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Abstract

Accurate alignment of calcium imaging data, which is
critical for the extraction of neuronal activity signals, is of-
ten hindered by the image noise and the neuronal activity
itself. To address the problem, we propose an algorithm
named REALS for robust and efficient batch image align-
ment through simultaneous transformation and low rank
and sparse decomposition. REALS is constructed upon our
finding that the low rank subspace can be recovered via lin-
ear projection, which allows us to perform simultaneous im-
age alignment and decomposition with gradient-based up-
dates. REALS achieves orders-of-magnitude improvement
in terms of accuracy and speed compared to the state-of-
the-art robust image alignment algorithms.

1. Introduction

Calcium imaging has enabled simultaneous recording of
the activity of a large population of neurons in vivo owing
to the recent advancement of genetically-encoded calcium
indicators [9, 10, 33, 43] and fluorescence microscopy tech-
niques [1, 6, 11, 29, 39]. State-of-the-art calcium imaging
methods allow data acquisition at up to thousands of frames
per second [34] which corresponds to gigabytes of data per
second [15]. Such a large amount of data has not only pro-
vided exciting opportunities for system neuroscience, but
also introduced new challenges for the data analysis [15].
General pipelines for processing large scale calcium imag-
ing data typically start with motion correction or image
alignment [13], which is critical for accurate extraction of
spiking activities from a calcium imaging dataset that suffer
from the motion of the brain.

Unfortunately, the neuronal activity itself — the signal of
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our interests — in the images makes even the well-aligned
images significantly different from one another [20] which
poses a challenge to the accurate image alignment. This
indicates that alignment needs to be done considering the
underlying structure of the images rather than relying solely
on the pixel level information.

To address this problem, there have been multiple at-
tempts to employ robust image alignment algorithms such
as Robust Alignment by Sparse and Low rank decompo-
sition (RASL) [26], that aims to align a set of signifi-
cantly different images, for the alignment of calcium imag-
ing data [2, 14, 28]. RASL unified image alignment with
low rank and sparse decomposition [7] as a single optimiza-
tion problem. Through low rank and sparse decomposition,
various forms of image corruption, such as noise and oc-
clusion, are absorbed by the sparse component so that the
alignment performed on the low rank component is not af-
fected by them. This opened up the possibility of accurate
alignment of calcium imaging data.

Unfortunately, the adoption of the robust alignment al-
gorithms has been limited to processing relatively small
sized datasets largely due to their high computational costs.
The cost mainly comes from singular value decomposition
(SVD), which has a computational complexity of O(nm2+
n2m) where n and m are the sizes of the data along two di-
mensions. That is, m is the number of pixels in each image,
and n is the number of images in a typical configuration.
This indicates that the computational cost increases rapidly
with an increase in the data size.

To overcome this limitation, we propose Robust and Effi-
cient ALignment through Simultaneous low rank and sparse
decomposition (REALS) for fast and robust image align-
ment. The main contributions of our work are as follows:

• We provide a mathematical proof, upon which REALS
is built, that the low rank subspace can be recovered via
linear projection.
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• We propose a robust image alignment algorithm RE-
ALS with a computational complexity of O(nm) as
opposed to O(nm2 + n2m) of the existing methods.

• We propose two extended versions of REALS, multi-
resolution REALS and deformable REALS, that
achieve even higher alignment accuracy under chal-
lenging conditions.

We demonstrate its capability by applying it to the in vivo
calcium imaging datasets which require robustness, scala-
bility, and computational efficiency.

