
PREMERE: Meta-Reweighting via Self-Ensembling for Point-of-Interest
Recommendation

Minseok Kim, Hwanjun Song, Doyoung Kim, Kijung Shin, Jae-Gil Lee∗
KAIST, Korea

{minseokkim, songhwanjun, doyo09, kijungs, jaegil}@kaist.ac.kr

Abstract

Point-of-interest (POI) recommendation has become an im-
portant research topic in these days. The user check-in his-
tory used as the input to POI recommendation is very im-
balanced and noisy because of sparse and missing check-ins.
Although sample reweighting is commonly adopted for ad-
dressing this challenge with the input data, its fixed weight-
ing scheme is often inappropriate to deal with different char-
acteristics of users or POIs. Thus, in this paper, we propose
PREMERE, an adaptive weighting scheme based on meta-
learning. Because meta-data is typically required by meta-
learning but is inherently hard to obtain in POI recommen-
dation, we self-generate the meta-data via self-ensembling.
Furthermore, the meta-model architecture is extended to deal
with the scarcity of check-ins. Thorough experiments show
that replacing a weighting scheme with PREMERE boosts
the performance of the state-of-the-art recommender algo-
rithms by 2.36–26.9% on three benchmark datasets.

Introduction
With the prevalence of mobile devices and the emergence
of location-based social networks (LBSNs), it has become
feasible for people to share location-related contents. Peo-
ple visit point-of-interests (POIs) and share their check-in
records to LBSN services, and discover potentially interest-
ing POIs from the services. The check-in records, which in-
dicate the preference of users, are harnessed to improve the
quality of POI recommendation. Successful POI recommen-
dation saves the users’ time and effort in finding interesting
POIs and helps business owners increase their profits by at-
tracting potential customers to their venue. Thus, numerous
POI recommender systems have been actively developed (Ye
et al. 2011; Zhang and Chow 2013; Li et al. 2015).

The POI check-in history of users is represented by a
user-POI check-in matrix, where rows correspond to users
and columns correspond to POIs. Each (i, j)-th element in-
dicates the number of check-ins at the j-th POI by the i-th
user. While almost all prior studies have mainly relied on the
user-POI check-in matrix, it is biased in two aspects. First, it
is very sparse, where only a small fraction (around 0.1%) of
entries are non-zero (Liu et al. 2017). Second, a zero entry
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does not necessarily indicate being uninteresting, because
users may omit or forget to share their visits to POIs which
they are interested in. Therefore, the class imbalance and
noisy values of the user-POI check-in matrix may lead to
poor performance of POI recommendation (Lian et al. 2014;
Yu, Bilenko, and Lin 2017).

Sample reweighting (Ma et al. 2018; Hu, Koren, and
Volinsky 2008; Yu, Bilenko, and Lin 2017; Song et al.
2020b) is one common strategy for addressing the chal-
lenge. Specifically, it increases the learning weight of pos-
itive (non-zero) samples which are very valuable owing to
their scarcity (Hu, Koren, and Volinsky 2008), and/or de-
creases the weight of negative (zero) samples during model
training (Yu, Bilenko, and Lin 2017). The solutions em-
ployed in the prior studies are to design a weighting function
that maps the value or loss of a sample to its learning weight,
to induce a recommender learn more or less of the sample
when updating the model. For example, it is reasonable to
increase the impact of positive samples more for conserva-
tive users than for exploratory users. However, because the
fixed weighting function is used throughout the entire opti-
mization process, the weighting scheme cannot address the
different characteristics of users or POIs (Zhang et al. 2018).

