denote the embedding matrix consisting of the features of the
N documents in R̃, i.e., FR̃ = ∥D∈R̃FD ∈ RN×d′

, where ∥
is the stack operation. We compute the intermediate center c̃R
and offset õR as:

c̃R = σ

(︃
(FR̃W

c
K) · qc

√
d

)︃
FR̃, õR = σ

(︃
(FR̃W

o
K) · qo

√
d

)︃
FR̃,

respectively, where σ(·) is a Softmax function. Here,
Wc

K ,Wo
K ∈ Rd′×d are the learnable key projection matrices

for the center and offset, and qc,qo ∈ Rd are the learnable
query vectors for the center and offset. The resulting inter-
mediate center c̃R ∈ Rd′

and offset õR ∈ Rd′
are obtained

by aggregating document features, each highlighted differently
using their respective attention parameters. They are then
utilized to construct the box embedding BR = (cR, oR) for
the resource R, as described below.

2) Information Propagation Across Resources: While we
have computed the intermediate center and offset by aggregat-
ing documents within each resource, it is important to note that
resources often share similar documents, indicating inherent
relationships between resources. Integrating these resource-
resource relationships into our representation learning can
potentially enhance the box embeddings for resources. To this
end, we model the relationships between resources as a graph
and leverage its structural information.

We construct a graph G = (R, E , ω), where R denotes
the nodes corresponding to resources, E denotes the edges
connecting these resources, and ω : E → R is a function
assigning weights to the edges. To construct a weighted edge
between a pair {Ri, Rj} of resources, we compute their weight
(i.e., similarity) ω(Ri, Rj) as follows:

ω(Ri, Rj) =

∑︁
D∈Ri,D′∈Rj

1[cos(FD, FD′) > τ]

|Ri| · |Rj |
where cos(FD, FD′) is the cosine similarity between FD and
FD′ , and τ is the threshold, which is a hyperparameter. That
is, we measure the proportion of document pairs between the
two resources that exhibit significant similarity. A positive
ω(Ri, Rj) results in an edge between resources Ri and Rj

with a weight ω(Ri, Rj); otherwise, we do not create an edge.
Intuitively, a larger threshold τ results in fewer edges, leading
to a sparser graph, and vice versa.

To effectively capture the dependencies and relationships
between resources using the constructed graph G, we employ
a Graph Neural Network (GNN). Specifically, we utilize

LightGCN [44] to refine the centers and offsets for resources.
More precisely, at the ℓ-th propagation layer, the center and
offset of resource R are updated as follows:

c
(ℓ+1)
R =

∑︂
R′∈NR

ω(R,R′)√︁
|NR| · |NR′ |

c
(ℓ)

R′ , o
(ℓ+1)
R =

∑︂
R′∈NR

ω(R,R′)√︁
|NR| · |NR′ |

o
(ℓ)

R′

respectively; c(ℓ)R and o
(ℓ)
R respectively denote the refined center

and offset of the resource R after ℓ layers of propagation, and
NR denotes the neighboring resources, i.e., the set of resources
that has an edge with resource R in G. The initial embeddings
c
(0)
R and o

(0)
R are set to the intermediate embeddings c̃R and

õ, respectively. The center c̄R and offset ōR are obtained by
averaging those obtained at ℓ = 0, 1, · · · , L steps:

c̄R =
1

L+ 1

L∑︂
ℓ=0

c
(ℓ)
R , ōR =

1

L+ 1

L∑︂
ℓ=0

o
(ℓ)
R .

3) Linear Projection: Finally, the resulting center c̄R ∈
Rd′

and offset ōR ∈ Rd′
are passed through linear layers to

be projected into the d-dimensional latent space:

cR = c̄RW
c
p + bc

p, oR = max
(︁
ōRW

o
p + bo

p, 0
)︁

where Wc
p,W

o
p ∈ Rd′×d are the linear projection matrices,

and bc
p,b

o
p ∈ Rd are the intercept parameters, for the center

and offset, respectively. Note that the offset oR is constrained
to be nonnegative. This completes the box embedding BR =
(cr, or) of the resource R. Similarly, we utilize the parameters
Wc

p and bc
p to project the feature FQ ∈ Rd′

of the query Q
into the same latent space, i.e., vQ = FQW

c
p + bc

p.

D. Training Procedures

We now discuss the training procedure of Resource2Box.
Ideally, given a user query Q, its embedding vQ should be
close to the embeddings of the resources containing relevant
documents and far from those with irrelevant documents.
To measure the closeness between the query vector and the
resource box embeddings, we first introduce the distance
metric used to measure the distance between vectors and
boxes. Then, we discuss our objective function.

1) Distance Metric: Measuring distances between vectors
and boxes differs from conventional distance metrics for
vectors due to the unique geometric properties of boxes.
Specifically, given a box B = (c, o) and a vector v, we find
the nearest point p on the boundary of the box to the vector,
which can be expressed as [15]:

p = min (c+ o,max(c− o, v))

where min and max are the element-wise minimum and maxi-
mum functions, respectively. The outside distance distout(v,B)
and the inside distance distin(v,B) are defined as:

distout(v,B) = ∥p− v∥22, distin(v,B) = ∥p− c∥22,

respectively. The outside distance distout measures the dis-
tance between the vector and box in the outer region of the
box, while distin measures the distance within the region of

Query 𝑄!