2. Related Works
2.1. Low rank and sparse decomposition

Candès et al. [7] proposed robust principal component
analysis (RPCA), which recovers a low rank matrix L ∈
Rm×n and a sparse matrix S ∈ Rm×n such that Y = L+S
for a given data matrix Y ∈ Rm×n, assuming that the data
matrix Y is approximately drawn from a low rank subspace.
This is based on the following optimization problem:

min
L,S

rank(L) + λ||S||0 subject to Y = L+ S (1)

where ||S||0 is the L0 norm of S and λ > 0 is a hyperparam-
eter. While (1) is known to be computationally intractable,
Emmanuel et al. [7], and Wright et al. [35] showed that the
exact solution of (1) can be obtained through the following
convex optimization under weak assumptions:

min
L,S

||L||∗ + λ||S||1 subject to Y = L+ S (2)

where ||L||∗ is the nuclear norm (i.e., the sum of the sin-
gular values) of L and ||S||1 is the L1 norm of S. This
formulation sparked the development of a series of algo-
rithms for solving (2) [7, 8, 35] and various optimiza-
tion methods were adopted to reduce the computation time
[23, 24, 44, 45]. In addition, online versions of RPCA based
on stochastic optimization were introduced to reduce the
memory cost [12, 16, 17, 37]. Recently, Han et al. [15] pro-
posed an algorithm for efficient approximation of RPCA.

2.2. Robust image alignment

Peng et al. [26] formulated a batch image alignment
problem as follows: Suppose we have n misaligned and cor-
rupted images I1, I2, . . . , In ∈ Rw×h of the same object.
Assume the corruptions typically affect only a small frac-
tion of all pixels in an image so that they can be modeled
as a sparse matrix whose nonzero entries can have arbitrary
values. Let si represent the error that appears in image Ii.
Then, there exist transformations (e.g., affine transforma-
tion) τ1, . . . , τn such that the images {τi(Ii) − si}ni=1 are
well aligned to each other and have no corruptions. Since

{τi(Ii)−si}ni=1 is a set of the aligned images without error,
the following matrix L should be approximately low rank:

L = [v(I01 )|· · · |v(I0n)] ∈ Rm×n (3)

where I0i = τi(Ii) − si, and v : Rw×h → Rm (m =
w × h) denote the vectorization of an image. Based on this
reasoning, the image alignment problem is formulated as
the following optimization problem:

min
L,S,τ

rank(L) subject to τ(Y ) = L+ S, ||S||0 ≤ k

(4)
where Y = [v(I1)|· · · |v(In)], S = [v(s1)|· · · |v(sn)], and
τ(Y ) = [v(I1 ◦ τ1)|· · · |v(In ◦ τn)]. The Lagrangian form
of this problem is as follows:

min
L,S,τ

rank(L) + γ||S||0 subject to τ(Y ) = L+ S (5)

where γ > 0 is a hyperparameter. To handle the non-
linearity of the constraint τ(Y ) = L + S, Peng et al.
[26] approximated the constraint by linearizing the cur-
rent estimate of τ so that the linearized convex optimiza-
tion problem can be efficiently solved using the Augmented
Lagrange Multiplier method [23]. They relaxed the objec-
tive (5) to its convex surrogate and linearized the nonlinear
constraint, τ(Y ) = L + S, by assuming that the change in
τ is small.

Zhang et al. [41] generalized the problem in (5) into a
low rank tensor recovery framework to exploit spatial struc-
tures in images. They minimized the tensor rank, defined as
the ranks of a set of unfolding matrices, acquired by apply-
ing Tucker decomposition [21] to the given tensor. The cost
of solving the optimization problem in both [26, 41] comes
mainly from SVD which has a computational complexity of
O(nm2 + n2m).

t-GRASTA (transformed GRASTA) [18] is based on
GRASTA [17] which is a low rank subspace estimation
algorithm that represents a low rank matrix as a product
of two matrices through gradient descent performed on
the Grassmannian. The computational complexity of t-
GRASTA is O(n2m) [16].

3. Proposed Method
3.1. Robust and efficient alignment through simul-

taneous low rank and sparse decomposition

Building upon [26], we formulate the robust image align-
ment problem as follows:

min
L,S,τ

||S||1 subject to τ(Y ) = L+S, rank(L) ≤ l (6)

which is obtained by replacing the rank minimization in (5)
by the maximum rank constraint on L where the maximum
rank l is a small natural number. Then, we use proposition
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1 to find a surrogate that is differentiable with respect to
the trainable parameters. Below, C(A) and <,> denote the
column space of a matrix A, and the dot product operation,
respectively.