To overcome the limitation of the fixed weighting func-
tion, we propose an adaptive weighting scheme, called
PREMERE (POI REcommendation with MEta-learning
based REweighting). In short, PREMERE learns to
reweight samples from data; for each sample, it produces
the weight most suitable at the current stage of an optimiza-
tion process. Meta-learning has been recently adopted to
reweight samples for training image classifiers (Ren et al.
2018; Shu et al. 2019), and the weighting function ex-
ploits meta-data (i.e., an unbiased validation set) to inspect
whether the reweighting is properly guiding the training pro-
cess. However, applying meta-learning to sample reweight-
ing for POI recommendation is very challenging because
meta-data, which corresponds to precise user preferences or
user trajectories, is practically very hard to obtain.1

Thus, the primary goal of this paper is to alleviate the lack
of meta-data in POI recommendation for sample reweight-

1A clean validation set could be obtained by extensive user surveys
or GPS data with high sampling rate, but either of them is not
available in a large scale owing to cost and privacy issues.
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Figure 1: Overall procedure of PREMERE and its meta-
data generation strategy through temporal ensembling.

ing based on meta-learning. Toward this goal, we ex-
ploit self-ensembling, or more specifically temporal ensem-
bling (Laine and Aila 2017; Tarvainen and Valpola 2017),
to generate meta-data. PREMERE involves two models: a
recommender model and a meta-model (i.e., weighting func-
tion). The overall training procedure is illustrated in Figure
1. The recommender model parameterized by w infers the
visit probability that each user will visit each POI at each
epoch. If this prediction result for a user-POI pair is stable
for a sufficient number of consecutive epochs, we regard that
the prediction result tends to be the same as the ground truth,
following the notion of temporal ensembling. Then, the user-
POI pair annotated with the stable prediction result is confi-
dently used as meta-data for training the meta-model param-
eterized by Θ. The parameter updates alternate between the
recommender model and the meta-model.

Overall, the key contributions of this paper are summa-
rized as follows:
• We propose PREMERE, a meta-learning approach to

employ adaptive sample reweighting to mitigate the class
imbalance and noisy values of the input data. Further-
more, a novel meta-model architecture, PREMERE-
NET, is developed to cope with the class imbalance issue.
To the best of our knowledge, our work is the first attempt
to adopt meta-learning for POI recommendation.

• We alleviate the absence of the meta-data by its self-
generation via temporal ensembling, which is used to
update the PREMERE-NET model that understands the
characteristics of users and POIs.

• The recommendation accuracy improves by 2.36–26.9%
for three real-world benchmark datasets when a heuris-
tic weighting function is replaced with PREMERE in the
state-of-the-art recommender algorithms. Note that PRE-
MERE can be applied to any recommender algorithm.

Preliminary
A POI recommendation algorithm receives users’ check-in
records and then provides a list of POIs that each user is
likely to visit but has never visited before. Each check-in
record contains a user u’s visit to a POI l, along with the POI
location and the visit timestamp. The records are aggregated
to form a user-POI check-in matrix V in Definition 1.
Definition 1. Let N and M be the number of users and
the number of POIs, respectively. Then, a user-POI check-in

matrix V ∈ RN×M is defined as a matrix, where each entry
vu,l is the count of check-ins of the user u at the POI l. �

Then, we introduce a user interest matrix X in Definition
2, following the common problem setting in the recent liter-
ature for POI recommendation (Ma et al. 2018).

Definition 2. A user interest matrix X ∈ RN×M is de-
fined as the binarized user-POI check-in matrix for exhibit-
ing users’ interest in POIs, where xu,l is 1 if vu,l ≥ 1 and 0
otherwise. �

A recommender model, denoted as R parameterized by
w, receives a user interest matrix X and returns the user
preferences X̂ over the POIs. Typically, R is trained to find
out w∗ which minimizes the loss function,

L (X; w) =
1

N

N∑
u=1

`
(
R(xu; w),xu

)
=

1

N

N∑
u=1

`(x̂u,xu)

=
1

|Ω(X)|
∑

x∈Ω(X)

`(x̂, x), (1)

where xu (or x̂u) denotes a user row vector of X (or X̂),
x (or x̂) denotes an element of X (or X̂), Ω(X) denotes the
set of elements of X, and `(x̂, x) indicates any loss func-
tion, e.g., mean squared error ‖x̂ − x‖22. After training is
complete, for a user u, the top-K POIs in x̂u ∈ RM except
visited POIs are recommended to the user. However, owing
to the class imbalance and noisy values in X, naively min-
imizing the default loss in Eq. (1) may hinder the model R
from understanding true user preferences and lead to unsat-
isfactory recommendation.