Query 𝑄"

dist!"#

Resource 𝑅#

dist$% dist$%

dist!"#

Query 𝑄!

Query 𝑄"

dist!"#

Resource 𝑅$

dist$%

dist$%
dist!"#

dist 𝑄! , 𝑅" < dist 𝑄#, 𝑅" dist 𝑄! , 𝑅$ > dist 𝑄#, 𝑅$

Fig. 3: Box embeddings for resources allow us to model
complex relationships between resources and queries. Even
when two queries, Qi and Qj , have the same distance from
the centers of the box embeddings of resources R1 and R2,
their distances may still be different, depending on the shapes
and sizes of the respective boxes.

the box. Note that if the vector v is inside the box (i.e.,
c− o ⪯ v ⪯ c+ o), then p = v, and thus the outside distance
distout(v,B) is zero, and the inside distance distin(v,B) is the
distance between v and the center c of the box. Finally, these
two distances are combined to formulate the overall distance
between the box and the vector:

dist(v,B) = distout(v,B) + γ · distin(v,B)

where γ is a hyperparameter that controls the weights of
the two distances. Using this distance metric allows us to
model complex relationships between resources and queries,
as illustrated in Figure 3. For instance, for two queries, Qi and
Qj , with equal distances from the centers of resource boxes
R1 and R2, their overall distances may be different after taking
into account the offsets of the boxes and γ.

2) Loss Function: As the final step, we design our loss
function for Resource2Box to rank resources. Specifically, we
minimize the following distance-based hinge loss:

L =
∑︂

(Q,R+,R−)∈T

max (dist(vQ, BR+) + λ− dist(vQ, BR−), 0)

where T is the set of triplets consisting of a query, a positive
resource, and a negative resource. In addition, λ is a margin
that separates the two resources, which is a hyperparameter.
We omit the L2 regularization term for brevity. Minimizing the
above loss function encourages the query embeddings to be
closer to relevant resources and farther from irrelevant ones.

To construct a training triplet of a given training query
Q, we sample a positive resource R+ ∈ R that contains
an adequate number of relevant documents and a negative
resource R− ∈ R that lacks relevant documents. Specifically,
we measure the relevance score ŝ(Q,R) between the query
Q and a resource R by summing the positive relevance
scores of the documents in the resource and the query, i.e.,
ŝ(Q,R) =

∑︁
Dk∈R max(s(Q,Dk), 0) where s(Q,D) for any

D ∈ D is provided (see Section III-A). Positive resources
are sampled with probability proportional to their relevance
scores, while negative resources are uniformly sampled from
those with a relevance score of zero.

E. Ranking Resources

Once Resource2Box is trained, we are prepared to rank the
resources using the learned parameters. For a given test query
Q′, we compute its vector representation vQ′ and measure its
distance dist(vQ′ , BR) from the precomputed box embedding
BR of each resource R ∈ R. Then, we rank the resources
based on these distances, giving higher ranks to resources with
box embeddings that are closer to the query embedding vector.

It is important to note that the resources are predefined,
allowing their learned box embeddings to be stored without
requiring additional computation each time a user submits a
query. The process involves computing the embedding vector
vQ′ of the user’s query Q′ through a simple linear projection,
followed by calculating the distance between this embedding
and each resource’s box embedding.

V. EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed
approach for resource selection. We perform a validation of
our approach and compare it with various baselines. We first
describe baseline models and real-world public datasets that
we employ for our extensive experiments. We then present
experimental results with discussions and analysis.

A. Baselines

To evaluate the performance of our proposed model, we use
existing methods from all four categories of resource selection
approaches as baselines, including lexicon-based (Taily [19]),
sample-based (Rank-S [45], ReDDE [21], CRCS [22] and
KBCS [20]), combination-based (SSLTS [25] and ECOMSVZ
[24]), and supervised (FedGNN [28], L2R [26] and Jnt [46])
methods. Notably, there are no existing methods in Federated
Search that utilize box embeddings.

Taily [19] calculates the similarity of the query with the
lexical statistics of each resource and ranks them according
to their relevance score.
Rank-S [45] decays the scores of retrieved documents from
the centralized sample index (CSI) exponentially, and treats
as votes for the resources the documents were sampled from.
ReDDE [21] estimates the distribution of relevant documents
across various resources by accounting for both content
similarity and the size of the resource.
CRCS [22] is a sample-based method that, similar to ReDDE,
runs a query on a CSI. However, in contrast to ReDDE, it
ranks resources based on the positions of retrieved documents
within the CSI ranking.
KBCS [20] uses a weighted entity set approach that models
collections based on semantic relationships between entities
and integrates DBpedia-based query expansion to enhance
query-collection similarity metrics.
SSLTS [25] aggregates all the strategies proposed in [24]
and ranks resources by assigning greater weight to smaller,
specialized resources.
ECOMSVZ [24] combines SEIF, vertical selection, tf-idf, and
semantic similarity features for resource selection, achieving

top performance in the 2014 TREC FedWeb track.
FedGNN [28] is a recent supervised-based approach. It is a
GNN-based approach to learning-to-rank that is capable of
modeling resource-query and resource-resource relationships.
L2R [26] trains an SVMrank model where it learns a ranking
function based on various sets of features, query-independent,
term-based, and sampled-documents.
Jnt [46] uses a joint probabilistic classification model that
estimates the probabilities of relevance in a joint manner by
considering relationships among resources.