Proposition 1. For given Y,L, S ∈ Rm×n where Y = L+
S, if C(L) ∩ C(S) = {⃗0} then there exists W ∈ Rm×l

such that Li =
∑

j < Wj , Yi > Wj where Li, Yi, and
Wi (i = 1, ..., n) are the i-th columns of L, Y , and W ,
respectively.

Proof. Without loss of generality, let m > n. Let an arbi-
trary orthonormal basis of C(L) be Lo = {v1, ..., vl}. Since
C(L) ∩ C(S) = {⃗0}, there exists S0 = {vl+1, ..., vl+s} that
spans C(S) such that {v1, ..., vl+s} is orthonormal. Note
that l + s < m. Then, there exists {vl+s+1, ..., vm} such
that {v1, ..., vm} is an orthonormal basis of Rm. Let P
be an m × m matrix such that the j-th column of PT is
vj (j = 1, ...,m). Then, P is the change-of-basis matrix
whose columns are the new coordinate vectors vj’s on the
standard basis of Rm. Then, we can construct a diagonal
matrix D ∈ Rm×m such that PL = DPY by setting
Dii = 1 if 1 ≤ i ≤ l, and Dii = 0 otherwise. Note
that P is invertible and orthonormal. Since P−1 = PT ,
L = PTDPY = (PT D̃T )(D̃P )Y where D̃ ∈ Rl×m such
that D̃ii equals 1 if 1 ≤ i ≤ l and 0 otherwise. Therefore,
by setting W = PT D̃T , Li =

∑
j < Wj , Yi > Wj .

Thus, there exists a matrix that projects the matrix Y to
its low rank subspace, if C(L) ∩ C(S) = {⃗0}. This con-
dition is approximately met, if rank(L) is small and S is
a sparse matrix (i.e., if Si, the i-th column of S, is an m-
dimensional random sparse vector and rank(L) ≪ m, then
<Li,Sj>
∥Li∥∥Sj∥ ≈ 0 for all i, j ∈ {1, ..., n}). Note that the same
assumption was used for the convex relaxation in (2). Under
such condition, the optimization problem in (6) is equiva-
lent to the following:

min
W,θ

||S||1 where

Si = τθi (Yi)−
∑
j

< Wj , τ
θ
i (Yi) > Wj (7)

where τθi is the transformation applied to the i-th column of
Y , parameterized by θ using the differentiable image trans-
formation [19] to make the objective function differentiable.
The intuition behind this formulation is that L is a low rank
subspace of τ(Y ) [7] and it can be found through linear pro-
jection of τ(Y ) to a lower dimensional space defined as the
column space of W . We note that similar formulation was
employed in [15] to find a surrogate, but without mathemat-
ical interpretations or proofs.

Importantly, this objective function is differentiable with
respect to all optimization parameters and hence allows
gradient-based updates. Therefore, convergence to the local

optimum is guaranteed [5]. In addition, each gradient-based
update of θ and W has a computational complexity of only
O(nm): each τθi consists of linear summation operations
on Yi [19] that linearly scales with the number of pixels m,
and updating W requires only matrix multiplications with
W ∈ Rm×l and WT ∈ Rl×m [15]. This is in contrast to
the complexity of O(nm2+n2m) [26, 41] or O(n2m) [18]
of the existing methods.

Furthermore, this framework allows us to handle arbi-
trary sized data through stochastic gradient descent [31].
As a side benefit, since both forward propagation and back-
propagation are possible in REALS, it can be easily com-
bined with other trainable functions for end-to-end learn-
ing. As an example, we show that REALS can be combined
with non-negative matrix factorization (NMF) [22] to per-
form unsupervised neuron segmentation in Section 5.3.