PREMERE: Meta-Reweight Methodology
In this section, we present the detailed procedure of PRE-
MERE and the architecture of PREMERE-NET.

Problem Setting: In order to incorporate sample reweight-
ing into the optimization process, we aim to train the model
R by minimizing the extended loss function,

L′(X; w,Θ) =
1

|Ω(X)|
∑

x∈Ω(X)

f(Ix; Θ)`
(
R(x; w), x

)
, (2)

where Θ indicates the parameter of the meta-model f , and
Ix is the set of relevant features (e.g., loss) needed for the
meta-model. For each sample x, f(Ix; Θ) returns the best
weight learned by meta-learning. BothR and f are supposed
to be deep neural network (DNN) models. Overall, the opti-
mal parameter w∗ of R is determined as

w∗ = arg min
w
L′ (X; w,Θ). (3)

Overall Procedure
Each epoch of the training procedure for both the rec-
ommender model R and the meta-model f conducts the
three steps, following the common procedure of meta-
learning (Ren et al. 2018; Shu et al. 2019). The sequence
of updates and data flow are illustrated in Figure 2. The
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Figure 2: Sequence of the updates in a unified training pro-
cedure of PREMERE.

feedback is provided back and forth between the two mod-
els during the training procedure. For now, the meta-data is
assumed to be given for ease of exposition, though it needs
to be self-generated by PREMERE; the meta-data has the
form of the user interest matrix in Definition 2, except that
each element is a real number in [0, 1] indicating a visit
probability. Xtrain and Xmeta denote the training and meta-
data (validation) sets, respectively.

1. Recommender model preliminary update: In each it-
eration, a mini-batch of training samples, Bt =
[x1Bt

,x2Bt
, . . . ,xbBt

] ∈ Rb×M is constructed by select-
ing b users from Xtrain uniformly at random, where b
is the mini-batch size; then, the parameter wt of the rec-
ommender model is updated using the current weighting
function f(·; Θt) to create a model with w̃ by

w̃ = wt − η∇wt
L′ (Bt; wt,Θt)

∣∣
wt
, (4)

where η is a learning rate.
2. Meta-model update: A mini-batch of meta-data samples
Mt = [xmeta

1Mt
,xmeta

2Mt
, . . . ,xmeta

bMt
] ∈ Rb×M is con-

structed by selecting another b users from (Xmeta
t − Bt)

uniformly at random. Note that w̃ obtained by Eq. (4) is
widely known as an inspection on the reweighting effi-
cacy of the current meta-model (Ren et al. 2018; Shu et al.
2019). Hence, the feedback from w̃ is exploited to update
the parameter Θt of the meta-model by

Θt+1 = Θt − η∇ΘtL
(
Mt; w̃

)∣∣
Θt
. (5)

Ideally, becauseMt contains true user interest, the default
loss in Eq. (1) is adopted for training in general.

3. Recommender model update: Finally, the parameter wt

of the recommender model is updated using the updated
weighting function f(·; Θt+1) by

wt+1 = wt − η∇wtL′ (Bt; wt,Θt+1)
∣∣
wt
. (6)

However, we argue that above meta-learning pipeline is
infeasible in recommendation tasks because of the absence
ofMt and severe class imbalance. Therefore, in the remain-
ing of this section, we discuss (1) our temporal ensembling
approach to solve the former; and (2) our novel meta-model
architecture PREMERE-NET to treat the latter.

Meta-Data Generation via Temporal Ensembling
Our rationale behind the generation of meta-data is based on
that POI recommendation resembles semi-supervised learn-
ing, in considering that only a few samples are labeled but
most of them are not. In POI recommendation, recorded
check-ins, which account for a small fraction (i.e., 0.1%) of
the entire dataset, correspond to the labeled set, and miss-
ing check-ins, which are not reflected in the dataset, corre-
spond to the unlabeled set. A common philosophy of semi-
supervised learning is to infer the labels of unlabeled sam-
ples for use in training a target model. Thus, in this study,
temporal ensembling (Laine and Aila 2017), which is shown
to be successful in semi-supervised learning, is employed to
infer the confidence of noisy negative samples.