B. Comparison Methodology

For a fair comparison, we contrast our empirical results
directly with those documented in prior literature, utilizing the
same benchmark datasets and evaluation metrics. In particular,
if an experimental result for a baseline B was reported using
dataset D and evaluation metric M, our comparison with B also
utilizes the same D and M. A clear advantage of this approach
is that it eliminates the need for us to implement the baseline
methods and at the same time avoid inaccuracies that often
arise when implementing others’ methods. A limitation of this
approach is that we are not able to compare all baselines across
different datasets using the same metrics. This is a trade-off
that future work will need to address.

C. Evaluation Metrics

We will evaluate Resource2Box using the following metrics:
Precision at k or P@k. Precision is the ratio of the number of
relevant retrieved items to the total number of retrieved items.
P@10 is used to compare with baselines FedGNN [28], L2R
[26], KBCS [20], ReDDE [21], CRCS [22], Rank-S [45], Taily
[19] and Jnt [46] at document level.
Normalized precision at k or nP@k. This metric measures
the relevance scores of the top-ranked k resources, normalized
by the relevance scores of the best possible k resources
for the given query. We use nP@{1,5} to compare with
baselines FedGNN [28], SSLTS [25] and ECOMSVZ [24] on
the resource level evaluation.
Normalized Discounted Cumulated Gain at k or nDCG@k.
This metric is a measure of ranking quality. We use nDCG@30
to compare with FedGNN [28], L2R [26], ReDDE [21], Rank-
S [45], Taily [19] and Jnt [46] at document level.

Metrics such as P@k and nDCG@k are commonly used
in the evaluation of ranking algorithms. Precision-focused
metrics at lower rankings, like P@10 and nDCG@30, tend to
outperform recall-oriented metrics at higher ranks like P@100
and nDCG@100, especially in resource selection problems
where only a small fraction of resources are returned [16].
This is because users are typically interested in the top 10
results, and thus, highly ranked results are anticipated to meet
user satisfaction directly.

D. Datasets

Our experiments are conducted using three widely used
benchmark datasets, recognized as the latest publicly available

TABLE I: Dataset statistics

Dataset # of
resources

Total
of

docs (K)

Resource (K) Compared
with

baselinesMin Max Avg

GOV2 199 25,205 0.319 550.7 126.6 L2R, ReDDE,
Rank-S, Taily, Jnt

ClueWeb09-B 100 50,220 63 1,691 502 FedGNN, KBCS, ReDDE,
CRCS, Rank-S

ClueWeb09-B 123 50,220 32 734 408 FedGNN, L2R, ReDDE,
Rank-S, Taily, Jnt

FedWeb14 149 187.7 .022 2.7 1.2 FedGNN, SSLTS,
ECOMSVZ

for Federated Search tasks. These datasets were also used to
evaluate the baselines.
GOV22 is 25 million web pages crawled from the US gov-
ernment web domains. The collection is partitioned into 199
resources. We obtain 150 queries and relevance scores for
document-query pairs from TREC 2004-2006 Terabyte Track3.
ClueWeb09-B4 is a portion of the larger web collection
known as ClueWeb09. This dataset is developed to assist
research in the fields of ranking tasks and similar language-
based technologies, consisting of approximately 50 million
English web pages. We partition the collection into two sets
of resources: 100 and 123 resources. We refer to these two
datasets as CW100 and CW123, respectively. For CW100
dataset, we obtain 50 queries and relevance scores for query-
document pairs from TREC 2009 Web Track3. For CW123,
200 queries and query-document pair relevance scores are
obtained from TREC 2009-2012 Web Track3.
FedWeb Greatest Hits [47] is a large test collection designed
to support research in web ranking tasks including resource se-
lection in DS. The collection contains two datasets FedWeb13
and FedWeb14. We use the most recent, FedWeb14, dataset
which consists of 149 resources and 50 queries. Relevance
scores for query-document pairs are given in the dataset. We
refer to this dataset as FW14 for the rest of the paper.

Table I summarizes the statistics of the datasets. The last
column lists the baselines that are used to compare with our
method using a given dataset.

Table II gives the query sets used to train and evaluate the
proposed model. It also shows the cross-validation settings
we followed for each query set. Our study adheres to the
same cross-validation settings, including the number of folds,
as specified in the baseline papers for each dataset, to ensure a
fair and rigorous comparison. In cross-validation, we partition
queries. For example, Web Track 2009-2012 has 200 queries.
For ten-fold cross-validation, the 200 queries are partitioned
into ten subsets; in each run, nine subsets are used for training
and one subset is used for testing. The results are then averaged
over the ten runs.