It should be noted that the global minima of both (5) and
(7) are zeros which can be achieved by any transformation
τθ that gives transformed images full of zeros. To avoid
convergence to such an undesired global minimum, we ini-
tialized τθ as identity mapping at the beginning of optimiza-
tion and clamped the values of θ after each parameter update
(see Algorithm S1 in the supplementary materials). Instead
of parameter clamping, one can set a reference image by
freezing the transformation parameters for the image.

REALS can be easily extended to handle 3-D images by
extending vectorization v as v : Rw×h×d → Rm (m =
w×h×d). This extension maintains the differentiability of
the objective function of REALS with respect to W and θ.

3.2. Multi-resolution REALS

We introduce an extended version of REALS that makes
use of a multi-resolution image pyramid, which is a com-
mon strategy for aligning a set of large images with
large misalignment [25, 32]. For a set of images Y =
[v(I1)|· · · |v(In)] where Ii ∈ Rw×h, we generate an im-
age pyramid Y(k) = [v(I1,(k))|· · · |v(In,(k))] where k ∈ N
and Ii,(k) ∈ R

w

2k
× h

2k is a downsampled image of Ii. Then,
for each Y(k) (k = 0, . . . ,K), we have an optimization ob-
jective as in (7). Since the transformation should remain
the same for a given image regardless of k assuming that
the translation parameters are defined at a relative scale, the
objective function can be written as follows:

min
{W(i)},θ

ΣK
k=0βk||S(k)||1 (8)

where βk ∈ R+ is a hyperparameter that controls the rela-
tive contribution of each level, and S(k) and corresponding
W(k) from the image pyramid Y(k) are constructed as in
(7). Since this objective function is differentiable with re-
spect to θ and W(k) for all k ∈ {0, . . . ,K}, gradient-based
optimization can be used to update the parameters.

1941



3.3. Deformable REALS

As the optimization problem in REALS is formulated
in a form that allows backpropagation, it can be easily
extended to handle affine transformation and deformable
transformation simultaneously by setting the transformation
τθ in (7) as a composite function of parameterized affine
and deformable transformations (i.e., τθ = τθ1 ◦τθ2 , where
τθ1 is deformable transformation and τθ2 is affine transfor-
mation). The deformable transformation τθ1 is parameter-
ized by the displacement field θ1 ∈ Rw×h×2 that encodes
that relative position of the each pixel before and after the
transformation [3, 4]. The optimization objective of de-
formable REALS is as follows:

min
W,θ1,θ2

||S||1 + λ1||θ1||1 + λ2Lsmooth(θ1) (9)

where ||θ1||1 and Lsmooth(θ1) are the regularization terms
employed to introduce preferences for affine transforma-
tion over deformable transformation and spatially smooth
deformation [3], respectively. λ1 and λ2 are hyperparam-
eters. This simplifies the conventional two-step registra-
tion pipelines for the biomedical images [3] that sequen-
tially perform affine and deformable transformations to cor-
respond to the movement and the deformation of biological
tissues, respectively.

4. Experiments and Results
We compared REALS with RASL [26], t-GRASTA

[18], and lp+ADMM [41]. For testing REALS, RASL, t-
GRASTA, and lp+ADMM on a CPU, we used a PC with an
Intel i7-9700K CPU and 128GB of RAM. The source code
distributed by the authors was written in MATLAB without
GPU acceleration. For testing the performance of REALS
on a GPU, we used a PC with an Intel Xeon Silver 4214
CPU, an NVIDIA GeForce RTX 3090 GPU and 128GB of
RAM. REALS was implemented using Pytorch.

