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Abstract

Bundle recommender systems aim to recommend suitable collec-
tions (i.e., bundles) of items to each user, meeting their diverse
needs with all-in-one convenience. Typically, they utilize three dis-
tinct types of information: user-bundle purchase interactions (U-B
view), user-item purchase interactions (U-I view), and bundle-item
affiliations (B-I view). Our focus is on better integrating these three
perspectives (i.e., views) to deliver more accurate bundle recom-
mendations. Our examination of different role (main or sub-views)
combinations of the views reveals two key observations: (1) the best
combination varies across target users (i.e., who receive recommen-
dations), and (2) the U-I view is relatively weak as the main role.
Driven by these observations, we propose PET, which synergizes
the three views through (1) personalized view weighting, (2) U-I
view enhancement, and (3) two-pronged contrastive learning. Our
extensive experiments demonstrate that PET significantly outper-
forms existing methods in all popular benchmark datasets. Our code
and datasets are available at https://github.com/K-Kyungho/PET.
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1 Introduction

A bundle refers to a set of items that are grouped by a particular
concept. Bundles offer convenience to users by providing desirable
items all at once. Real-world examples of bundles include playlists
in music streaming platforms, fashion outfits in online shopping
malls, and combo meals in food delivery services.

Bundle recommender models [1, 3, 4, 6, 10, 15–17, 20, 23], de-
signed to recommend suitable bundles to users, typically leverage
three different types of information (or views): (1) user-bundle inter-
actions (U-B view), i.e., who purchases which bundle; (2) user-item
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interactions (U-I view), i.e., who buys which item; and (3) bundle-
item affiliation (B-I view), i.e., the composition of each bundle.

Toward better synergy of the three views, we analyze the real-
world bundle recommendation datasets. Specifically, we focus on
the combination of views, identifying which view is the most effec-
tive as the main role (spec., input for message passing of GNN-based
recommendation models). We reveal two key observations:
(O1) The best combination of the views varies across target users.
(O2) The U-I view is the least effective view as the main role.

Based on these observations, we propose a new bundle rec-
ommender model, PET (Personalized view weighting with data
Enhancement Two-pronged contrast), which synergizes the three
views through three techniques. First, based on (O1), we utilize view
weights personalized to each user when merging views. Second,
based on (O2), we enhance the user-item interaction view by using
the other two views. Third, we employ two-pronged contrastive
learning (CL), combining two CL strategies to improve representa-
tion learning. Specifically, in addition to Inter-CL (i.e., contrastive
learning across different views), which has been demonstrated to
be effective in bundle recommendation [16, 23], we employ Intra-
CL. That is, we create two augmented views from each view and
contrast them, enabling PET to learn robust representations even
when each view contains only limited interactions. We also validate
the effectiveness of PET through extensive experiments.

Our contributions are summarized as follows:
• Observation.We reveal two intriguing observations regarding
the integration of multiple views in real-world bundle datasets.

• Method. We propose PET, a novel bundle recommendation
model that achieves enhanced integration of multiple views.

• Experiments. PET achieves up to a 39.26% performance gain
compared to the best competitors.

2 Related Work & Preliminaries

In this section, after briefly reviewing related studies, we provide
preliminaries and formulation of the bundle recommendation task.

2.1 Related Work

GNN-based recommendation models A significant focus has
been placed on graph-neural-network (GNN) encoders and their
training strategies for effective recommendation. Among the en-
coders, LightGCN [9] stands out due to its simplicity and superior
performance across various domains [12, 16, 19, 21, 22].
GNN-based bundle recommendation models.GNN-based bun-
dle recommendation models typically leverage three types of in-
teractions (or views): user-bundle, user-item, and bundle-item. For
instance, Deng et al. [6] unified these views into a single graph
and employed GCN [14]. Instead of unifying all views, several
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Table 1: Dataset statistics of real-world bundle datasets.