E. Implementation Details

To extract query and document features, we utilize a
pre-trained Sentence-BERT5 model that encodes input texts

2https://ir.dcs.gla.ac.uk/test collections/gov2-summary.htm
3https://trec.nist.gov/data/webmain.html
4http://www.lemurproject.org/clueweb09
5https://www.sbert.net/

TABLE II: Query set statistics

Query set Dataset # of
queries Folds Compared with

baselines

Web Track
2009 CW100 50 5 FedGNN, KBCS, ReDDE,

CRCS, Rank-S
Terabyte Track

2004-2006 GOV2 150 10 L2R, ReDDE,
Rank-S, Taily, Jnt

Web Track
2009-2012 CW123 200 10 FedGNN, L2R, ReDDE,

Rank-S, Taily, Jnt

FedWeb14 FW14 50 5 FedGNN, SSLTS,
ECOMSVZ

into 768-dimensional dense vectors. We implemented Re-
source2Box in PyTorch and trained it using the Adam op-
timizer. Each dataset is trained and evaluated following the
cross-validation settings shown in Table II. For the other hy-
perparameters, we used a hidden dimension d of 512, a batch
size of 256, and the number L of GNN layers of 2 by default.
The learning rate was searched from {0.00001, 0.00005},
the regularization coefficient from {0.001, 0.0001, 0.00001},
the γ for the box-vector distance from {0.1, 0.5, 1.0, 5.0},
the margin λ from {0.5, 1.0, 5.0, 10.0}, and the threshold τ
for graph construction from {0.1, 0.5, 0.9}. Experiments were
conducted on a machine with RTX 8000 D6 GPUs where it
takes less than 10 minutes to train on average. We followed
the same search engine setting given in the baseline papers
to simulate a distributed information retrieval environment.
Once the resource selection algorithm picks top N highly
scored resources, top-1000 documents are retrieved from the
resources and merged directly.

F. Experimental Results

We conducted three sets of experiments to validate the
effectiveness of Resource2Box. The first set compares our
method with FedGNN and the other baselines L2R, Taily,
Rank-S, ReDDE, and Jnt at document level (Table III). Note
that L2R reports its empirical results for top-4 and top-8
resources for the CW123 dataset. For GOV2, it reports for
top-6 and top-12 resources. We follow the same settings here.
Table IV shows comparisons with FedGNN as well as the
baselines KBCS, ReDDE, CRCS, and Rank-S, at document
level. Baseline KBCS reports its results from 1 to 10 top
resources on the CW100 dataset; we follow the same settings
in our experiments as well. The final set of experiments reveals
the results at the resource level and compares them with
FedGNN and the baselines SSLTS and ECOMSVZ.

We observe that our approach consistently outperforms all
baselines at document level, suggesting that modeling re-
sources as boxes in latent space provides a representation that
better captures the diverse data contained within a resource,
which in turn improves resource selection. In particular,
according to the results shown in Table III, Resource2Box
outperforms the best baseline FedGNN on the CW123 dataset
by 5.8% and by 3.7% on P@10 for top-4 and top-8 resources,
respectively. For the same dataset and the same numbers of
top resources, Resource2Box outperforms FedGNN by 0.7%
and by 0.7% on nDCG@30, respectively. Table III also shows
the results for GOV2 dataset, and our method outperforms

https://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
https://trec.nist.gov/data/webmain.html
http://www.lemurproject.org/clueweb09
https://www.sbert.net/

TABLE III: P@10 and nDCG@30 metrics on CW123 and GOV2 datasets

Methods
CW123 GOV2

T=4 T=8 T=6 T=12
P@10 nDCG@30 P@10 nDCG@30 P@10 nDCG@30 P@10 nDCG@30

ReDDe 0.355 0.262 0.363 0.275 0.580 0.445 0.587 0.460
Rank-S 0.350 0.259 0.360 0.268 0.570 0.440 0.585 0.461
Taily 0.346 0.260 0.346 0.260 0.518 0.403 0.530 0.418
Jnt 0.370 0.269 0.367 0.277 0.582 0.459 0.588 0.465
L2R 0.374 0.281 0.377 0.286 0.593 0.469 0.591 0.475
FedGNN 0.398 0.282 0.407 0.286 0.595 0.469 0.592 0.475
Resource2Box 0.421 ± 0.008 0.284 ± 0.005 0.422 ± 0.006 0.288 ± 0.001 0.602 ± 0.001 0.471 ± 0.002 0.598 ± 0.004 0.475 ± 0.004

TABLE IV: P@10 comparison on CW100 dataset

T
Methods

ReDDe CRCS Rank-S KBCS FedGNN Resource2Box

1 0.176 0.212 0.263 0.340 0.361 0.435 ± 0.018
2 0.236 0.212 0.272 0.368 0.382 0.458 ± 0.015
3 0.244 0.208 0.316 0.380 0.391 0.466 ± 0.012
4 0.244 0.236 0.316 0.370 0.418 0.473 ± 0.016
5 0.244 0.252 0.357 0.420 0.422 0.479 ± 0.008
6 0.252 0.252 0.365 0.400 0.429 0.483 ± 0.009
7 0.276 0.252 0.353 0.394 0.431 0.484 ± 0.008
8 0.300 0.260 0.348 0.422 0.430 0.483 ± 0.009
9 0.336 0.248 0.357 0.414 0.425 0.482 ± 0.008