4.1. Testing on digit, window and Al Gore dataset

To validate REALS, we verified how REALS and other
algorithms (RASL, t-GRASTA, and lp+ADMM) performed
on three datasets that were typically used for testing ro-
bust image alignment algorithms [18, 26, 30, 31, 36, 41].
Due to the absence of the ground truth aligned images, the
alignment results were compared visually. REALS success-
fully recovered the low rank images (Fig. 1) and all methods
yielded qualitatively similar results (Fig. S1)

4.2. Testing on a zebrafish brain dataset

4.2.1 Larval zebrafish brain dataset

For quantification of the performance, we generated and
used a synthetic dataset with known geometric perturba-

Figure 1: Testing REALS on standard datasets. (Top) Input
images. (Bottom) Recovered low rank images.

Figure 2: Zebrafish brain dataset. (a) Source images ac-
quired by performing calcium imaging of a larval zebrafish
brain. (b) Synthetic images with known geometric pertur-
bations. Scale bar, 100 µm.

tions, from which the alignment accuracy could be mea-
sured. We first imaged the whole-brain neuronal activity of
a larval zebrafish that was strictly immobilized using both
physical (i.e., embedding in a gel) and chemical (i.e., ex-
posing to paralytics) means. Hence, the series of acquired
images is free from misalignment while exhibiting signif-
icant changes due to neuronal activity and noise as shown
in Fig. 2(a). Then, each image is perturbed by Euclidean
transformation (i.e., translation and rotation) with random
yet known parameters to construct a dataset for testing ro-
bust alignment algorithms (Fig. 2(b)). The animal exper-
iments conducted for this study were approved by the In-
stitutional Animal Care and Use Committee (IACUC) of
KAIST (KA2021-125).

We note that the acquired images are linear superposition
of the underlying structure of the brain and the neuronal
activity with time-dependent spatio-temporal patterns, and
hence they can be modeled as the sum of a low rank matrix
and a sparse matrix [40]. The size of the acquired dataset
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was 512(x)×512(y)×60(t). Further details on the dataset
are described in the Supplementary Note 1.1.

4.2.2 Performance metric

Previous works relied on human annotated data to estimate
alignment accuracy [18, 26, 36] or used the reconstruction
error in the recovered low rank matrix as an indirect mea-
sure of the alignment accuracy [30, 31, 41], neither of which
is suited for the precise assessment of the alignment accu-
racy on a large scale dataset. As multiple sets of transforma-
tions that align the images well with respect to other images
are equally valid (i.e., the optimal set of transformations is
not unique), we used mean squared error (MSE) defined as
follows for evaluating the alignment accuracy:

MSE =
1

n

n∑
i=1

||(τ align
i ◦ τ rand

i )(Ii)

− µ({τ rand
j ◦ τ align

j }nj=1)(Ii)||F (10)

where {τ rand
i }ni=1 is a set of random transformations,

{τ align
i }ni=1 is a set of transformations that is acquired with

an alignment algorithm, µ({τj}nj=1) is the transformation
that averages each parameter from τj’s (j = 1, . . . , n) , and
{Ii}ni=1 is a set of aligned images (see Movie S1 for the
visual assessment of the alignment accuracy with multiple
MSE values).

4.2.3 Performance comparison setting

We compared the following methods in terms of MSE and
computation time: REALS, RASL [26], t-GRASTA [18],
and lp+ADMM [41]. We used Euclidean transformation for
all the methods. We ran REALS for 2000 iterations, and
used 1×10−4 and 1×10−2 as the learning rates for W and
τ , respectively. Clamping parameters were set to limit the
maximum translation in horizontal and vertical directions
as 64 pixels and the maximum rotation angle with respect
to the image center as 35◦. The hyperparameters were set
as proposed in [18, 26, 41].

4.2.4 Translation and rotation

We first compared the performance of the alignment al-
gorithms on datasets with varying levels of misalignment
where the neuronal activity and the native noise in the im-
ages served as the outliers. We synthetically perturbed the
input images with Euclidean transformations whose angles
of rotation were drawn from U(−θ0, θ0), where U(a, b) de-
notes a uniform distribution between a and b, and both x
and y−translations were drawn from U(−t0, t0). For RE-
ALS, we ran 5 independent trials with random seeds for the
synthetic perturbations for the performance measurement at

Figure 3: Heatmaps showing the mean squared error of RE-
ALS, RASL, t-GRASTA and lp+ADMM. The algorithms
were tested for the datasets with various levels of geometric
perturbations (translation and rotation).

each setting (see Table S1 for the hyperparameters). For
testing other methods, we ran single trials at each setting
because of the long computational time.