For temporal ensembling, a mean-teacher net-
work (Tarvainen and Valpola 2017), which is an ensemble
of the current and earlier versions of a target model network,
is formulated by

w′t+1 = αw′t + (1− α)wt, (7)

where α is a hyperparameter for an exponential moving av-
erage. Then, for each negative sample in the training set, we
calculate the variance of q consecutive ensemble prediction
results to quantify its prediction stability (i.e., confidence),
as shown in Definition 3.
Definition 3. Let xu,l be a user u’s interest on a POI l and
R(xu,l; w) be the predicted visit probability for xu,l ob-
tained by the model with w. Suppose that a history of q
recent predictions is maintained as H. Then, the prediction
stability S of xu,l is formulated by

St(xu,l) = var(Ht(xu,l; q)),

where Ht(x; q) = {R(x; w′t−q+1), . . . , R(x; w′t)}. �
(8)

Then, a meta-data Xmeta
t at time t is constructed depend-

ing on the value and prediction stability of each entry of
Xtrain, as stated in Definition 4.
Definition 4. A meta-data Xmeta

t ∈ RN×M is a matrix with
each entry defined as

xmeta
u,l =

{
1 if xu,l = 1

Ht(xu,l; q) if xu,l = 0 ∧ St(xu,l) ≤ ε,
(9)

where H is the mean of the q prediction results (i.e., meta-
label), and ε is the hyperparameter for stable prediction. �

When a mini-batchMt of meta-data is constructed, only
the entries in Xmeta

t defined by Eq. (9) are considered. In
addition, PREMERE iteratively refines Xmeta

t every epoch,
which is considered as a learning cycle to measure the model
changes (Song et al. 2020a).

PREMERE-NET Architecture
The architecture of PREMERE-NET is improved along two
directions, as shown in Figure 3. First, the meta-model input
is enriched to include the context data about users and POIs.
Second, the flow of the meta-model is extended to have a
branch to handle the rare positive (i.e., minor class) samples
separately, which is shown in the grey upper part.
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Figure 3: PREMERE-NET meta-model architecture.

Context Data For each training sample xu,l, the context
data entails some characteristics or preferences of the user u
over various aspects of the POI l. Four types of the context
data are designed in this work based on their availability.
Here, x1

u denotes the set of the POIs visited by u.

• The user visit entropy represents the concentra-
tion of user visits and is formulated using the
information entropy (Chandler and Percus 1988),
−
∑

l∈Ω(x1
u) P(l) log P(l), where P(l) is the proportion of

the visits at l out of all visits by u. The lower the entropy
value is, the more concentrated the user’s visits are.

• The geographical similarity is formulated by the aver-
age of the distance from l to the other POIs visited by
u, 1
|Ω(x1

u)|
∑

l′∈Ω(x1
u) exp(−dist(l, l′)2), where dist(·, ·) is

the Euclidean distance between two POIs. It reflects the
first law of geography: “everything is related to everything
else, but near things are more related than distant things.”

• The temporal similarity is formulated by the average of
the peak-time similarity between l and the other POIs vis-
ited by u, 1

|Ω(x1
u)|
∑

l′∈Ω(x1
u) cos(hl,hl′), where cos(·, ·)

is the cosine similarity between two vectors, and hl is a
24-dimensional vector that contains the visit proportion
by all users at l in each hourly interval.

• The check-in count is the number of the visits to l by u.

Components PREMERE-NET receives the loss of the
recommender model and the context for a given sample, and
returns the sample weight as the result. As shown in Figure
3, the upper part is added to the conventional meta-model
architecture (Shu et al. 2019). In support of the fundamental
difference between positive and negative samples, negative
ones are handled by the conventional (lower) part, while pos-
itive ones are handled by the extended (upper) part.