Dataset #User #Item #Bundle #U-I #U-B #Avg.I/B

iFashion 53,897 42,563 27,694 2,290,645 1,679,708 3.86
NetEase 18,528 123,628 22,864 1,128,065 302,303 77.80
Youshu 8,039 32,770 4,771 138,515 51,377 37.03

studies learned distinct representations (i.e., user/item/bundle em-
beddings) from each view [3, 16, 17, 23]. For instance, Ma et al.
[16] and Zhao et al. [23] contrasted representations obtained from
different views to improve representation learning. Recent studies
further enhanced the synergy of the views, for instance, by em-
ploying early fusion strategies [15], transformer-based attention
mechanisms [20], and knowledge distillation [17].

2.2 Notations and Problem Formulation

For a user set U = {𝑢1, · · · , 𝑢 |U | }, an item set I = {𝑖1, · · · , 𝑖 | I | },
and a bundle setB = {𝑏1, · · · , 𝑏 | B | }, matricesA(𝑈𝐵) ∈ {0, 1} |U |× |B | ,
A(𝑈 𝐼 ) ∈ {0, 1} |U |× |I | , and A(𝐵𝐼 ) ∈ {0, 1} | B |× |I | denote the user-
bundle (U-B), user-item (U-I), and bundle-item (B-I) interactions,
respectively. Each entry A(𝑈𝐵)

𝑖 𝑗
(or A(𝑈 𝐼 )

𝑖𝑘
) is 1 if there exists an

interaction between 𝑢𝑖 and 𝑏 𝑗 (resp., 𝑢𝑖 and 𝑖𝑘 ), and 0 otherwise.
Similarly, each entry A(𝐵𝐼 )

𝑗𝑘
is 1 if 𝑖𝑘 belongs to 𝑏 𝑗 , and 0 otherwise.

We refer to A(𝑈𝐵) , A(𝑈 𝐼 ) , and A(𝐵𝐼 ) as the U-B, U-I, and B-I views,
respectively. For any matrix A ∈ R𝑛×𝑚 , its row-wise normalized
version is denoted by Â (i.e., Â𝑖 𝑗 = A𝑖 𝑗/

∑𝑚
𝑘=1 A𝑖𝑘 ). The objective

of bundle recommendation is to find unobserved user-bundle inter-
actions from the given matrices A(𝑈𝐵) , A(𝑈 𝐼 ) , and A(𝐵𝐼 ) .

3 Real-world Data Analysis

We present our analysis of real-world bundle datasets (spec., iFash-
ion [5], NetEase [2], and Youshu [4]), focusing on the integration
of their three views. Some statistics for the datasets are in Table 1.

3.1 Analysis Settings

Key concepts.We outline two key concepts: the main view and the
sub view. Amain view is the one for which we learn representations
(i.e., embeddings) by applying the GNN message passing on it. A
sub-view is used to pool the embeddings from the main view to
obtain user or bundle embeddings, if necessary. For example, when
we adopt the U-B view as the main view, we directly learn user and
bundle embeddings, making the sub-view unnecessary. However,
when we adopt the U-I (or B-I) view as the main view, we do not
learn bundle (resp., user) embeddings from the main view. Instead,
we utilize the B-I (resp., U-I) view as the sub-view to obtain bundle
(resp., user) embeddings by pooling item embeddings. These user
and bundle embeddings are used for bundle recommendation, as
detailed below. We aim to analyze the effectiveness of the U-B, U-I,
and B-I views as the main view for bundle recommendation.
Details.We split a set of user-bundle interactions into 70%/10%/20%
for training/validation/test.1 For each view, we use LightGCN [9]
and compute the score of a user 𝑢𝑖 purchasing a bundle 𝑏 𝑗 via
the inner product of their respective embeddings. For training, we
employthe BPR loss [18] with training user-bundle interactions as
positive pairs and false user-bundle interactions as negative ones.
1Note that U-B view consists only of training user-bundle interactions.