Fig. 3 shows the MSE of each method on the datasets
with different levels of translation and rotation. REALS
outperformed other methods by a large margin in terms of
MSE. The average computation time and the average MSE
of each method measured from the trials in Fig. 3 are sum-
marized in Table 1. REALS achieved an order of magnitude
improvement in terms of both speed and accuracy compared
to the other methods (see Fig. S2 for the computation time
at each experimental setting). In addition, to monitor the
convergence behavior of the algorithms, we measured the
MSE with a time stamp after each parameter update. As
shown in Fig. 4, REALS on GPU took 100-1000 times
shorter than RASL, t-GRASTA, and lp+ADMM to achieve
the same level of MSE. REALS on CPU was about 10 times
slower than that on GPU, but it was still significantly faster
than other algorithms. The MSE as a function of the num-
ber of parameter updates is in Fig. S3 which shows that RE-
ALS requires smaller number of iterations for convergence
on top of the cheaper complexity of each iteration.

Method Time (±std) Mean squared error

REALS 79.8± 2.4 3.9× 10−5

RASL 2419.2± 46.2 2.4× 10−3

t-GRASTA 856.2± 78.6 3.4× 10−3

lp+ADMM 2305.8± 4395.6 4.3× 10−3

Table 1: Computation time (unit: second) and mean squared
error of REALS, RASL, t-GRASTA and lp+ADMM.
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Figure 4: Mean squared error of REALS, RASL, t-GRASTA, lp+ADMM versus computation time. Solid: (t0, θ0) =
(12, 8◦), Dashed: (t0, θ0) = (18, 12◦), Dotted: (t0, θ0) = (24, 16◦).

4.2.5 Additional image corruption

To compare the robustness of the alignment algorithms
against image corruption, we added Poisson and Gaus-
sian noise to the input images and measured the MSE
(see Movie S2 for visual assessment of the noise
level). We varied the level of Poisson noise and
Gaussian noise and perturbed the images with multiple
combinations of translation and rotations: (t0, θ0) ∈
{(0, 0◦), (6, 4◦), (12, 8◦), (18, 12◦), (24, 16◦)}. To add
Poisson noise to the images, we first normalized the in-
put images and multiplied them by the brightness level (∈
{33, 100, 333, 1000,∞}), and then used each pixel value as
the parameter (i.e., mean value) of the Poisson distribution.
In this configuration, the physical meaning of the brightness
level is the expected number of photons that hit the bright-
est pixel. For Gaussian noise, we first normalized the input
images and added Gaussian noise with a standard deviation
of σ ∈ {0.0, 0.001, 0.003, 0.01, 0.03}.

In addition, as another way of testing the robustness of
the alignment algorithms, we synthesized the images of
neuronal activity with the reduced low rank components —
which is equivalent to the relative increase of sparse compo-
nents — as follows. We first applied BEAR [15] to the lar-
val zebrafish brain dataset Y and acquired low rank matrix
L and sparse matrix S. Then, we reconstructed the images
with the reduced low rank component as Yα = αL + S,
where α ∈ {0.2, 0.4, 0.6, 0.8, 1.0}, and then applied ran-
dom perturbation to Yα. This setting with α < 1 can be
considered as simulating future neuronal activity imaging
data, as the relative brightness change of the optical neu-
ronal activity indicators compared to their baseline bright-
ness — which determines that ratio of S and L — has been
continuously increasing [42].

We measured the MSE for the datasets with these ad-
ditional image corruptions and the results are reported in
Table 2 (see Fig. S4 for the MSE at each experimental set-
ting). REALS outperformed other methods under challeng-
ing conditions which proves its robustness against various
forms of image corruption.