There are three fully-connected layers in PREMERE-
NET. First, the learning degree layer Θ(l) adaptively infers a
latent embedding z(l), which is intended to demonstrate how
much a given sample contributes to the current training,

z(l) = σ(Θ(l) · Ixu,l
+ b(l)),

where Ixu,l
= [L(xu,l; wt), Cxu,l

].
(10)

Here, σ is an activation function, b(l) is the bias of the layer,
and Cxu,l

is the context data for xu,l. Then, the embedding
z(l) is fed to either the positive boosting layer Θ(p) or the
negative reweighting layer Θ(n) depending on whether a
given sample is positive or not. The former is intended to
handle the rarity of positive samples, and the latter is aimed

Algorithm 1 PREMERE Training

INPUT: epochs, Xtrain: user interest matrix, b: batch size, ε:
consistency threshold, q: history length

OUTPUT: w∗: trained model parameter
1: t← 1; wt,Θt ← Initialize model parameters;
2: Xmeta

t ← Add positive samples from Xtrain;
3: for e = 1 to epochs do
4: for iteration = 1 to N/b do
5: /* Meta-Model Update */
6: Bt ← Sample a train mini-batch from Xtrain;
7: w̃← wt − η∇L′ (Bt; wt,Θt)); /* By Eq. (4) */
8: Mt ← Sample a meta mini-batch from Xmeta

t ;
9: Θt+1 ← Θt − η∇L (Mt; w̃); /* By Eq. (5) */

10: /* Recommender Update */
11: wt+1 ← wt− η∇L′ (Bt; wt,Θt+1); /* By Eq. (6) */
12: t← t+ 1;
13: /* Generate Meta-Data */
14: Xmeta

t ← Construct a meta-data by Def. 4;
15: return w∗ ← wt;

at dealing with the noisiness of negative samples. Last, the
sample weight is determined as

f(Ixu,l
; Θ) =

{
σ(Θ(p) · z(l)) if xu,l = 1

σ(Θ(n) · z(l)) otherwise.
(11)

By virtue of this architectural extension, PREMERE-NET
not only handles the different characteristics of users and
POIs, but also relieves the class imbalance.

Training Algorithm Pseudocode
The unified training procedure of PREMERE is described
in Algorithm 1, which is self-explanatory. It receives the
user-interest matrix Xtrain for the training set (as well as
the associated context data C) and produces the optimal pa-
rameter w∗ of the recommender model. The algorithm con-
ducts the three steps: (1) recommender model preliminary
update (Line 7), (2) meta-model update (Line 9), and (3) rec-
ommender model update (Line 11). After these model up-
dates, the meta-data for the next epoch is newly generated
by Definition 4 (Line 14). This procedure repeats for a given
number of epochs. Once the training is done, the user prefer-
ence over the POIs is inferred by R(xu; w∗), and the top-K
unvisited POIs are recommended to each user.

Evaluation
In this section, we verify that (1) PREMERE improves
the performance of state-of-the-art POI recommender mod-
els by replacing their heuristic sample reweighting with our
meta-reweighting; (2) the extension of the meta-model ar-
chitecture is effective for meta-reweighting. The source code
is available at https://github.com/kaist-dmlab/PREMERE.

Experiment Setting
Datasets We used three popular benchmark datasets,
Gowalla (Liu et al. 2017), Foursquare (Yang, Zhang, and Qu
2016), and Yelp (Liu et al. 2017), which are commonly used
in the POI recommendation literature (Zhou et al. 2019; Ma



Dataset Users POIs Check-ins Scarcity

Gowalla 18,737 32,510 1,278,274 99.865%
Foursquare 24,941 28,593 1,196,248 99.900%

Yelp 30,887 18,995 860,888 99.860%

Table 1: Profiles of the three real-world datasets.

et al. 2018). Table 1 shows the profile of these three datasets.
According to usual data preprocessing (Liu et al. 2017), we
excluded the users whose check-in count is less than 10 in
Foursquare and Yelp and 15 in Gowalla; and the POIs whose
visitor count is less than 10 in all datasets. We randomly se-
lected 80% of check-ins as the training set and used the rest
20% of check-ins as the test set in each dataset.

Evaluation Metrics We used three widely-accepted met-
rics. The precision@K is the proportion of recommended
POIs in the top-K set that are visited, and the recall@K
is the proportion of actually visited POIs found in the top-
K recommendations. The MAP@K is the mean of precision
values at all ranks where actually visited POIs are found. We
varied the number of recommendationsK ∈ {5, 10, 20, 50}.
For the reliability of evaluation, we repeated every task five
times and reported the average value.