Figure 1: Performance (Recall@40) when utilizing each view

as the main view (left) and the proportion of users for whom

each main view leads to the best performance (right).

Lastly, we evaluate the scores from each view using test user-bundle
interactions in terms of Recall@40 and NDCG@40.2

3.2 Analysis Results

We present user- and global-level observations from our analysis.
(O1) One size does not fit all. For each user, we (1) compute Re-
call@40 and NDCG@40 for each view as the main view, and (2)
identify which main view yields the best prediction performance
for that user. We then calculate the ratio of users for which each
view achieves the best performance. As shown in Figure 1(b), we
observe that the main view leading to the best performance varies
among different users, with no single view consistently leading to
the best performance across the majority of users.
(O2) U-I view is relatively weak. As shown in Figure 1(a), using
the U-I view as the main view leads to the lowest performance
compared to the other two views.

4 Proposed Method

Wepropose amodel for bundle recommendation,PET (Personalized
viewweighting with data EnhancementTwo-pronged contrast). Re-
fer to Figure 2 for a visual description. It employs three techniques
that collectively enhance the utilization of multiple views.
(T1) U-I-enhanced view representation. To address the relative
weakness of the U-I view (O2), we enhance it by integrating extra
user-item interactions derived from the other views, as follows:

A(𝑈 𝐼 ) ′ = A(𝑈 𝐼 ) + 𝛽 (A(𝑈𝐵) )𝑇A(𝐵𝐼 ) ∈ R |U |× |I | ,

where 𝛽 ∈ R≥0 controls the degree of the view enhancement. The
additional U-I view, (A(𝑈𝐵) )𝑇A(𝐵𝐼 ) , provides information about
the items purchased by each user indirectly through bundles, sup-
plementing the direct user-item interactions. By leveraging the
three views, including the enriched U-I view, we obtain user and
bundle embeddings from each view as follows:

U
(𝑈 𝐼 ) , I(𝑈 𝐼 ) = GNN(A(𝑈 𝐼 ) ′ ,U′, I′), B

(𝑈 𝐼 ) = Â(𝐵𝐼 )
I
(𝑈 𝐼 ) ,

B
(𝐵𝐼 ) , I(𝐵𝐼 ) = GNN(A(𝐵𝐼 ) ,B′, I′), U

(𝐵𝐼 ) = Â(𝑈 𝐼 ) ′
I
(𝐵𝐼 ) ,

U
(𝑈𝐵) , B(𝑈𝐵) = GNN(A(𝑈𝐵) ,U′,B′),

where, U′, I′, and B′ are the learnable initial embeddings of users,
items, and bundles, respectively, which are shared across all views.
(T2) Personalized view weighting. Noting that no single view is
optimal for all users (O1), we introduce a personalized view weight-
ing scheme. Specifically, we compute the importance of each view,
which is personalized for each user, by considering the dependen-
cies between views as follows:
2The results in terms of NDCG@40 are available at [11].
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Figure 2: Visualization of PET, the proposed bundle recommendationmodel. The three key components of PET are (1) user-item

view enhancement, (2) two-pronged contrastive learning, and (3) personalized view weighting.

𝑝𝑖 = Softmax
(
MLP

(
U𝑖U𝑇𝑖

))
∈ R3, (1)

where U𝑖 = [U(𝑈 𝐼 )
𝑖

;U(𝑈𝐵)
𝑖

;U(BI)
i ] ∈ R3×𝑑 represents the stacked

embeddings of user 𝑢𝑖 from the three views. The product of the
embeddings from each pair of views is processed through an MLP,
followed by a softmax function. This results in a probability vec-
tor 𝑝𝑖 = [𝑝 (𝑈 𝐼 )

𝑖
, 𝑝

(𝑈𝐵)
𝑖

, 𝑝
(𝐵𝐼 )
𝑖

] whose components represent the
personalized importances of the views U-I, U-B, and B-I for user
𝑢𝑖 . Using these personalized importances, the estimated relevance
score 𝑟𝑖 𝑗 of a bundle 𝑏 𝑗 and a user 𝑢𝑖 is computed as:

𝑟𝑖 𝑗 =
∑︁

𝑉 ∈V 𝑝
(𝑉 )
𝑖

· (U(𝑉 )
𝑖

)𝑇B(𝑉 )
𝑗

, (2)

where V = {𝑈 𝐼,𝑈𝐵, 𝐵𝐼 } is the set of views. The estimated rele-
vance scores from each view are aggregated with their respective
importance obtained from the personalized weighting.
(T3) Two-pronged contrastive learning. In practice, we typically
have a limited number of user-bundle interactions. To enhance rep-
resentation learning under these circumstances, we introduce Intra-
CL, i.e., contrastive learning within each view. Specifically, for user
and bundle embeddings, we leverage the following InfoNCE [8]-
based contrastive loss for intra-CL:

Lintra
𝑐 = −

∑︁
𝑉 ∈{𝑈 𝐼,𝑈𝐵}

∑︁
𝑖∈U

log
exp

(
cos

(
U(𝑉 ,1)
𝑖

,U(𝑉 ,2)
𝑖

)
/𝜏
)

∑
𝑖′∈U exp

(
cos

(
U(𝑉 ,1)
𝑖

,U(𝑉 ,2)
𝑖′

)
/𝜏
)

−
∑︁

𝑉 ∈{𝐵𝐼,𝑈𝐵}

∑︁
𝑗 ∈B

log
exp

(
cos

(
B(𝑉 ,1)
𝑗

,B(𝑉 ,2)
𝑗

)
/𝜏
)

∑
𝑗 ′∈B exp

(
cos

(
B(𝑉 ,1)
𝑗

,B(𝑉 ,2)
𝑗 ′

)
/𝜏
)
,

where cos(x, y) is a cosine similarity (i.e., x𝑇 y/(∥x∥2 · ∥y∥2)),
𝜏 ∈ R≥0 is a hyperparameter, and U(𝑉 ,1)

𝑖
and U(𝑉 ,2)

𝑖
(or B(𝑉 ,1)

𝑗

and B(𝑉 ,2)
𝑗

) are user (resp., bundle) embeddings learned from two
different dropout-based graph augmentations of A(𝑉 ) .3 Intra-CL
encourages consistency between the same user (or bundle) embed-
dings in two augmented views, while minimizing the agreement of
arbitrary pairs of users (resp., bundles).

In addition, we incorporate Inter-CL (i.e., inter-view contrastive
learning) to align user and bundle embeddings obtained across
views. The inter-CL contrastive loss is defined as:
3Specifically, we randomly mask 𝑞% of ones in A(𝑉 ) with zeros.

Linter
𝑐 = −

∑︁
𝑉 ∈{𝑈 𝐼,𝐵𝐼 }

∑︁
𝑖∈U

log
exp

(
cos

(
U(𝑈𝐵,1)
𝑖

,U(𝑉 ,1)
𝑖

)
/𝜏 ′

)
∑

𝑖′∈U exp
(
cos

(
U(𝑈𝐵,1)
𝑖

,U(𝑉 ,1)
𝑖′

)
/𝜏 ′

)
−

∑︁
𝑉 ∈{𝑈 𝐼,𝐵𝐼 }

∑︁
𝑗 ∈B

log
exp

(
cos

(
B(𝑈𝐵,1)
𝑗

,B(𝑉 ,1)
𝑗

)
/𝜏 ′

)
∑

𝑗 ′∈B exp
(
cos

(
B(𝑈𝐵,1)
𝑗

,B(𝑉 ,1)
𝑗 ′

)
/𝜏 ′

)
,

where 𝜏 ′ ∈ R≥0 is a hyperparameter. Inter-CL encourages the
alignment between user (or bundle) embeddings from the U-B view
and user (resp., bundle) embeddings from the U-I and B-I views.