Poisson Gaussian Reduced
Method noise noise low rank

REALS 3.9× 10−4 2.1× 10−4 7.7× 10−5

RASL 2.8× 10−3 2.5× 10−3 1.8× 10−3

t-GRASTA 3.1× 10−3 3.0× 10−3 2.7× 10−3

lp+ADMM 3.6× 10−3 3.5× 10−3 3.4× 10−3

Table 2: Mean squared error of REALS, RASL, t-GRASTA
and lp+ADMM for the images with additional corruption.

4.2.6 Multi-resolution REALS

(t0, θ0) Input images* REALS m-REALS†

(30, 25◦) 0.0068 0.0013 0.0002
(45, 30◦) 0.0078 0.0019 0.0004
(60, 35◦) 0.0082 0.0024 0.0005
(75, 40◦) 0.0088 0.0056 0.0019
(90, 45◦) 0.0094 0.0077 0.0049

Table 3: Mean squared error (MSE) of REALS and multi-
resolution REALS. *MSE of the input images (i.e., τ align is
an identity transformation). †multi-resolution REALS.

We tested the performance of the multi-resolution RE-
ALS under challenging conditions (see Table S2 for the hy-
perparameters). We first added Poisson noise that corre-
sponded to the brightness level of 33 and Gaussian noise
with σ = 0.03 to the images. We then applied large geo-
metric perturbations that ranged from (t0, θ0) = (30, 25◦)
to (t0, θ0) = (90, 45◦). We ran 5 independent trials to com-
pare REALS and multi-resolution REALS. Multi-resolution
REALS showed up to 5 times lower MSE than REALS as
summarized in Table 3.

4.2.7 Deformable REALS

We compared the performance of deformable REALS, in-
troduced in Section 3.3, with VoxelMorph [3] using im-
ages that were perturbed with deformable transformations.
For the experiment, we generated synthetic datasets by se-
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Figure 5: Deformable image registration using deformable REALS and VoxelMorph. (a) Temporal average projections of the
misaligned input images, ground truth aligned images, images aligned using deformable REALS, and images aligned using
VoxelMorph. Regular grids with a pitch of 32 pixels were overlaid on the ground truth aligned images. Thus, the sharpness of
the images and the grids in the average projections shows the alignment accuracy. The grids were not used for the alignment,
but overlaid only for visual aid. (b) Representative frames of the input images, images aligned using deformable REALS,
and images aligned using VoxelMorph. The images show the boxed area in a. Regular grids with a pitch of 16 pixels were
overlaid on the ground truth aligned images. That is, the grids in the images show how the images were perturbed and aligned.

quentially applying random deformable and Euclidean per-
turbations to the larval zebrafish brain dataset. Each en-
tity of the displacement field for the deformable perturba-
tion was first drawn from the normal distribution with a
mean value of zero and a standard deviation of σ1. There-
after, the displacement field was convovled with a 2-D
Gaussian kernel with a standard deviation of σ2 to mimic
the deformation of biological tissues. The following pa-
rameters were used for the Euclidean and deformable per-
turbations: σ1 ∈ {0.2, 1}, σ2 = 40, and (t0, θ0) ∈
{(0, 0◦), (3, 2◦), (6, 4◦), (9, 12◦), (12, 8◦)} (see Movie S3
for the visual assessment of the level of perturbations).

Fig. 5 shows the temporal average projections and the
representative frames of the input (misaligned) images and
the registered images acquired using deformable REALS
and VoxelMorph. Note that the first frame of the input im-
ages was set as the fixed target (reference) image for train-
ing and inferencing with VoxelMorph. VoxelMorph failed
to preserve the neuronal structure as the result of overly
deforming the images to minimize the difference between
the input image and the target image; This demonstrates the
importance of considering the underlying structure for the
alignment. We measured the MSE for each setting and the
results are summarized in Table S3 (see Movie S3 for the
comparison of deformable REALS and VoxelMorph).