10 0.356 0.232 0.361 0.420 0.421 0.480 ± 0.008

TABLE V: Search accuracy comparison on FW14 dataset

Methods nP@1 nP@5

SSLTS 0.380 0.480
ECOMSVZ 0.535 0.604

FedGNN 0.760 0.788
Resource2Box 0.809 ± 0.012 0.786 ± 0.015

FedGNN by 1.2% and 1.0% on P@10 at top-6 and top-12,
respectively. Table III also reveals that our method outperforms
FedGNN for the same dataset by 0.4% on nDCG@30 at top-6.
Table IV further demonstrates the superiority of our approach,
showing that Resource2Box outperforms the best baselines,
FedGNN and KBCS, from top-1 to top-10 resources on the
CW100 dataset by 12.3% to 20.5%, respectively. On FW14,
as reported in Table V, our method outperforms by 6.4% on
nP@1 and slightly falls behind by 0.2% on nP@5 compared
with FedGNN at the resource level comparison.

A contributing factor to the above noticeable enhancements
is that modeling resources as boxes in the latent space pos-
sesses a better capability of capturing the semantic diversity of
documents in each resource, thus ensuring a superior efficacy
compared to the current baselines [12]. In contrast, FedGNN
represents a resource as a single vector in the low-dimensional
space, which is less capable of capturing the diversity of
documents in each resource.

Another reason contributing to the performance improve-
ment is that Resource2Box does not require a centralized
sample index (CSI). Most of the baselines such as ReDDE,
CRCS, and KBCS are designed to operate in uncooperative
environments [22], where a broker has to send random queries
to a resource on the Web to collect thousands of documents
as a resource representation. CSI-based approaches depend
heavily on this sampling process, consequently, both over-
sampling and under-sampling may lead to biased resource
representation [48]. Moreover, it is expensive to build a CSI
[28]. Different from the sample-based methods, our approach

10 0 10 20

30

20

10

0

10

20

30 Academic
Health
Sports
Shopping
News

(a) Center

30 20 10 0 10 20 30
30

20

10

0

10

20

30 Academic
Health
Sports
Shopping
News

(b) Offset
Fig. 4: Resource2Box learns meaningful box embeddings for
resources in the 2D space, where both the centers and offsets
are well-clustered based on the categories in the FW14 dataset.

is capable of representing a resource with fewer documents as
a box embedding in the low-dimensional latent space.

1) Information Aggregation Within Resources: We begin
by examining the effectiveness of attentive pooling for aggre-
gating information from documents within each resource. To
achieve this, we compare the performance of Resource2Box
with two of its variants, Resource2BoxMax Pooling and
Resource2BoxMean Pooling, which use max pooling and mean
pooling of document features, respectively, to aggregate infor-
mation. From Table VI, we can observe that Resource2Box
consistently outperforms both Resource2BoxMax Pooling and
Resource2BoxMean Pooling by 0.2% to 19.5% on nP@1 on all
datasets at the resource level. While at the document level,
Resource2Box outperforms both variants by 6.5% to 18.6%
on P@1 on CW100, CW123, and GOV2, confirming the
effectiveness of attentive pooling applied in Resource2Box.
This observation implies that by distinctively highlighting doc-
uments within each resource, we can enhance the aggregation
of resource representations and thus resource retrieval [49].

2) Information Propagation Across Resources: Table VI
also demonstrates the superiority of Resource2Box by 0.5%
to 24.7% on nP@1 on all datasets over Resource2Boxw/o GNN
at the resource level retrievals. In document-level retrievals,
Resource2Box outperforms by 3.6% to 12% on P@1 on
the CW100, CW123, and GOV2 datasets. The reason for
the superiority of Resource2Box over the method without
GNN is that some resources may share inherent similarities
(i.e. identical or similar documents) between each other and
GNN helps to integrate a structural message passing between
resource nodes in the graph which leads to better ranking
results [28]. This demonstrates the effectiveness of the GNN
module, enabling Resource2Box to capture complex relation-
ships between resources, leading to better box representations.

TABLE VI: Analysis of Resource2Box

Methods Resource Level (nP@1) Document Level (P@1)
FW14 CW100 CW123 GOV2 CW100 CW123 GOV2

Resource2BoxMax Pooling 0.778 ± 0.023 0.733 ± 0.027 0.630 ± 0.016 0.585 ± 0.023 0.475 ± 0.031 0.360 ± 0.024 0.564 ± 0.035
Resource2BoxMean Pooling 0.806 ± 0.004 0.802 ± 0.038 0.706 ± 0.018 0.680 ± 0.006 0.482 ± 0.042 0.401 ± 0.017 0.609 ± 0.021
Resource2Boxw/o GNN 0.642 ± 0.015 0.881 ± 0.021 0.718 ± 0.019 0.682 ± 0.010 0.466 ± 0.035 0.412 ± 0.016 0.611 ± 0.026
Resource2Vec 0.755 ± 0.019 0.883 ± 0.025 0.672 ± 0.026 0.676 ± 0.009 0.470 ± 0.033 0.383 ± 0.013 0.609 ± 0.024