The two-pronged contrastive loss is obtained by combining the
contrastive losses for the intra-CL and inter-CL as follows:

LCL = 𝜆1 · Lintra
𝑐 + 𝜆2 · Linter

𝑐 , (3)

where 𝜆1 and 𝜆2 are hyperparameters.
Learning objective. In addition to the contrastive loss (i.e., Eq. (3)),
we employ the BPR [18] loss based on the personalized user-bundle
score (Eq. (2)), using positive and negative user-bundle pairwise
interactions. Additionally, we use view-specific BPR losses from
each view as an auxiliary loss Laux (refer to [11] for more details).
Lastly, to prevent a single view from undesirably dominating the
importance of all users, we introduce a regularization term, Lreg =∑
𝑢𝑖 ∈U ∥𝑝𝑖 ∥2, resulting in the final objective of PET as follows:

L = LBPR + LCL + 𝜆3Laux + 𝜆4Lreg,

where 𝜆3 and 𝜆4 are hyperparameters. Jointly optimizing these loss
terms enhances the performance of PET, as shown in Section 5.

5 Experimental Results

In this section, we review our experiments for three questions:
• RQ1. Performance comparison. How effective is PET com-
pared to the state-of-the-art bundle recommender systems?

• RQ2. Ablation study. Are all the key components of PET nec-
essary for its performance?

• RQ3. Effect of personalization. Are the learned personaliza-
tion weights of PET diversified, as we intend?

5.1 Experimental Settings

We provide full details regarding the experimental settings in [11].
Datasets and splits.We use the three datasets employed for our
data analysis (Section 3).We follow the common train/validation/test
splits of user-bundle interactions [15, 16, 20]. In each dataset, we
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Table 2: Bundle recommendation performance. The best performance is highlighted in bold, and the second-best one is

underlined. In all the cases, PET outperforms all the baseline methods.

Datasets iFashion NetEase Youshu

Metrics Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@20 NDCG@20 Recall@40 NDCG@40
BPRMF [18] 0.0882 0.0647 0.1347 0.0612 0.0677 0.0363 0.1082 0.0469 0.2660 0.1532 0.3691 0.1835
LightGCN [9] 0.0957 0.0707 0.1439 0.0876 0.0751 0.0397 0.1184 0.0508 0.2750 0.1622 0.3757 0.1859
MIDGN [23] 0.0694 0.0500 0.1091 0.0640 0.0680 0.0358 0.1075 0.0460 0.2688 0.1562 0.3696 0.1836
BundleGT [20] 0.0981 0.0726 0.1471 0.0898 0.0913 0.0481 0.1394 0.0607 0.2927 0.1745 0.3964 0.2028
CrossCBR [16] 0.1308 0.1004 0.1888 0.1209 0.0901 0.0485 0.1372 0.0609 0.2831 0.1689 0.3843 0.1968
MultiCBR [15] 0.1863 0.1569 0.2475 0.1779 0.0928 0.0509 0.1391 0.0631 0.2932 0.1732 0.3968 0.2012
PET 0.2532 0.2185 0.3220 0.2429 0.0978 0.0528 0.1459 0.0655 0.3052 0.1804 0.4103 0.2095

Improvement 35.91% 39.26% 30.10% 36.54% 5.39% 3.73% 4.66% 3.80% 4.09% 3.38% 3.40% 3.30%

Table 3: Effectiveness of the key components of PET. The

best performance is highlighted in bold, and the second-best

one is underlined. R@40: Recall@40. N@40: NDCG@40.