5. Additional Demonstrations

5.1. Testing on mouse brain dataset

We applied REALS to a mouse brain image dataset with
a size of 480(x)×752(y)×1000(t) [27] that suffered from
large motion. Such motion artifacts are inevitable in in vivo
mouse brain imaging even with head fixation, because the
position of the brain relative to the skull changes with respi-
ration and blood pulsation of the mouse. Despite the chal-
lenges posed by the large motion, low image contrast, and
low signal-to-noise ratio, REALS successfully aligned the
dataset as shown in Fig. 6 (see Table S4 and Movie S4).

5.2. REALS on 3-D data

We applied 3-D REALS on 3-D time-series images of
neural activity of a zebrafish brain with a size of 256(x) ×
512(y) × 48(z) × 60(t). Similar to the 2-D image dataset,
we first imaged whole-brain neuronal activity of a larval ze-
brafish that was strictly immobilized in 3-D. Then, we syn-
thetically perturbed the images with Euclidean transforma-
tion whose angles of rotation around the z-axis were sam-
pled from U(−2, 2) (unit: ◦), and xyz-translations were
sampled from U(−4, 4) (unit: pixel). We used affine trans-
formation and optimized REALS with mini-batches with
the batch size of 30 (see Table S5 for the hyperparame-
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Figure 6: Alignment of neuronal activity images of a mouse
brain using REALS. (a) Temporal maximum intensity pro-
jection of the input images. (b) Temporal maximum inten-
sity projection of the aligned image.

ters). Fig. 7 shows the temporal maximum intensity pro-
jections (MIPs) of the input and aligned images (see Movie
S5). Fine neuronal structures are clearly visible in the tem-
poral MIP after the alignment.

Figure 7: Alignment of 3-D neuronal activity images of a
larval zebrafish brain using REALS. (a) Temporal maxi-
mum intensity projection of the 3-D input images. (b) Tem-
poral maximum intensity projection of the 3-D aligned im-
ages. Scale bar, 100 µm.

5.3. REALS with NMF

We integrated REALS with NMF [22] to simultaneously
perform image alignment, separation of neuronal activity
from background, and unsupervised segmentation of neu-
rons; In order to retain differentiability with respect to all
parameters, we employed projective NMF [38] which is a
differentiable formulation of NMF.

We processed a zebrafish calcium imaging video with a
size of 256(x) × 512(y) × 600(t) which suffer from mo-
tion artifacts using REALS with NMF, with and without
optimizing the transformation parameters. Fig. 8 shows
the segmentation result, in which a random color is as-
signed to each spatial component. The result without opti-
mizing the transformation parameters showed severe over-
segmentation due to the motion artifacts (Fig. 8(b)). How-
ever, with transformation parameter optimization, confined

spatial components that correspond to the neurons were ob-
tained which manifested as the color uniformity within each
neuron in Fig. 8(d) (see Table S6 and Movie S6).

Figure 8: REALS with NMF for simultaneous alignment,
low rank and sparse decomposition, and NMF. (a) Spatial
footprints from REALS with NMF, but without alignment,
are colored and overlaid. (b) Spatial footprints from RE-
ALS with NMF are colored and overlaid. Same random
color palette as in a is used. Scale bar, 30 µm.

6. Conclusion

In this paper, we proposed REALS, an algorithm for ro-
bust and efficient batch image alignment. REALS employs
a differentiable image transform and differentiable low rank
and sparse decomposition which are integrated in a form
that we can backpropagate for gradient-based updates. This
characteristic comes with multiple benefits. First, it has
a significantly reduced computation complexity of O(nm)
and achieves orders-of-magnitude of performance improve-
ment. Second, it can be easily generalized for the alignment
of high-dimensional image data or deformed images. Third,
it can be integrated with other trainable functions that al-
lows backpropagation. The robustness, computational effi-
ciency, and scalability of REALS make it an ideal algorithm
for the alignment of calcium imaging data.
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