Baseline Recommenders We compared PREMERE with
11 existing POI recommender algorithms. Owing to the lack
of space, the detailed discussion of seven non-DNN-based
algorithms, MGMPFM (Cheng et al. 2012), LFBCA (Wang,
Terrovitis, and Mamoulis 2013), USG (Ye et al. 2011),
iGSLR (Zhang and Chow 2013), LORE (Zhang, Chow, and
Li 2014), IRenMF (Liu et al. 2014), and RankGeoFM (Li
et al. 2015), is deferred to the supplementary material. Here,
we focus on the following four DNN-based algorithms.
• CDAE (Wu et al. 2016) is based on a collaborative de-

noising auto-encoder.
• PACE (Yang et al. 2017) is a Skip-gram (Mikolov et al.

2013)-based semi-supervised learning model to learn user
preference and various contexts.

• SAE-NAD (Ma et al. 2018) is a stacked autoen-
coder (SAE)-based model to learn latent user preference
in the self-attentive encoder with an attention struc-
ture (Yang et al. 2016) and to cover additional geographi-
cal influence in the neighbor-aware decoder.

• APOIR (Zhou et al. 2019) is a generative adversarial
network (GAN) (Goodfellow et al. 2014)-based model to
learn user latent preference distribution with social and
geographical influence simultaneously.

Reweighting Schemes To evaluate the effectiveness of the
reweighting scheme itself, we injected the following three
reweighting schemes into CDAE and SAE-NAD.
• The default scheme involves no sample reweighting.
• The heuristic scheme involves positive sample upweight-

ing based on a pre-defined heuristic function of SAE-
NAD. It is defined only for positive samples as

f(xu,l) = 1 + γ log(1 + vu,l/ε), (12)

Method CDAE+Heuristic vs. SAE-NAD vs.
CDAE+PREMERE SAE-NAD+PREMERE

Gowalla 7.21% 26.9%
Foursquare 3.88% 2.36%

Yelp 5.79% 7.50%

Table 2: Precision@5 improvements by PREMERE in Fig-
ures 4, 5, and 6.

where vu,l is the check-in count, and γ and ε are the hy-
perparameters of SAE-NAD. Note that the output for a
specific sample does not change throughout the training.

• PREMERE is our proposed meta-reweighting scheme.

Different reweighting schemes were tested for CDAE
and SAE-NAD, where the results reported in the origi-
nal papers were reproduced in our environment. CDAE,
CDAE+Heuristic, and CDAE+PREMERE correspond
to the three variations of CDAE; SAE-NAD−Heuristic,
SAE-NAD, and SAE-NAD+PREMERE correspond to
the three variations of SAE-NAD because SAE-NAD is al-
ready equipped with the heuristic scheme.

Configuration We used Adam (Kingma and Ba 2015)
with a learning rate η = 0.001 and a weight decay 0.001.
Regarding three hyperparameter of PREMERE, we fixed
the moving average weight α = 0.95 and the history length
q = 10, which are known as the best-performing values
from relevant studies (Tarvainen and Valpola 2017; Song,
Kim, and Lee 2019); the stability threshold ε was set to be
0.25 ∗ H(x; q), where 0.25 is the upper bound of Eq. (8).
Our implementation was written using PyTorch and tested
on Nvidia Tesla V100. For the existing algorithms, we fol-
lowed the best hyperparameter setting suggested in the orig-
inal papers and conducted additional grid search to find the
best values for those not specified. Overall, we did our best
to achieve the highest accuracy for all compared algorithms.

Result Highlight and Summary
The meta-reweighting scheme of PREMERE improved the
performance of the two recommender algorithms in all
three datasets, as shown in Figures 4, 5, and 6. Accord-
ingly, the performance boosted by PREMERE exceeded
the previously-known best performance obtained by SAE-
NAD. Table 2 quantifies the precision@5 improvements
of CDAE+PREMERE and SAE-NAD+PREMERE over
CDAE+Heuristic and SAE-NAD, respectively.