Resource2Box 0.808 ± 0.011 0.885 ± 0.019 0.726 ± 0.008 0.699 ± 0.010 0.522 ± 0.034 0.427 ± 0.012 0.651 ± 0.024

3) Box Compared to Vector Embedding: We observe in
Table VI that Resource2Box outperforms Resource2Vec by
7%, 2.6%, 8% and 2.9% on nP@1 at the resource level on
datasets FW14, CW100, CW123, and GOV2, respectively. At
the document level, Resource2Box outperforms Resource2Vec
by 11%, 11.5% and 6.9% on P@1 on the CW100, CW123
and GOV2 datasets, respectively. This indicates that boxes,
which are geometrically richer than single vectors, can more
effectively represent resources comprising documents of a
wide range of topics, in the latent space.

We visually analyze this observation in Figure 4, where we
utilize t-SNE [50] to project the centers and offsets of the
box embeddings of the resources in the FW14 dataset into
a 2D space. Notably, both the center (i.e., location of the
box) and the offset (i.e., shape and size of the box) are well-
clustered based on their respective resource categories. This
implies that the learned box embeddings effectively capture the
distinctive characteristics associated with each resource. We
further investigate the reason behind the superiority of box em-
beddings over vector embeddings for resource representation.
In Figure 5, we illustrate density functions for the distances
between queries and their positive and negative resources.
We compare the cases where resources are represented as
vectors (Figure 5a) and boxes (Figure 5b) in the FW14
dataset. Visually, we can confirm that representing resources as
boxes increases the distinction between positive and negative
pairs, potentially contributing to more effective retrievals.
Numerically, we compute the KL divergences between the two
distributions to quantify how effectively positive and negative
pairs are distinguished with respect to a query in the latent
space. In particular, the KL divergences are computed as
2.425 and 3.794 for the vector embedding and box embedding,
respectively, confirming our analysis.

VI. CONCLUSION

To learn high-quality resource representations that effec-
tively capture the diverse information within a resource, we
move beyond conventional vector representations and propose
a novel approach: learning box (hypercube) resource repre-
sentations. Resource2Box represents resources as boxes in a
low-dimensional space. Document information is aggregated
through attentive pooling (intra-resource) and refined by in-
corporating resource-wise relationships using a graph neural
network (inter-resource). By employing a unique box-vector
distance metric, Resource2Box learns box embeddings for
each resource to accurately rank resources based on user
queries. This method addresses the limitations of single-vector

25 50 75 100 125 150 175 200
Distance

0.000

0.005

0.010

0.015

0.020

Pr
ob

ab
ilit

y
De

ns
ity

Positive Pairs
Negative Pairs

(a) Vector Embedding
(KL Divergence = 2.245)

20 40 60 80 100 120 140 160 180
Distance

0.000

0.005

0.010

0.015

0.020

Pr
ob

ab
ilit

y
De

ns
ity

Positive Pairs
Negative Pairs

(b) Box Embedding
(KL Divergence = 3.794)

Fig. 5: The density functions of distances between query
vector embeddings and (a) vector embeddings and (b) box
embeddings of resources in FW14 dataset. The box embedding
offers a superior differentiation between positive and negative
pairs of queries and resources. This enhanced distinction
contributes to more effective retrieval.

representations, as demonstrated by its empirical superiority
over vector-based methods.

REFERENCES

[1] F. Hafızoğlu, “Improving the efficiency of distributed information re-
trieval using hybrid index partitioning,” Master’s thesis, Middle East
Technical University, 2018.

[2] A. N. Pouamoun and İlker Kocabaş, “Multi-agent-based hybrid peer-to-
peer system for distributed information retrieval,” Journal of Information
Science, vol. 0, no. 0, p. 01655515211010392, 0.

[3] J. Callan, Distributed Information Retrieval. Boston, MA: Springer
US, 2000, pp. 127–150.

[4] M. Shokouhi and L. Si, “Federated search,” Foundations and Trends®
in Information Retrieval, vol. 5, no. 1, pp. 1–102, 2011.

[5] K.-L. Liu, W. Meng, J. Qiu, C. Yu, V. Raghavan, Z. Wu, Y. Lu,
H. He, and H. Zhao, “Allinonenews: Development and evaluation of
a large-scale news metasearch engine,” in Proceedings of the 2007
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’07. New York, NY, USA: Association for Computing
Machinery, 2007, p. 1017–1028.

[6] Y. Lu, Z. Wu, H. Zhao, W. Meng, K.-L. Liu, V. Raghavan, and
C. Yu, “Mysearchview: A customized metasearch engine generator,”
in Proceedings of the 2007 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 1113–1115.

[7] R. Desai, Q. Yang, Z. Wu, W. Meng, and C. Yu, “Identifying redundant
search engines in a very large scale metasearch engine context,” in
Proceedings of the 8th Annual ACM International Workshop on Web
Information and Data Management, ser. WIDM ’06. New York, NY,
USA: Association for Computing Machinery, 2006, p. 51–58.