Datasets iFashion NetEase Youshu

Metrics R@40 N@40 R@40 N@40 R@40 N@40

PET-E. 0.3161 0.2420 0.1413 0.0638 0.4081 0.2092

PET-P. 0.3215 0.2427 0.1406 0.0636 0.4011 0.2030
PET-I. 0.2917 0.2209 0.1393 0.0629 0.4028 0.2056

PET 0.3220 0.2429 0.1459 0.0655 0.4103 0.2090

conduct five trials with different model initializations and report
the average performance.
Baseline methods.We use six baseline methods with official code
released by their authors, including two general recommendation
models (BPRMF [18] and LightGCN [9]) and four bundle recom-
mendation models (MIDGN [23], CrossCBR [16], MultiCBR [15],
and BundleGT [20]). Note that MultiCBR and BundleGT are the
state-of-the-art bundle recommendation models.
Evaluation metrics.We employ NDCG@𝑁 and Recall@𝑁 , which
have been used widely in prior studies [15, 16, 20], to measure the
performance of each method. We set 𝑁 = 20 and 40.
Hyperparameters. For all the considered methods, we (1) use
the Xavier initialization [7] and the Adam optimizer [13]; (2) fix
the learning rate and batch size to 0.001 and 2, 048, respectively;
and (3) tune the embedding size in {64, 128, 256}.4 For PET, we
leverage 1-layer LightGCN [9] as the GNN encoder and consider
the following hyperparameter search spaces: (1) the augmentation
strength in {10, 30, 50, 70}; (2) the temperature parameters 𝜏 and 𝜏 ′
in {0.1, 0.2, · · · , 1.0}; (3) the loss coefficients 𝜆1, 𝜆2, 𝜆3, and the U-I
the enhancement coefficient 𝛽 in {0.01, 0.03, 0.05, 0.07, 0.1, 0.2, 0.3,
0.5, 1, 2}; and (4) the regularization coefficient 𝜆4 in {10−7, 10−6, 3×
10−6, 5 × 10−6, 10−5, 3 × 10−5, 5 × 10−5, 10−4}.

5.2 Experimental Results

(RQ1) Performance comparison. We compare the performance
of PET against that of the baseline methods. As shown in Table 2,
PET outperforms all the baseline methods across all the metrics and
datasets, achieving up to 39.26% performance gain compared to the
best competitor, in terms of NDCG@20. The performance gain is
especially remarkable in the iFashion dataset, where the B-I and U-I
views are effective as the main view (see Figure 1). We hypothesize
4In the NetEase dataset, BundleGT and MIDGN suffer from an out-of-memory issue
when their embedding sizes are 128 or 256. In such cases, we fixed their sizes as 64.

Figure 3: AKDEplot of the distributions of personalized view

weights for users. Note that the weights are spread across a

wide range, consistent with our design goal.

that Intra-CL enables PET to learn beneficial information from the
B-I and U-I views by improving the embeddings from them.
(RQ2) Ablation study. We demonstrate the effectiveness of the
key components of PET. To this end, we consider three variants:
PET without U-I view enhancement (PET-E.), PET without person-
alized viewweighting (PET-P.), and PETwithout Intra-CL (PET-I.).
As shown in Table 3, PET outperforms its variants in five out of six
cases, demonstrating the necessity of each key component of it.
(RQ3) Effect of personalization. As discussed in Section 3, effec-
tive main views vary among users, and the personalization weights
of PET (Eq (1)) are designed to adaptively prioritize views for each
user. As shown in Figure 3, personalization weights for each view
are spread across a wide range, specifically from 0.15 to 0.6.5 This
result indicates that the personalization weights indeed vary among
users, and thus our design goal is achieved.

6 Conclusions

In this work, we focus on the synergy of the three different types
of information (i.e., views) for bundle recommendation, i.e., user-
bundle interactions, user-item interactions, and bundle-item affilia-
tion. First, we analyze real-world bundle datasets and reveal key
properties of the three views (Section 3). Second, motivated by them,
we propose PET, a new bundle recommendation model (Section 4).
Lastly, we empirically validate the effectiveness of PET (Section 5).
For future work, we plan to extend our research to various rec-
ommender systems that can benefit from the synergy of multiple
views (e.g., multi-behavior, social, group recommendations).
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5The theoretical bound of the personalization weight is (0, 1).
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