The superior performance of PREMERE is attributed to
two technical innovations: (1) the meta-reweighting scheme
handles noise in the negative samples as well as scarcity
of the positive samples whereas the heuristic reweighting
scheme handles the latter only; (2) the meta-reweighting
scheme is adaptive to the training progress and context data
whereas the heuristic reweighting scheme is not.

Table 3 shows the precision@5 results of seven non-
DNN-based algorithms. PREMERE far exceeded the per-
formance of these algorithms. See the supplementary mate-
rial for details.
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Figure 4: Performance comparison among DNN-based algorithms for the Gowalla dataset.2
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Figure 5: Performance comparison among DNN-based algorithms for the Foursquare dataset.
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Figure 6: Performance comparison among DNN-based algorithms for the Yelp dataset.

Method MGMPFM LFBCA USG iGSLR LORE IRenMF RankGeoFM SAE-NAD+PREMERE
Gowalla 0.0245 0.0610 0.0602 0.0291 0.0417 0.0663 0.0692 0.1389

Foursquare 0.0321 – – – – 0.0604 0.0623 0.0911
Yelp 0.0160 0.0231 0.0264 0.0125 0.0241 0.0280 0.0331 0.0545

Table 3: Precision@5 results of seven non-DNN-based algorithms as well as PREMERE.

Relationship with Model Capacity As shown in Table 2,
SAE-NAD generally gained a larger performance enhance-
ment by PREMERE than CDAE owing to SAE-NAD’s
higher model complexity. While CDAE consists of a simple
autoencoder structure, SAE-NAD additionally employs an
attention mechanism (Luong, Pham, and Manning 2015; Pei
et al. 2017) and geographical contexts, which offer higher
capacity to understand complex user preference. Therefore,
it is expected that a more powerful model can benefit from
PREMERE more.

Relationship with Dataset PREMERE achieved signifi-
cant improvement especially when it was incorporated into
SAE-NAD and tested for the Gowalla dataset (i.e., Figure

2The results of PACE and APOIR in Figures 4, 5, and 6 are bor-
rowed from the original papers.

4). This inconsistency among the datasets is attributed to the
geographic distribution of check-ins. While the check-ins in
Foursquare and Yelp were spread within the U.S. or a few
cities in Europe, those in Gowalla were spread in the en-
tire world. Consequently, as shown in Table 4, the propor-
tion of other reachable POIs from each POI is the smallest
in Gowalla. As SAE-NAD considers the geographic context
for POI recommendation, PREMERE helps SAE-NAD ef-
fectively prune the far-away POIs, which are very unlikely
to visit, by sample reweighting.

Ablation Studies
To examine the effect of temporal ensembling and PRE-
MERE-NET components, we conducted ablation studies by
incorporating the following PREMERE variants into SAE-
NAD. Table 5 shows the results for the Gowalla dataset.



Distribution Data Collection % of POIs

≤ 10 km ≥ 1000 km

Gowalla World-Wide 3.8% 79.4%
Foursquare U.S. Mainland 6.1% 67.0%

Yelp A Few Cities 10.3% 34.4%

Table 4: Geographic distribution of check-ins.

Metric Precision@5 Recall@5 MAP@5

PREMERE 0.1389 0.0923 0.0947
No Self-Generation 0.1259 0.0879 0.0807

No Positive Boosting 0.0999 0.0654 0.0678
No Context Data 0.0818 0.0589 0.0536

Table 5: Ablation study results for the Gowalla dataset.

• No meta-data self-generation: In Definition 3, only the
first case is enabled whereas the second case is disabled.

• No positive boosting: In Figure 3 for the PREMERE-
NET architecture, the path to the positive boosting layer
for Θp (i.e., above the dashed line) is disabled.

• No context data: In Figure 3, the context data is also
removed from the above variant (no positive boosting).
Then, this variant becomes identical to Meta-Weight-
Net (Shu et al. 2019).