[8] C. Yu, G. Philip, and W. Meng, “Distributed top-n query processing
with possibly uncooperative local systems,” in Proceedings of the 29th
International Conference on Very Large Data Bases - Volume 29, ser.
VLDB ’03. VLDB Endowment, 2003, p. 117–128.

[9] J. Yuan, L. He, E. C. Dragut, W. Meng, and C. Yu, “Result merging
for structured queries on the deep web with active relevance weight
estimation,” Information Systems, vol. 64, pp. 93–103, 2017.

[10] E. Dragut, B. Gupta, B. Beirne, A. Neyestani, B. Atassi, C. Yu,
and W. Meng, “Merging query results from local search engines for
georeferenced objects,” ACM Transactions on the Web, vol. 8, 10 2014.

[11] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI Open, vol. 1, pp. 57–81, 2020.

[12] L. Mei, J. Mao, G. Guo, and J.-R. Wen, “Learning probabilistic box
embeddings for effective and efficient ranking,” in Proceedings of the
ACM Web Conference 2022, ser. WWW ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 473–482.

[13] T. Chen, H. Yin, J. Long, Q. V. H. Nguyen, Y. Wang, and M. Wang,
“Thinking inside the box: learning hypercube representations for group
recommendation,” in Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval,
2022, pp. 1664–1673.

[14] K. Deng, J. Huang, and J. Qin, “Box4rec: Box embedding for sequential
recommendation,” in Pacific-Asia Conference on Knowledge Discovery
and Data Mining. Springer, 2021, pp. 537–548.

[15] S. Zhang, H. Liu, A. Zhang, Y. Hu, C. Zhang, Y. Li, T. Zhu, S. He,
and W. Ou, “Learning user representations with hypercuboids for
recommender systems,” in Proceedings of the 14th ACM international
conference on web search and data mining, 2021, pp. 716–724.

[16] Y. Kim, “Robust selective search,” SIGIR Forum, vol. 52, pp. 170–171,
2019.

[17] Q. Ai, J. Mao, Y. Liu, and W. B. Croft, “Unbiased learning to rank:
Theory and practice,” in Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, ser. CIKM
’18. New York, NY, USA: Association for Computing Machinery,
2018, p. 2305–2306.

[18] J. Xu and W. Croft, “Cluster-based language models for distributed
retrieval,” 02 2000.

[19] R. Aly, D. Hiemstra, and T. Demeester, “Taily: shard selection using
the tail of score distributions,” in Proceedings of the 36th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 2013. United States: Association for Computing
Machinery (ACM), Jul. 2013, pp. 673–682, 10.1145/2484028.2484033
; null ; Conference date: 29-07-2013 Through 01-08-2013.

[20] B. Han, L. Chen, and X. Tian, “Knowledge based collection selection for
distributed information retrieval,” Inf. Process. Manage., vol. 54, no. 1,
p. 116–128, jan 2018.

[21] L. Si and J. Callan, “Relevant document distribution estimation method
for resource selection,” in Proceedings of the 26th Annual International
ACM SIGIR Conference on Research and Development in Informaion
Retrieval, ser. SIGIR ’03. New York, NY, USA: Association for
Computing Machinery, 2003, p. 298–305.

[22] M. Shokouhi, “Central-rank-based collection selection in uncooperative
distributed information retrieval,” vol. 4425, 04 2007, pp. 160–172.

[23] P. Thomas and M. Shokouhi, “Sushi: Scoring scaled samples for server
selection,” 01 2009, pp. 419–426.

[24] S. Jin and M. Lan, “Simple may be best - A simple and
effective method for federated web search via search engine
impact factor estimation,” in Proceedings of The Twenty-Third Text
REtrieval Conference, TREC 2014, Gaithersburg, Maryland, USA,
November 19-21, 2014, ser. NIST Special Publication, E. M.
Voorhees and A. Ellis, Eds., vol. 500-308. National Institute
of Standards and Technology (NIST), 2014. [Online]. Available:
http://trec.nist.gov/pubs/trec23/papers/pro-ECNU federated.pdf

[25] G. Urak, H. Ziak, and R. Kern, “Source selection of long tail sources
for federated search in an uncooperative setting,” in Proceedings of the
33rd Annual ACM Symposium on Applied Computing, ser. SAC ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
720–727.

[26] Z. Dai, Y. Kim, and J. Callan, “Learning to rank resources,” in Proceed-
ings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval, ser. SIGIR ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 837–840.

[27] T. Wu, X. Liu, and S. Dong, LTRRS: A Learning to Rank Based
Algorithm for Resource Selection in Distributed Information Retrieval,
09 2019, pp. 52–63.

[28] U. Ergashev, E. Dragut, and W. Meng, “Learning to rank resources with
gnn,” in Proceedings of the ACM Web Conference 2023, ser. WWW ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
3247–3256.

[29] S. Wang and S. Zhuang, “Resllm: Large language models are strong
resource selectors for federated search,” https://synthical.com/article/
134ba7f9-cceb-4234-9e5f-3193329e812b, 0 2024.

[30] A. Kshemkalyani and M. Singhal, Distributed Computing: Principles,
Algorithms, and Systems. Cambridge University Press, 2011.

[31] V. Garg, Principles of Distributed Systems, ser. Lecture notes in com-
puter science. Springer US, 2012.

[32] H. Ren, W. Hu, and J. Leskovec, “Query2box: Reasoning over knowl-
edge graphs in vector space using box embeddings,” in International
Conference on Learning Representations, 2019.

[33] L. Vilnis, X. Li, S. Murty, and A. McCallum, “Probabilistic embedding
of knowledge graphs with box lattice measures,” in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2018, pp. 263–272.

[34] R. Abboud, I. Ceylan, T. Lukasiewicz, and T. Salvatori, “Boxe: A box
embedding model for knowledge base completion,” Advances in Neural
Information Processing Systems, vol. 33, pp. 9649–9661, 2020.

[35] L. Liu, B. Du, H. Ji, C. Zhai, and H. Tong, “Neural-answering logical
queries on knowledge graphs,” in Proceedings of the 27th ACM SIGKDD
conference on knowledge discovery & data mining, 2021, pp. 1087–
1097.

[36] Y. Onoe, M. Boratko, A. McCallum, and G. Durrett, “Modeling fine-
grained entity types with box embeddings,” in Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), 2021, pp. 2051–2064.

[37] X. Chen, M. Boratko, M. Chen, S. S. Dasgupta, X. L. Li, and
A. McCallum, “Probabilistic box embeddings for uncertain knowledge
graph reasoning,” in Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2021, pp. 882–893.

[38] D. Patel and S. Sankar, “Representing joint hierarchies with box em-
beddings,” Automated Knowledge Base Construction, 2020.

[39] S. S. Dasgupta, M. Boratko, S. Atmakuri, X. L. Li, D. Patel, and
A. McCallum, “Word2box: Learning word representation using box
embeddings,” arXiv preprint arXiv:2106.14361, 2021.

[40] A. Rau, G. Garcia-Hernando, D. Stoyanov, G. J. Brostow, and D. Tur-
mukhambetov, “Predicting visual overlap of images through inter-
pretable non-metric box embeddings,” in Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part V 16. Springer, 2020, pp. 629–646.

[41] G. Lee, C. Park, and K. Shin, “Set2box: Similarity preserving repre-
sentation learning for sets,” in 2022 IEEE International Conference on
Data Mining (ICDM). IEEE, 2022, pp. 1023–1028.

[42] B. Mitra and N. Craswell, 2018.
[43] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using

siamese bert-networks,” arXiv preprint arXiv:1908.10084, 2019.
[44] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “Lightgcn:

Simplifying and powering graph convolution network for recommenda-
tion,” in Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval, 2020, pp. 639–
648.

[45] A. Kulkarni, A. S. Tigelaar, D. Hiemstra, and J. Callan, “Shard
ranking and cutoff estimation for topically partitioned collections,” in
Proceedings of the 21st ACM International Conference on Information
and Knowledge Management, ser. CIKM ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 555–564.

[46] D. Hong, L. Si, P. Bracke, M. Witt, and T. Juchcinski, “A joint
probabilistic classification model for resource selection,” in Proceedings
of the 33rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, ser. SIGIR ’10. New York,
NY, USA: Association for Computing Machinery, 2010, p. 98–105.

[47] T. Demeester, D. Trieschnigg, D. Nguyen, D. Hiemstra, and K. Zhou,
“Fedweb greatest hits: Presenting the new test collection for federated
web search,” in Proceedings of the 24th International Conference on
World Wide Web, ser. WWW ’15 Companion. New York, NY, USA:
Association for Computing Machinery, 2015, p. 27–28.

[48] A. Garba, S. Wu, and S. Khalid, “Federated search techniques: an
overview of the trends and state of the art,” Knowledge and Information
Systems, vol. 65, pp. 1–31, 07 2023.

[49] S. Jiang, Q. Yao, Q. Wang, and Y. Sun, “A single vector is not
enough: Taxonomy expansion via box embeddings,” in Proceedings of
the ACM Web Conference 2023, ser. WWW ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 2467–2476.

[50] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

http://trec.nist.gov/pubs/trec23/papers/pro-ECNU_federated.pdf
https://synthical.com/article/134ba7f9-cceb-4234-9e5f-3193329e812b
https://synthical.com/article/134ba7f9-cceb-4234-9e5f-3193329e812b

	Introduction
	Related Work
	Distributed Search
	Box Embeddings

	Preliminaries & Problem Definition
	Problem Setting.
	Problem Definition

	Our Method
	Data Preprocessing
	Sample Selection
	Feature Extraction

	Resources as Boxes
	Resource2Box: Learning Box Embeddings for Resources
	Information Aggregation Within Resources
	Information Propagation Across Resources
	Linear Projection

	Training Procedures
	Distance Metric
	Loss Function

	Ranking Resources

	Experiments
	Baselines
	Comparison Methodology
	Evaluation Metrics
	Datasets
	Implementation Details
	Experimental Results
	Information Aggregation Within Resources
	Information Propagation Across Resources
	Box Compared to Vector Embedding

	Conclusion
	References