Effect of Meta-Data Self-Generation The first variant
does not use the meta-data for negative samples, which ac-
count for 99.9% of the entire dataset. As a result, the per-
formance degrades by 9.9%, 4.8%, and 14.8% in terms
of precision@5, recall@5, and MAP@5, respectively. Thus,
generating the meta-data for negative samples is important,
and our self-generation approach is reliable.

Effect of Positive Sample Boosting The second variant
does not deal with the rarity of positive samples. As a re-
sult, the performance degrades by 28.0%, 29.1%, and 28.4%
in terms of precision@5, recall@5, and MAP@5, respec-
tively. Thus, handling the class imbalance is essential, and
the PREMERE-NET architecture is proven to be effective.

Effect of Context Data The third variant may produces
a sub-optimal weight, especially when the optimal weight
cannot be entirely determined by the loss, i.e., when the
same loss is derived for the users or POIs of different char-
acteristics. As a result, the performance degrades by 42.1%,
36.2%, and 43.4% in terms of precision@5, recall@5, and
MAP@5, respectively. Thus, utilizing context data is impor-
tant, and our design is proven to be sufficient.

Related Work
Several POI recommender algorithms, such as PACE (Yang
et al. 2017), SAE-NAD (Ma et al. 2018), and APOIR (Zhou
et al. 2019), have been developed using a DNN. These DNN-
based algorithms are successfully shown to outperform tra-
ditional algorithms. Since we focus on sample reweighting

to further improve the performance of a DNN-based algo-
rithm, the detailed description of such algorithms is omitted.
Refer to an extensive survey (Chen et al. 2020) on recent POI
recommender algorithms. Meanwhile, reweighting sample
importance has been an active research topic because of its
importance in improving the performance.

Sample Reweighting in Recommendation
To make a recommender model understand user preference
more precisely, various studies have suggested reweight-
ing sample weights during model training (Hu, Koren, and
Volinsky 2008; Ma et al. 2018; Zhang et al. 2018). Ow-
ing to the imbalance of check-ins in POI recommendation,
SAE-NAD emphasizes the check-ins (positive samples) by
assigning a higher weight by Eq. (12), which is one of
the most popular weighting schemes (Hu, Koren, and Volin-
sky 2008). Recently, in movie recommendation with ex-
plicit user ratings, a self-paced learning (Kumar, Packer, and
Koller 2010)-based reweighting strategy was proposed to se-
lect the samples for reweighting under a predefined weight-
ing scheme (Zhang et al. 2018). Nevertheless, previous stud-
ies rely upon a fixed weighting function throughout the en-
tire training process, which does not reflect different charac-
teristics of users or POIs.

Meta-Learning-Based Sample Reweighting
Recently, meta-learning has been started to be adopted in
adaptive sample reweighting (Ren et al. 2018; Shu et al.
2019) to overcome the limitation of the fixed weighting
function. These meta-reweighting strategies alternate be-
tween ameliorating a reweighting strategy and updating a
target model. In L2RW (Ren et al. 2018), the set of sample
weights is defined to minimize the loss on a mini-batch of
a clean validation set (meta-data). In Meta-Weight-Net (Shu
et al. 2019), a multilayer perceptron (MLP) with one hidden
layer is used for explicitly modeling a weighting function,
where the MLP is trained using a clean validation set (meta-
data). Nevertheless, previous studies all require meta-data to
learn sample reweighting, which is practically infeasible to
acquire in recommender environments.

Conclusion
In this paper, we proposed PREMERE, a novel meta-
learning-based sample reweighting scheme for POI recom-
mendation. The meta-model architecture, PREMERE-NET,
is extended to use the well-designed context data and a sep-
arate flow of handling positive samples. In addition, the ab-
sence of meta-data, which was a critical problem of POI rec-
ommendation, is solved by the self-generation technique via
temporal ensembling. Extensive evaluation was conducted
by incorporating PREMERE into DNN-based POI recom-
mender algorithms. The meta-reweighting of PREMERE
significantly improved the recommendation performance by
up to 26.9% in terms of the precision@5 compared with the
heuristic reweighting. Overall, PREMERE can be applied
to any DNN architecture and is expected to raise the POI
recommendation performance.
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